1
|
Di Nunzio MR, Douhal A. Robust Inclusion Complex of Topotecan Comprised within a Rhodamine-Labeled β-Cyclodextrin: Competing Proton and Energy Transfer Processes. Pharmaceutics 2023; 15:1620. [PMID: 37376069 DOI: 10.3390/pharmaceutics15061620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Monitoring the biological fate of medicaments within the environments of cancer cells is an important challenge which is nowadays the object of intensive studies. In this regard, rhodamine-based supramolecular systems are one of the most suitable probes used in drug delivery thanks to their high emission quantum yield and sensitivity to the environment which helps to track the medicament in real time. In this work, we used steady-state and time-resolved spectroscopy techniques to investigate the dynamics of the anticancer drug, topotecan (TPT), in water (pH ~6.2) in the presence of a rhodamine-labeled methylated β-cyclodextrin (RB-RM-βCD). A stable complex of 1:1 stoichiometry is formed with a Keq value of ~4 × 104 M-1 at room temperature. The fluorescence signal of the caged TPT is reduced due to: (1) the CD confinement effect; and (2) a Förster resonance energy transfer (FRET) process from the trapped drug to the RB-RM-βCD occurring in ~43 ps with 40% efficiency. These findings provide additional knowledge about the spectroscopic and photodynamic interactions between drugs and fluorescent functionalized CDs, and may lead to the design of new fluorescent CD-based host-guest nanosystems with efficient FRET to be used in bioimaging for drug delivery monitoring.
Collapse
Affiliation(s)
- Maria Rosaria Di Nunzio
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica and INAMOL, Universidad de Castilla-La Mancha, Av. Carlos III, s/n, 45071 Toledo, Spain
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica and INAMOL, Universidad de Castilla-La Mancha, Av. Carlos III, s/n, 45071 Toledo, Spain
| |
Collapse
|
2
|
de la Hoz Tomás M, Yamaguchi M, Cohen B, Hisaki I, Douhal A. Deciphering the ultrafast dynamics of a new tetraphenylethylene derivative in solutions: charge separation, phenyl ring rotation and CC bond twisting. Phys Chem Chem Phys 2023; 25:1755-1767. [PMID: 36594826 DOI: 10.1039/d2cp05220b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tetraphenylethylene (TPE) derivatives are one of the fundamental units for developing aggregation induced emission (AIE) scaffolds. However, the underlying mechanisms implicated in the relaxation of the excited TPE remain a topic of ongoing discussion, while the effect of bulky substituents on its photobehaviour is still under scrutiny. Here, we report a detailed study of the photophysical properties of a new symmetrical and bulky TPE derivative with terphenyl groups (TTECOOBu) in solvents of different polarities and viscosities. Using femto- to nanosecond (fs-ns) time-resolved absorption and emission techniques, we elucidated the role of the phenyl group rotations and core ethylene bond twisting in its behaviour. We demonstrate that TTECOOBu in DCM solutions undergoes a 600 fs charge separation along the ethylene bond leading to a resonance structure with a lifetime of ∼1 ns. The latter relaxes via two consecutive events: a twisting of the ethylene bond (∼ 9 ps) and a rotation of the phenyl rings (∼ 30 ps) leading to conformationally-relaxed species with a largely Stokes-shifted emission (∼ 12 500 cm-1). The formation of the red-emitting species clearly depends on the solvent viscosity and rigidity of the medium. Contrary to the photobehavior in the highly viscous triacetin or rigid polymer matrix of PMMA, a reversible mechanism was observed in DCM and DMF solutions. These results provide new findings on the ultrafast mechanisms of excited TPE derivatives and should help in the development of new molecular rotors with interesting AIE properties for photonic applications.
Collapse
Affiliation(s)
- Mario de la Hoz Tomás
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain.
| | - Mao Yamaguchi
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Boiko Cohen
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain.
| | - Ichiro Hisaki
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain.
| |
Collapse
|
3
|
Gutiérrez M, García E, Monterde C, Sánchez F, Douhal A. Modulating the spectroscopy and dynamics of a proton-transfer dye by functionalizing with phenyl groups. Phys Chem Chem Phys 2022; 24:6828-6835. [PMID: 35244633 DOI: 10.1039/d1cp05294b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecules undergoing excited-state proton transfer (ESPT) reactions are among the most interesting systems from spectroscopic and photophysical viewpoints. These molecules can be further functionalized with electron donating or accepting groups, inducing intramolecular charge transfer (ICT) events, which might be coupled to the ESIPT ones, conferring them with different spectroscopic and photophysical properties, which can be essential to implement the related materials in many key scientific and technological fields. Here, we report new benzimidazole derivatives that are functionalized with a phenyl group, 2-(5,10-diphenyl-1H-phenanthro[9,10-d]imidazol-2-yl)phenol (DP-HPPI), and its methylated equivalent, 2-(2-methoxyphenyl)-5,10-diphenyl-1H-phenanthro[9,10-d]imidazole (DP-MPPI). The results prove that these molecules in solutions undergo an ultrafast ICT (400-700 fs) reaction. Additionally, DP-HPPI also undergoes a reversible ESIPT process in dichloromethane. However, this is precluded in acetonitrile due to the involvement of intermolecular H-bonds in this solvent. These results provide key insights into the development of proton-transfer materials with bespoke spectral and photodynamical properties.
Collapse
Affiliation(s)
- Mario Gutiérrez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S. N., 45071 Toledo, Spain.
| | - Eduardo García
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S. N., 45071 Toledo, Spain.
| | - Cristina Monterde
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Félix Sánchez
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S. N., 45071 Toledo, Spain.
| |
Collapse
|
4
|
di Nunzio MR, Gutiérrez M, Moreno JM, Corma A, Díaz U, Douhal A. Interrogating the Behaviour of a Styryl Dye Interacting with a Mesoscopic 2D-MOF and Its Luminescent Vapochromic Sensing. Int J Mol Sci 2021; 23:ijms23010330. [PMID: 35008756 PMCID: PMC8745538 DOI: 10.3390/ijms23010330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
In this contribution, we report on the solid-state-photodynamical properties and further applications of a low dimensional composite material composed by the luminescent trans-4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) dye interacting with a two-dimensional-metal organic framework (2D-MOF), Al-ITQ-HB. Three different samples with increasing concentration of DCM are synthesized and characterized. The broad UV-visible absorption spectra of the DCM/Al-ITQ-HB composites reflect the presence of different species of DCM molecules (monomers and aggregates). In contrast, the emission spectra are narrower and exhibit a bathochromic shift upon increasing the DCM concentration, in agreeance with the formation of adsorbed aggregates. Time-resolved picosecond (ps)-experiments reveal multi-exponential behaviors of the excited composites, further confirming the heterogeneous nature of the samples. Remarkably, DCM/Al-ITQ-HB fluorescence is sensitive to vapors of electron donor aromatic amine compounds like aniline, methylaniline, and benzylamine due to a H-bonding-induced electron transfer (ET) process from the analyte to the surface-adsorbed DCM. These findings bring new insights on the photobehavior of a well-known dye when interacting with a 2D-MOF and its possible application in sensing aniline derivatives.
Collapse
Affiliation(s)
- Maria Rosaria di Nunzio
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Av. Carlos III, s/n, 45071 Toledo, Spain; (M.R.d.N.); (M.G.)
| | - Mario Gutiérrez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Av. Carlos III, s/n, 45071 Toledo, Spain; (M.R.d.N.); (M.G.)
| | - José María Moreno
- Instituto de Tecnología Química, Universitat Politécnica de Valéncia-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos, s/n, 46022 Valencia, Spain; (J.M.M.); (A.C.); (U.D.)
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politécnica de Valéncia-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos, s/n, 46022 Valencia, Spain; (J.M.M.); (A.C.); (U.D.)
| | - Urbano Díaz
- Instituto de Tecnología Química, Universitat Politécnica de Valéncia-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos, s/n, 46022 Valencia, Spain; (J.M.M.); (A.C.); (U.D.)
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Av. Carlos III, s/n, 45071 Toledo, Spain; (M.R.d.N.); (M.G.)
- Correspondence:
| |
Collapse
|
5
|
1′-hydroxy-2′-acetonaphthone: A simple fluorescence turn-on signaling probe with high selectivity and sensitivity for Al3+ in pure water. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Immobilization of molecular catalysts on electrode surfaces using host-guest interactions. Nat Chem 2021; 13:523-529. [PMID: 33767362 DOI: 10.1038/s41557-021-00652-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
Anchoring molecular catalysts on electrode surfaces combines the high selectivity and activity of molecular systems with the practicality of heterogeneous systems. Molecular catalysts, however, are far less stable than traditional heterogeneous electrocatalysts, and therefore a method to easily replace anchored molecular catalysts that have degraded could make such electrosynthetic systems more attractive. Here we applied a non-covalent 'click' chemistry approach to reversibly bind molecular electrocatalysts to electrode surfaces through host-guest complexation with surface-anchored cyclodextrins. The host-guest interaction is remarkably strong and enables the flow of electrons between the electrode and the guest catalyst. Electrosynthesis in both organic and aqueous media was demonstrated on metal oxide electrodes, with stability on the order of hours. The catalytic surfaces can be recycled by controlled release of the guest from the host cavities and the readsorption of fresh guest.
Collapse
|
7
|
Synthesis and Photobehavior of a NewDehydrobenzoannulene-Based HOF with Fluorine Atoms: From Solution to Single Crystals Observation. Int J Mol Sci 2021; 22:ijms22094803. [PMID: 33946609 PMCID: PMC8124357 DOI: 10.3390/ijms22094803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Hydrogen-bonded organic frameworks (HOFs) are the focus of intense scientific research due their potential applications in science and technology. Here, we report on the synthesis, characterization, and photobehavior of a new HOF (T12F-1(124TCB)) based on a dehydrobenzoannulene derivative containing fluorine atoms (T12F-COOH). This HOF exhibits a 2D porous sheet, which is hexagonally networked via H-bonds between the carboxylic groups, and has an interlayers distance (4.3 Å) that is longer than that of a typical π–π interaction. The presence of the fluorine atoms in the DBA molecular units largely increases the emission quantum yield in DMF (0.33, T12F-COOH) when compared to the parent compound (0.02, T12-COOH). The time-resolved dynamics of T12F-COOH in DMF is governed by the emission from a locally excited state (S1, ~0.4 ns), a charge-transfer state (S1(CT), ~2 ns), and a room temperature emissive triplet state (T1, ~20 ns), in addition to a non-emissive triplet structure with a charge-transfer character (T1(CT), τ = 0.75 µs). We also report on the results using T12F-ester. Interestingly, FLIM experiments on single crystals unravel that the emission lifetimes of the crystalline HOF are almost twice those of the amorphous ones or the solid T12F-ester sample. This shows the relevance of the H-bonds in the photodynamics of the HOF and provides a strong basis for further development and study of HOFs based on DBAs for potential applications in photonics.
Collapse
|
8
|
Deciphering the photobehaviour of ensemble and single crystals of Zr-based ITQ MOF composites. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Caballero‐Mancebo E, Cohen B, Smolders S, De Vos DE, Douhal A. Unravelling Why and to What Extent the Topology of Similar Ce-Based MOFs Conditions their Photodynamic: Relevance to Photocatalysis and Photonics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901020. [PMID: 31592140 PMCID: PMC6774026 DOI: 10.1002/advs.201901020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/13/2019] [Indexed: 05/15/2023]
Abstract
Metal-organic frameworks (MOFs) are emerging materials for luminescent and photochemical applications. Armed with femto to millisecond spectroscopies, and fluorescence microscopy, the photobehaviors of two Ce-based MOFs are unravelled: Ce-NU-1000 and Ce-CAU-24-TBAPy. It is observed that both MOFs show ligand-to-cluster charge transfer reactions in ≈100 and ≈70 fs for Ce-NU-1000 and Ce-CAU-24-TBAPy, respectively. The formed charge separated states, resulting in electron and hole generation, recombine in different times for each MOF, being longer in Ce-CAU-24-TBAPy: 1.59 and 13.43 µs than in Ce-NU-1000: 0.64 and 4.91 µs. The linkers in both MOFs also undergo a very fast intramolecular charge transfer reaction in ≈160 fs. Furthermore, the Ce-NU-1000 MOF reveals excimer formation in 50 ps, and lifetime of ≈14 ns. The lack of this interlinkers event in Ce-CAU-24-TBAPy arises from topological restriction and demonstrates the structural differences between the two frameworks. Single-crystal fluorescence microscopy of Ce-CAU-24-TBAPy shows the presence of a random distribution of defects along the whole crystal, and their impact on the observed photobehavior. These findings reflect the effect of linkers topology and metal clusters orientations on the outcome of electronic excitation of reticular structure, key to their applicability in different fields of science and technology, such as photocatalysis and photonics.
Collapse
Affiliation(s)
- Elena Caballero‐Mancebo
- Departamento de Química FísicaFacultad de Ciencias Ambientales y Bioquímica, and INAMOLUniversidad de Castilla‐La ManchaAvenida Carlos III, S/N45071ToledoSpain
| | - Boiko Cohen
- Departamento de Química FísicaFacultad de Ciencias Ambientales y Bioquímica, and INAMOLUniversidad de Castilla‐La ManchaAvenida Carlos III, S/N45071ToledoSpain
| | - Simon Smolders
- Centre for Membrane Separations, Adsorption Catalysis and Spectroscopy for Sustainable SolutionsDepartment MSKU LeuvenCelestijnenlaan 200F P.O. Box 24543001LeuvenBelgium
| | - Dirk E. De Vos
- Centre for Membrane Separations, Adsorption Catalysis and Spectroscopy for Sustainable SolutionsDepartment MSKU LeuvenCelestijnenlaan 200F P.O. Box 24543001LeuvenBelgium
| | - Abderrazzak Douhal
- Departamento de Química FísicaFacultad de Ciencias Ambientales y Bioquímica, and INAMOLUniversidad de Castilla‐La ManchaAvenida Carlos III, S/N45071ToledoSpain
| |
Collapse
|
10
|
Confinement Effect of Micro- and Mesoporous Materials on the Spectroscopy and Dynamics of a Stilbene Derivative Dye. Int J Mol Sci 2019; 20:ijms20061316. [PMID: 30875908 PMCID: PMC6471191 DOI: 10.3390/ijms20061316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/12/2022] Open
Abstract
Micro- and mesoporous silica-based materials are a class of porous supports that can encapsulate different guest molecules. The formation of these hybrid complexes can be associated with significant alteration of the physico-chemical properties of the guests. Here, we report on a photodynamical study of a push–pull molecule, trans-4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM), entrapped within faujasite-type zeolites (HY, NaX, and NaY) and MCM-41 in dichloromethane suspensions. The complex formation gives rise to caged monomers and H- and J-aggregates. Steady-state experiments show that the nanoconfinement provokes net blue shifts of both the absorption and emission spectra, which arise from preferential formation of H-aggregates concomitant with a distortion and/or protonation of the DCM structure. The photodynamics of the hybrid complexes are investigated by nano- to picosecond time-resolved emission experiments. The obtained fluorescence lifetimes are 65–99 ps and 350–400 ps for H- and J-aggregates, respectively, while those of monomers are 2.46–3.87 ns. Evidences for the presence of a charge-transfer (CT) process in trapped DCM molecules (monomers and/or aggregates) are observed. The obtained results are of interest in the interpretation of electron-transfer processes, twisting motions of analogues push–pull systems in confined media and understanding photocatalytic mechanisms using this type of host materials.
Collapse
|
11
|
Hisaki I, Suzuki Y, Gomez E, Ji Q, Tohnai N, Nakamura T, Douhal A. Acid Responsive Hydrogen-Bonded Organic Frameworks. J Am Chem Soc 2019; 141:2111-2121. [PMID: 30615836 DOI: 10.1021/jacs.8b12124] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A porous hydrogen-bonded organic framework (HOF) responsive to acid was constructed from a hexaazatrinaphthylene derivative with carboxyphenyl groups (CPHATN). Precise structures of both 1,2,4-trichlorobenzene solvate [CPHATN-1(TCB)] and activated HOF with permanent porosity (CPHATN-1a) were successfully determined by single-crystalline X-ray diffraction analysis. Permanent porosity of CPHATN-1a was evaluated by gas sorption experiments at low temperature. CPHATN-1a also shows significant thermal stability up to 633 K. Its crystals exhibit a rich photochemistry thanks to intramolecular charge-transfer and interunit proton-transfer reactions. Femtosecond (fs) experiments on crystals demonstrate that these events occur in ≤200 fs and 1.2 ps, respectively. Moreover, single-crystal fluorescence microscopy reveals a shift of the emission spectra most probably as a result of defects and a high anisotropic behavior, reflecting an ordered crystalline structure with a preferential orientation of the molecular dipole moments. Remarkably, CPHATN-1a, as a result of the protonation of pyradyl nitrogen atoms embedded in its π-conjugated core, shows reversible vapor acid-induced color changes from yellow to reddish-brown, which can be also followed by an ON/OFF of its emission. To the best of our knowledge, this is the first HOF that exhibits acid-responsive color changes. The present work provides new findings for developing stimuli responsive HOFs.
Collapse
Affiliation(s)
- Ichiro Hisaki
- Research Institute for Electronic Science , Hokkaido University , Kitaku, Sapporo , Hokkaido 001-0020 , Japan
| | - Yuto Suzuki
- Department of Material and Life Science, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita, Osaka 565-0871 , Japan
| | - Eduardo Gomez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL , Universidad de Castilla-La Mancha , Avenida Carlos III , S/N, 45071 Toledo , Spain
| | - Qin Ji
- Research Institute for Electronic Science , Hokkaido University , Kitaku, Sapporo , Hokkaido 001-0020 , Japan
| | - Norimitsu Tohnai
- Department of Material and Life Science, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita, Osaka 565-0871 , Japan
| | - Takayoshi Nakamura
- Research Institute for Electronic Science , Hokkaido University , Kitaku, Sapporo , Hokkaido 001-0020 , Japan
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL , Universidad de Castilla-La Mancha , Avenida Carlos III , S/N, 45071 Toledo , Spain
| |
Collapse
|
12
|
Gomez E, Alarcos N, Monterde C, Sánchez F, Moreno M, Douhal A. Experimental and theoretical insights into the influence of electronic density on proton-transfer reactions. Phys Chem Chem Phys 2018; 20:27149-27161. [PMID: 30334550 DOI: 10.1039/c8cp03185a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the excited-state behavior of proton-transfer phenanthroimidazole derivatives, such as HPPI and NMHPPI, in solutions using steady-state and femto- to nanosecond time-resolved fluorescence spectroscopies. Experimental observations are supported by theoretical calculations (TDDFT). In dichloromethane (DCM) and acetonitrile (ACN), two different paths are found for the excited-state intramolecular proton-transfer (ESIPT) reactions following two different channels. A fast and direct channel (ESIPT1) in 1-2.5 ps and a slower one (ESIPT2) in 12-15 ps, the latter being more influenced by the solvent viscosity (30 ps for HPPI and 20 ps for NMHPPI in triacetin (TAC) solutions). The slowing down of the ESIPT2 reaction is explained in terms of an intramolecular charge transfer (ICT) reaction coupled to a twisting motion to reach a more suitable conformation of the involved parts in the proton-transfer motion. The absence of OH/OD exchange effects in the ultrafast and slow proton-transfer dynamics suggests that the ESIPT reactions, which involve intramolecular and solvent coordinates, do not occur via tunneling. These results reveal new insights into the photobehavior of proton-transfer dyes, which might help in designing photosensors or lighting devices.
Collapse
Affiliation(s)
- Eduardo Gomez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N., 45071 Toledo, Spain.
| | | | | | | | | | | |
Collapse
|
13
|
Caballero-Mancebo E, Moreno JM, Corma A, Díaz U, Cohen B, Douhal A. How Does the Surface of Al-ITQ-HB 2D-MOF Condition the Intermolecular Interactions of an Adsorbed Organic Molecule? ACS APPLIED MATERIALS & INTERFACES 2018; 10:20159-20169. [PMID: 29779377 DOI: 10.1021/acsami.8b04222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, we unravel how the two-dimensional Al-ITQ-4-heptylbenzoic acid (HB) metal-organic framework (MOF) changes the interactions of Nile red (NR) adsorbed on its surface. Time-resolved emission experiments indicate the occurrence of energy transfer between adsorbed NR molecules, in abnormally long time constant of 2-2.5 ns, which gets shorter (∼0.25 ns) when the concentration of the surface-adsorbed NR increases. We identify the emission from local excited state of aggregates and charge transfer and energy transfer between adsorbed molecules. Femtosecond emission studies reveal an ultrafast process (∼425 fs) in the NR@Al-ITQ-HB composites, assigned to an intramolecular charge transfer in NR molecules. A comparison of the observed photobehavior with that of NR/SiO2 and NR/Al2O3 composites suggests that the occurrence of energy transfer in the NR@MOF complexes is a result of specific and nonspecific interactions, reflecting the different surface properties of Al-ITQ-HB that are of relevance to the reported high catalytic activity. Our results provide new knowledge for further researches on other composites with the aim to improve understanding of photocatalytic and photonic processes within MOFs.
Collapse
Affiliation(s)
- Elena Caballero-Mancebo
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL , Universidad de Castilla-La Mancha , Avenida Carlos III, S/N , 45071 Toledo , Spain
| | - José María Moreno
- Instituto de Tecnología Química , Universitat Politecnica de Valéncia-Consejo Superior de Investigaciones Científicas (UPV-CSIC) , Av. de los Naranjos s/n , 46022 Valencia , Spain
| | - Avelino Corma
- Instituto de Tecnología Química , Universitat Politecnica de Valéncia-Consejo Superior de Investigaciones Científicas (UPV-CSIC) , Av. de los Naranjos s/n , 46022 Valencia , Spain
| | - Urbano Díaz
- Instituto de Tecnología Química , Universitat Politecnica de Valéncia-Consejo Superior de Investigaciones Científicas (UPV-CSIC) , Av. de los Naranjos s/n , 46022 Valencia , Spain
| | - Boiko Cohen
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL , Universidad de Castilla-La Mancha , Avenida Carlos III, S/N , 45071 Toledo , Spain
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL , Universidad de Castilla-La Mancha , Avenida Carlos III, S/N , 45071 Toledo , Spain
| |
Collapse
|
14
|
di Nunzio MR, Douhal Y, Organero JA, Douhal A. Structural and photodynamic properties of the anti-cancer drug irinotecan in aqueous solutions of different pHs. Phys Chem Chem Phys 2018; 20:14182-14191. [PMID: 29761192 DOI: 10.1039/c8cp01134f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This work reports on photophysical studies of the irinotecan (IRT) anti-cancer drug in water solutions of different acidities (pH = 1.11-9.46). We found that IRT co-exists as mono-cationic (C1), di-cationic (C2), or neutral (N) forms. The population of each prototropic species depends on the pH of the solution. At pH = 1.11-3.01, the C1 and C2 structures are stabilized. At pH = 7.00, the most populated species is C1, while at pH values larger than 9.46 the N form is the most stable species. In the 1.11-2.61 pH range, the C1* emission is efficiently quenched by protons to give rise to the emission from C2*. The dynamic quenching constant, KD, is ∼32 M-1. While the diffusion governs the rate of excited-state proton-transfer (ESPT) under these conditions, the reaction rate increases with the proton concentration. A two-step diffusive Debye-Smoluchowski model was applied at pH = 1.11-2.61 to describe the protonation of C1*. The ESPT time constants derived for C1* are 382 and 1720 ps at pH = 1.11 and 1.95, respectively. We found that one proton species is involved in the protonation of C1* to give C2*, in the analyzed acidic pH range. Under alkaline conditions (pH = 9.46), the N form is the most stable structure of IRT. These results indicate the influence of the pH of the medium on the structural and dynamical properties of IRT in water solution. They may help to provide a better understanding on the relationship between the structure and biological activity of IRT.
Collapse
Affiliation(s)
- Maria Rosaria di Nunzio
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain.
| | | | | | | |
Collapse
|
15
|
Gomez E, Gutiérrez M, Moreno M, Hisaki I, Nakagawa S, Douhal A. Spectroscopy and dynamics of dehydrobenzo[12]annulene derivatives possessing peripheral carboxyphenyl groups: theory and experiment. Phys Chem Chem Phys 2018; 20:7415-7427. [PMID: 29303185 DOI: 10.1039/c7cp06819k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we report on the results of theoretical and experimental studies of a series of dehydrobenzoannulene (DBA) derivatives (Nu-T12 [5,6,11,12,17,18-hexadehydrotribenzo[a,e,i]cyclododecene], T12-COOMe [5,6,11,12,17,18-hexadehydro-2,3,8,9,14,15-hexakis(4-methoxycarbonylphenyl)tribenzo[a,e,i]cyclododecene] and T12-COOH [5,6,11,12,17,18-hexadehydro-2,3,8,9,14,15-hexakis(4-carboxyphenyl)tribenzo[a,e,i]cyclododecene]) in N,N'-dimethylformamide (DMF) solutions. The theoretical and experimental findings show that the S0 → S1 transition of these molecules is forbidden. Time-resolved spectroscopy measurements determined a lifetime of ∼100 ps of the transition from the first electronical excited (S1) state. These molecules also emit through charge transfer (CT) species, with lifetimes of ∼1 and ∼4.5 ns. In addition to this, Nu-T12 and T12-COOMe in DMF solutions exhibit an emission from their triplet state in 35 and 24.5 ns, respectively. However, T12-COOH strongly interacts through H-bonds with DMF molecules, leading to the formation of new species having a proton-transferred character, whose emission spectrum is red-shifted and its lifetime from the S1 state is ∼25 ns. Using nanosecond (ns) flash photolysis, we also observed the presence of non-emissive triplet states, in addition to the emissive ones. The theoretical calculations suggest that this non-radiative triplet state originates from a CT structure of the emissive triplet one. The new findings presented here elucidate the photobehaviour of three DBA derivatives of relevance to crystalline Hydrogen-Bonded Organic Framework (HOF) materials. The photophysical data provide a strong basis to explore and to better understand the photodynamics of HOF crystals.
Collapse
Affiliation(s)
- Eduardo Gomez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N., 45071 Toledo, Spain.
| | | | | | | | | | | |
Collapse
|
16
|
Caballero-Mancebo E, Cohen B, Moreno JM, Corma A, Díaz U, Douhal A. Exploring the Photodynamics of a New 2D-MOF Composite: Nile Red@Al-ITQ-HB. ACS OMEGA 2018; 3:1600-1608. [PMID: 31458482 PMCID: PMC6641383 DOI: 10.1021/acsomega.7b01718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
In this work, we unravel the photodynamics of Nile Red (NR) interacting with Al-ITQ-HB nanostructure, a new layer-type metal-organic framework (MOF) with potential catalytic and photonic applications. Steady-state spectroscopy reveals the presence of NR monomers and aggregates when interacting with the MOF structure. Time-resolved experiments provide emission lifetimes of the interacting monomers, H- and J-type aggregates. We observed contributions from two monomer populations having different environments. One monomer species emits from the local-excited state and another from a photoproduced charge-separated state resulting from an ultrafast intramolecular charge transfer (ICT). Femtosecond fluorescence experiments reveal that the ICT process occurs in ∼1 ps. Fluorescence microscopy on single crystals and agglomerates of the composites shows a homogenous distribution of the dye lifetimes within the material. This study shows that the photobehavior of NR in Al-ITQ-HB MOF is dictated by its location within the material. The reported findings using a well-known polarity probe and a new two-dimensional MOF provide information on the microenvironment of this material, which may help for designing smart MOFs with potential applications in photonics and nanocatalysis.
Collapse
Affiliation(s)
- Elena Caballero-Mancebo
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímica, and INAMOL, Universidad
de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Boiko Cohen
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímica, and INAMOL, Universidad
de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - José María Moreno
- Instituto
de Tecnología Química, Universitat
Politecnica de Valéncia-Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Avelino Corma
- Instituto
de Tecnología Química, Universitat
Politecnica de Valéncia-Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Urbano Díaz
- Instituto
de Tecnología Química, Universitat
Politecnica de Valéncia-Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Abderrazzak Douhal
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímica, and INAMOL, Universidad
de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| |
Collapse
|
17
|
Alarcos N, Cohen B, Ziółek M, Douhal A. Photochemistry and Photophysics in Silica-Based Materials: Ultrafast and Single Molecule Spectroscopy Observation. Chem Rev 2017; 117:13639-13720. [PMID: 29068670 DOI: 10.1021/acs.chemrev.7b00422] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Silica-based materials (SBMs) are widely used in catalysis, photonics, and drug delivery. Their pores and cavities act as hosts of diverse guests ranging from classical dyes to drugs and quantum dots, allowing changes in the photochemical behavior of the confined guests. The heterogeneity of the guest populations as well as the confinement provided by these hosts affect the behavior of the formed hybrid materials. As a consequence, the observed reaction dynamics becomes significantly different and complex. Studying their photobehavior requires advanced laser-based spectroscopy and microscopy techniques as well as computational methods. Thanks to the development of ultrafast (spectroscopy and imaging) tools, we are witnessing an increasing interest of the scientific community to explore the intimate photobehavior of these composites. Here, we review the recent theoretical and ultrafast experimental studies of their photodynamics and discuss the results in comparison to those in homogeneous media. The discussion of the confined dynamics includes solvation and intra- and intermolecular proton-, electron-, and energy transfer events of the guest within the SBMs. Several examples of applications in photocatalysis, (photo)sensors, photonics, photovoltaics, and drug delivery demonstrate the vast potential of the SBMs in modern science and technology.
Collapse
Affiliation(s)
- Noemí Alarcos
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha , Avenida Carlos III, S.N., 45071 Toledo, Spain
| | - Boiko Cohen
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha , Avenida Carlos III, S.N., 45071 Toledo, Spain
| | - Marcin Ziółek
- Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University , Umultowska 85, 61-614 Poznań, Poland
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha , Avenida Carlos III, S.N., 45071 Toledo, Spain
| |
Collapse
|
18
|
Gutiérrez M, López-González M, Sánchez F, Douhal A. Efficient light harvesting within a C153@Zr-based MOF embedded in a polymeric film: spectral and dynamical characterization. Phys Chem Chem Phys 2017; 19:17544-17552. [DOI: 10.1039/c7cp02094e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Energy transfer within a hybrid C153@Zr-NDC composite material incorporated into PC films. M* and (E*) are the excited monomers and excimers of the MOF, respectively. C153 is Coumarin 153.
Collapse
Affiliation(s)
- M. Gutiérrez
- Departamento de Química Física
- Facultad de Ciencias Ambientales y Bioquímica
- and INAMOL
- Universidad de Castilla-La Mancha
- Avenida Carlos III
| | - M. López-González
- Departamento de Química-Física de Polímeros
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC). C/Juan de la Cierva 3
- 28006 Madrid
- Spain
| | - F. Sánchez
- Instituto de Química Orgánica
- CSIC
- Juan de la Cierva
- 3
- 28006 Madrid
| | - A. Douhal
- Departamento de Química Física
- Facultad de Ciencias Ambientales y Bioquímica
- and INAMOL
- Universidad de Castilla-La Mancha
- Avenida Carlos III
| |
Collapse
|
19
|
Kumpulainen T, Lang B, Rosspeintner A, Vauthey E. Ultrafast Elementary Photochemical Processes of Organic Molecules in Liquid Solution. Chem Rev 2016; 117:10826-10939. [DOI: 10.1021/acs.chemrev.6b00491] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tatu Kumpulainen
- Department of Physical Chemistry,
Sciences II, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Bernhard Lang
- Department of Physical Chemistry,
Sciences II, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Arnulf Rosspeintner
- Department of Physical Chemistry,
Sciences II, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry,
Sciences II, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
20
|
Alarcos N, Cohen B, Douhal A. A slowing down of proton motion from HPTS to water adsorbed on the MCM-41 surface. Phys Chem Chem Phys 2016; 18:2658-71. [PMID: 26705542 DOI: 10.1039/c5cp04548g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report on the steady-state and femtosecond-nanosecond (fs-ns) behaviour of 8-hydroxypyrene-1,3,6-trisulfonate (pyranine, HPTS) and its interaction with mesoporous silica based materials (MCM-41) in both solid-state and dichloromethane (DCM) suspensions in the absence and presence of water. In the absence of water, HPTS forms aggregates which are characterized by a broad emission spectrum and multiexponential behavior (τsolid-state/DCM = 120 ps, 600 ps, 2.2 ns). Upon interaction with MCM41, the aggregate population is found to be lower, leading to the formation of adsorbed monomers. In the presence of water (1%), HPTS with and without MCM41 materials in DCM suspensions undergoes an excited-state intermolecular proton-transfer (ESPT) reaction in the protonated form (ROH*) producing a deprotonated species (RO(-)*). The long-time emission decays of the ROH* in different systems in the presence of water are multiexponential, and are analysed using the diffusion-assisted geminate recombination model. The obtained proton-transfer and recombination rate constants for HPTS and HPTS/MCM41 complexes in DCM suspensions in the presence of water are kPT = 13 ns(-1), krec = 7.5 Å ns(-1), and kPT = 5.4 ns(-1), krec = 2.2 Å ns(-1), respectively, The slowing down of both processes in the latter case is explained in terms of specific interactions of the dye and of the water molecules with the silica surface. The ultrafast dynamics (fs-regime) of the HPTS/MCM41 complexes in DCM suspensions, without and with water, shows two components which are assigned to intramolecular vibrational-energy relaxation (IVR) (∼120 fs vs. ∼0.8 ps), and vibrational relaxation/cooling (VC), and charge transfer (CT) processes (∼2 ps without water and ∼5 ps with water) of the adsorbed ROH*. Our results provide new knowledge on the interactions and the proton-transfer reaction dynamics of HPTS adsorbed on mesoporous materials.
Collapse
Affiliation(s)
- Noemí Alarcos
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N., 45071 Toledo, Spain.
| | - Boiko Cohen
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N., 45071 Toledo, Spain.
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N., 45071 Toledo, Spain.
| |
Collapse
|
21
|
Alarcos N, Gutiérrez M, Liras M, Sánchez F, Moreno M, Douhal A. Direct observation of breaking of the intramolecular H-bond, and slowing down of the proton motion and tuning its mechanism in an HBO derivative. Phys Chem Chem Phys 2016; 17:14569-81. [PMID: 25966780 DOI: 10.1039/c5cp01437a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report on spectroscopic and photodynamical behaviours of 5-amino-2-(2'-hydroxyphenyl)benzoxazole (5A-HBO) in different solutions. The dye undergoes an ultrafast ICT reaction (<50 fs) (comparable to that observed for its methylated derivative, 5A-MBO), in agreement with the results of TD-DFT theoretical calculations (gas phase). Depending on the used solvent, the ICT reaction can be followed by a reversible/irreversible excited-state intramolecular proton transfer (ESIPT) reaction or by breaking of the intramolecular hydrogen bond (IHB). 5A-HBO in n-heptane solution exhibits an irreversible and slow (20 ps) ESIPT reaction, while that of the parent compound, HBO, takes place in less than 150 fs. Compared to excited HBO behaviour, theoretical calculations on 5A-HBO suggest a higher energy barrier (∼4 kcal mol(-1)) between the relaxed enol and keto tautomers, in addition to a less stabilization of the latter, which is in agreement with experiments in n-heptane. On the other hand, in dichloromethane, after the ICT reaction a subsequent and reversible proton motion occurs in an extraordinary slower regime (ns-time scale). No isotopic effect (OH/OD exchange) was observed in this solvent reflecting that the reversible ESIPT reaction evolves along the IHB and solvent coordinates. Using tetrahydrofurane and acetonitrile, we observed a breaking of the IHB due to specific intermolecular interactions with solvent molecules. This leads to the formation of open-enol forms, which undergo an ICT reaction as it occurs in 5A-MBO. These results bring new findings in the coupled ICT and ESIPT reactions. The photobehaviour of this new dye remarkably changes with the solvent nature, opening up the window for further research and possible applications in sensing polarity or H-bonding of media similar to that of the biological ones.
Collapse
Affiliation(s)
- Noemí Alarcos
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N., 45071 Toledo, Spain.
| | | | | | | | | | | |
Collapse
|
22
|
Martin C, Cohen B, Navarro MT, Corma A, Douhal A. Unraveling the ultrafast behavior of nile red interacting with aluminum and titanium co-doped MCM41 materials. Phys Chem Chem Phys 2015; 18:2152-63. [PMID: 26690671 DOI: 10.1039/c5cp05855d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the spectroscopy and photodynamic characterization of Brønsted and Lewis acid sites within solids with respect to the behavior of Nile Red (NR) upon interaction with single- and multi-metal(X)-doped MCM41 materials (X = Ti and/or Al) in dichloromethane (DCM) suspensions. The steady-state results show that the H-bonding ability of doped MCM41-based materials leads to different NR populations (monomers, H- and J-aggregates), wherein their contributions are related to the type of acidic site (Brønsted or Lewis) and percent of acid sites (Si/X atomic ratio) in the silica framework. While at different Al doping contents the interacting NR populations suffer slight modifications, an increase in the Ti content induces a substantial increase in J-aggregate formation. Moreover, the picosecond time-resolved data not only confirm the H-bonding interactions between the X-MCM41 hosts and the different types of NR populations, but also indicate that the S1 deactivation pathways of these populations are connected to the Brønsted and Lewis acidities of the host. The shortening in the emission lifetimes of NR species is significantly associated with increased Lewis acidities (Ti doping). The femtosecond dynamics of loaded NR in single and multiple metal doped MCM41 show that the charge separation (CS) state (formed in ∼200-370 fs) and the subsequent electron injection (EI) process (∼200 fs) are sensitive to the content and type of acid sites. These observations are based on the time shortening of the CS state formation from ∼350 fs in the NR/Al-MCM41 samples (at 1% of Al) to <200 fs in the NR/Ti-MCM41 composites. For NR/Ti-Al-MCM41 sample, the observed change is directly related to the Ti content. At 1% of Ti the CS is formed in ∼300 fs, whereas at 3% of Ti it decreases to <200 fs. The same behavior is observed for the EI event, wherein its probability is related to the Ti content - higher doping results in a faster EI process (from ∼250 fs to ∼150 fs). Therefore, the interactions of these co-metal-doped MCM41 materials (Ti-Al-MCM41) with NR show competition between the Brønsted (Al doping) and Lewis (Ti doping) acid sites. Our findings may help to achieve a better understanding of the reactivity within metal-doped mesoporous catalysts and could be used in related fields such as drug delivery and nanophotonics using-silica materials.
Collapse
Affiliation(s)
- Cristina Martin
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and Inamol, Universidad de Castilla-La Mancha, Avda. Carlos III, S.N., 45071 Toledo, Spain.
| | | | | | | | | |
Collapse
|
23
|
Martin C, Bhattacharyya S, Patra A, Douhal A. Single and multistep energy transfer processes within doped polymer nanoparticles. Photochem Photobiol Sci 2015; 13:1241-52. [PMID: 24969364 DOI: 10.1039/c4pp00086b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein, we demonstrate the design of multiple fluorophores Coumarin 153 (C153) and Nile Red (NR) encapsulated in semiconducting poly[N-vinylcarbazole] (PVK) polymer nanoparticles (50-70 nm in diameter) by a simple re-precipitation technique, and elucidate their photophysical properties by steady-state and picosecond (ps) time resolved emission spectroscopy. It is interesting to note that multistep cascaded energy transfer occurs from the excited host PVK molecules to NR dye molecules through C153. The energy transfer time constants are found to be 180 ps for PVK→C153, 360 ps for PVK→NR, and 140 ps for the overall energy transfer process from PVK to NR through C153 dye molecules. The multistep energy transfer allows tuning of the wide range emission from 350 nm to 700 nm by changing the relative concentrations of the encapsulated dye molecules. Bright, stable, and white light emission of the dye doped polymer nanoparticles with a quantum yield of 14% is achieved at a particular concentration ratio of the C153 : NR dye. The generation of "cool" white emission in suspension and in the solid state film opens up new possibilities to obtain white light OLEDs based on single nanoparticles.
Collapse
Affiliation(s)
- Cristina Martin
- Departamento de Química Física, Facultad de Ciencias del Medio Ambiente y Bioquímica e INAMOL, Universidad de Castilla-La Mancha, Avda. Carlos III, S.N., 45071 Toledo, Spain.
| | | | | | | |
Collapse
|
24
|
Gutiérrez M, Sánchez F, Douhal A. Spectral and dynamical properties of a Zr-based MOF. Phys Chem Chem Phys 2015; 18:5112-20. [PMID: 26400004 DOI: 10.1039/c5cp04436g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the spectra and dynamics of a Zr-naphthalene dicarboxylic acid (Zr-NDC) MOF in different diluted solvent suspensions and in a concentrated tetrahydrofuran (THF) one. In a diluted diethyl ether (DE) suspension, we observed intraparticle excimer formation between neighboring naphthalene organic linkers, leading to a red-shifted broad band in the emission spectrum and to a dynamics composed of three components τ1 = 650 ps, τ2 = 3.7 ns and τ3 = 13.9 ns, assigned to the excimer photoproduction, monomer and excimer lifetimes, respectively. Furthermore, both absorption and emission spectra show a blue shift in more polar solvents characterized by the solvent polarity function f(ε,n). We also observed changes in the excimer formation time (490-840 ps) probably due to a variation in the MOF structural fluctuation induced by solvent filling. The global fluorescence quantum yield of these suspensions is around 0.30 ± 0.05. At higher concentrations of the MOF particles, we observed the absorption and emission signals of aggregates having an intercrystal excimer formation in ∼ 5 ps in a THF suspension, ∼ 100 times shorter than that observed in a diluted one. Our results give the spectral and dynamical properties of a Zr-NDC MOF in solvent suspensions, opening the way to further studies of these kinds of MOFs interacting with fluorescent dyes for possible photonic applications.
Collapse
Affiliation(s)
- Mario Gutiérrez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N., 45071 Toledo, Spain.
| | | | | |
Collapse
|
25
|
Alarcos N, Gutiérrez M, Liras M, Sánchez F, Douhal A. From intra- to inter-molecular hydrogen bonds with the surroundings: steady-state and time-resolved behaviours. Photochem Photobiol Sci 2015; 14:1306-18. [PMID: 26066612 DOI: 10.1039/c5pp00079c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the photodynamics of 2-(2'-hydroxyphenyl)benzoxazole (HBO), compared to its amino derivatives, 6-amino-2-(2'-hydroxypheny)benzoxazole (6A-HBO) and 5-amino-2-(2'-hydroxypheny)benzoxazole (5A-HBO) in N,N-dimethylformamide (DMF) solutions. HBO at S0 shows a reversible deprotonation reaction leading to the production of anionic forms. However, for 6A-HBO and 5A-HBO, DMF containing KOH is necessary to produce the anions. Excited HBO in DMF exhibits intra- as well as inter-molecular proton transfer (ESIPT and ESPT) reactions. With excitation at 330 nm, we observed the open-enol, anti-enol and keto forms with different emission and lifetimes (620 ps, 1.5 ns, and 74 ps, respectively), while with the excitation at 433 nm, only the anionic species emission was detected (3.7 ns). Contrary to HBO, 6A-HBO and 5A-HBO do not exhibit any proton transfer process, and only the emissions of the open-enol charge-transferred forms (open-ECT) were observed, which are comparable to those of their methylated derivatives (6A-MBO and 5A-MBO). Femtosecond studies of 6A-MBO and 6A-HBO in DMF indicate that an intramolecular charge-transfer (ICT) reaction (∼80 fs) and solvent relaxation process (2 ps) take place at S1. Remarkably, the photoinduced breaking of the intramolecular hydrogen bond of 6A-HBO and the formation of an intermolecular hydrogen bond with DMF molecules occurs in 80 ps, while for 5A-HBO, this process occurs in less than 10 ps. In this study, we have demonstrated that the presence and position of the amino group in the HBO framework change both the S0 and S1 behaviours of the intramolecular H-bonds; a result which might be useful for the design and better understanding of supramolecular systems based on intra- and intermolecular H-bonds.
Collapse
Affiliation(s)
- Noemí Alarcos
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N., 45071 Toledo, Spain.
| | | | | | | | | |
Collapse
|
26
|
Alarcos N, Gutierrez M, Liras M, Sánchez F, Douhal A. An abnormally slow proton transfer reaction in a simple HBO derivative due to ultrafast intramolecular-charge transfer events. Phys Chem Chem Phys 2015; 17:16257-69. [PMID: 25870162 DOI: 10.1039/c5cp00577a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report on the steady-state, picosecond and femtosecond time-resolved studies of a charge and proton transfer dye 6-amino-2-(2'-hydroxyphenyl)benzoxazole (6A-HBO) and its methylated derivative 6-amino-2-(2'-methoxyphenyl)benzoxazole (6A-MBO), in different solvents. With femtosecond resolution and comparison with the photobehaviour of 6A-MBO, we demonstrate for 6A-HBO in solution, the photoproduction of an intramolecular charge-transfer (ICT) process at S1 taking place in ∼140 fs or shorter, followed by solvent relaxation in the charge transferred species. The generated structure (syn-enol charge transfer conformer) experiences an excited-state intramolecular proton-transfer (ESIPT) reaction to produce a keto-type tautomer. This subsequent proton motion occurs in 1.2 ps (n-heptane), 14 ps (DCM) and 35 ps (MeOH). In MeOH, it is assisted by the solvent molecules and occurs through tunneling for which we got a large kinetic isotope effect (KIE) of about 13. For the 6A-DBO (deuterated sample in CD3OD) the global proton-transfer reaction takes place in 200 ps, showing a remarkable slow KIE regime. The slow ESIPT reaction in DCM (14 ps), not through tunnelling as it is not sensitive to OH/OD exchange, has however to overcome an energy barrier using intramolecular as well as solvent coordinates. The rich ESIPT dynamics of 6A-HBO in the used solutions is governed by an ICT reaction, triggered by the amino group, and it is solvent dependent. Thus, the charge injection to a 6A-HBO molecular frame makes the ICT species more stable, and the phenol group less acidic, slowing down the subsequent ESIPT reaction. Our findings bring new insights into the coupling between ICT and ESIPT reactions on the potential-energy surfaces of several barriers.
Collapse
Affiliation(s)
- Noemí Alarcos
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N., 45071 Toledo, Spain.
| | | | | | | | | |
Collapse
|
27
|
Gutierrez M, Alarcos N, Liras M, Sánchez F, Douhal A. Switching to a Reversible Proton Motion in a Charge-Transferred Dye. J Phys Chem B 2015; 119:552-62. [DOI: 10.1021/jp511345z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mario Gutierrez
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N., 45071 Toledo, Spain
| | - Noemí Alarcos
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N., 45071 Toledo, Spain
| | - Marta Liras
- Instituto
de Química Orgánica General, IQOG-CSIC, Juan de la
Cierva, 3, 28006 Madrid, Spain
| | - Félix Sánchez
- Instituto
de Química Orgánica General, IQOG-CSIC, Juan de la
Cierva, 3, 28006 Madrid, Spain
| | - Abderrazzak Douhal
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N., 45071 Toledo, Spain
| |
Collapse
|
28
|
Douhal A, Alarcos N, Cohen B. Photodynamics of a Proton-Transfer Dye in Solutions and Confined Within NaX and NaY Zeolites. J Phys Chem B 2014; 118:19431-19443. [PMID: 25060093 DOI: 10.1021/jp505591k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report on steady-state, picosecond and femtosecond time-resolved emission studies of 2-(2'-hydroxyphenyl)benzoxazole (HBO) in solutions and interacting with NaX and NaY zeolites. In solutions, an ultrafast (less than 150 fs) excited-state intramolecular proton-transfer (ESIPT) reaction takes place in syn-enol form, and leads to keto-type tautomer. We also observed a torsional motion in the keto form (~20 ps in dichloromethane, DCM). For NaX and NaY DCM suspensions, anionic forms interacting with the zeolites at S0 and S1 states are generated. They show two fluorescence lifetimes in both zeolites (720 ps and 2.4 ns for NaY and 960 ps and 2.7 ns for NaX), while those of the enol bonded to the zeolite framework and of the free keto forms are ~100 and 250 ps, respectively. The ultrafast dynamics of the anion in alkaline solutions reveals two deactivation pathways: an intramolecular charge transfer (ICT, 1.2 ps) and a twisting motion, affected by the viscosity of the solvent (12 and 20 ps for MeOH and ethylene glycol). When HBO is interacting with NaX and NaY the twisting motion is cancelled, while the ICT becomes slower as a result of a combination of several environment effects. HBO anions within the faujasite framework show also a ~ 30 ps decay associated to a non-fluorescent (n, π*) state. Our results demonstrate how intermolecular H-bonds, the confinement and the electrostatic interactions of HBO with the used materials, affect its ground as well as its excited state properties. Our findings add new knowledge on the interactions of silica-based nanomaterials containing the H-bonding guests.
Collapse
|
29
|
Martin C, Cohen B, Gaamoussi I, Ijjaali M, Douhal A. Ultrafast Dynamics of C30 in Solution and within CDs and HSA Protein. J Phys Chem B 2014; 118:5760-71. [DOI: 10.1021/jp5026575] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Cristina Martin
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Boiko Cohen
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Issam Gaamoussi
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
- Laboratorie
de Chimie de la Matière Condensée, Faculté des
Sciences et Techniques, University of Sidi Mohamed Ben Abdellah, Fez, Morocco 2202
| | - Mustapha Ijjaali
- Laboratorie
de Chimie de la Matière Condensée, Faculté des
Sciences et Techniques, University of Sidi Mohamed Ben Abdellah, Fez, Morocco 2202
| | - Abderrazzak Douhal
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| |
Collapse
|
30
|
Wang Y, Cohen B, Aykaç A, Vargas-Berenguel A, Douhal A. Femto- to micro-second photobehavior of photosensitizer drug trapped within a cyclodextrin dimer. Photochem Photobiol Sci 2013; 12:2119-29. [PMID: 24061337 DOI: 10.1039/c3pp50179e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interactions of 5,10,15,20-tetrakis(4-sulfonatophenyl)-porphyrin (TSPP, a singlet oxygen photosensitiser molecule) with a hexa-2,4-diynediyl bridged β-cyclodextrin dimer (CD-CD) in aqueous solutions of pH 7 were studied using steady-state UV-visible absorption/emission and femto- to millisecond time-resolved spectroscopy. TSPP forms 1 : 1 complexes with CD-CD (K(e) = 1.9 × 10(8) M(-1) at 293 K). The value of K(e) indicates a high affinity of TSPP to form complexes with CD-CD. The chemical nano-cavity has a notable effect on the fluorescence lifetimes of the Q(x) state (9.3 ns in water and 10.8 ns in CD-CD). The rotational times (410 ps for TSPP in water and 0.03 ns (12%) and 1.1 ns (88%) for the TSPP:CD-CD complexes) indicate the robustness of the formed entities, and fast depolarization of emission, most probably involving the porphyrin skeleton and phenyl ring motions. The ultrafast femtosecond component (60-100 fs) of TSPP is moderately affected by the confining environment, which instead strongly influences the ps component (1-2 ps in water and 5 ps within CD-CD) assigned to the vibrational relaxation of the Q(x) state. Moreover, a 50 ps component emerges in the emission transients in the 640-720 nm range, and which is assigned to a thermalization of the hot Q(x) state. The effect of O2 on the triplet state of the encapsulated TSPP was also studied and discussed in light of the shielding effect of the CD-CD cavity. We observed comparable quantum yield (0.62 and 0.69) of the generated singlet molecular oxygen of TSPP without and with CD-CD. We believe that our results on the molecular interaction between TSPP and CD-CD from femtosecond to millisecond regime at both ground and electronically first excited states give relevant information for improving our understanding of this kind of caged drugs, and thus for a better design of drug:nanocarrier complexes. A particular implication for the use of CD-CD as a drug carrier is the high affinity of this host for complex formation with TSPP, while the yield of singlet oxygen generation is still high.
Collapse
Affiliation(s)
- Yilun Wang
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain.
| | | | | | | | | |
Collapse
|
31
|
di Nunzio MR, Wang Y, Douhal A. Structural Photodynamic Behavior of Topotecan, a Potent Anticancer Drug, in Aqueous Solutions at Different pHs. J Phys Chem B 2012; 116:8182-90. [DOI: 10.1021/jp303826c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maria Rosaria di Nunzio
- Departamento de Química Física, Facultad
de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha,Avenida Carlos III,
S/N, 45071 Toledo, Spain
| | - YiLun Wang
- Departamento de Química Física, Facultad
de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha,Avenida Carlos III,
S/N, 45071 Toledo, Spain
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad
de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha,Avenida Carlos III,
S/N, 45071 Toledo, Spain
| |
Collapse
|
32
|
Mandal S, Ghosh S, Banerjee C, Rao VG, Sarkar N. Modulation of Photophysics and Photodynamics of 1′-Hydroxy-2′-acetonaphthone (HAN) in Bile Salt Aggregates: A Study of Polarity and Nanoconfinement Effects. J Phys Chem B 2012; 116:8780-92. [DOI: 10.1021/jp302435h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sarthak Mandal
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Surajit Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Chiranjib Banerjee
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Vishal Govind Rao
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| |
Collapse
|
33
|
di Nunzio MR, Wang Y, Douhal A. Structural Spectroscopy and Dynamics of Inter- and Intramolecular H-Bonding Interactions of Topotecan, a Potent Anticancer Drug, in Organic Solvents and in Aqueous Solution. J Phys Chem B 2012; 116:7522-30. [DOI: 10.1021/jp302923a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Maria Rosaria di Nunzio
- Departamento de Química Física, Facultad
de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla−La Mancha, Avenida Carlos
III, S/N, 45071 Toledo, Spain
| | - YiLun Wang
- Departamento de Química Física, Facultad
de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla−La Mancha, Avenida Carlos
III, S/N, 45071 Toledo, Spain
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad
de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla−La Mancha, Avenida Carlos
III, S/N, 45071 Toledo, Spain
| |
Collapse
|
34
|
Martín C, Gil M, Cohen B, Douhal A. Ultrafast photodynamics of drugs in nanocavities: cyclodextrins and human serum albumin protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:6746-6759. [PMID: 22394055 DOI: 10.1021/la2049713] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this feature article, we discuss recent advances in studying ultrafast dynamic and structural aspects of host-guest interactions. Steady-state and time-resolved techniques exploring events from the femto- to nanosecond regime were used to examine the ultrafast photodynamics and subsequent events in selected nanostructures of the formed complexes. These consist of aromatic systems, biologically relevant molecules, and drugs trapped within cyclodextrins (CD) and human serum albumin (HSA) protein pockets. We examine the effects exerted by these chemical and biological cavitands on internal twisting motions, proton transfer and charge transfer, and cis-trans isomerization reactions that may occur in the confined molecular systems. In addition, the influence of a restricting environment on the interaction of guest molecules with biological water is considered. The dynamic details of the complexes (diffusion, early interactions, formation, stability, internal guest diffusion, and conformational changes) and the excited-state relaxation pathways, rate constants of the involved processes, and changes in the electronic distribution within encapsulated guests gave clues to elucidate their photobehavior and are relevant to the photostability and delivery of drugs when using nanocarriers.
Collapse
Affiliation(s)
- Cristina Martín
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Toledo, Spain
| | | | | | | |
Collapse
|
35
|
Carmona NA, Cohen B, Organero JA, Douhal A. Excited state intermolecular proton and energy transfer of 1-hydroxypyrene interacting with the human serum albumin protein. J Photochem Photobiol A Chem 2012. [DOI: 10.1016/j.jphotochem.2011.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
|
37
|
Wang Y, Cohen B, Jicsinszky L, Douhal A. Femtosecond to second studies of a water-soluble porphyrin derivative in chemical and biological nanocavities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:4363-4372. [PMID: 22324339 DOI: 10.1021/la204949e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The interactions of 5,10,15,20-tetrakis(4-sulfonatophenyl)-porphyrin (TSPP) with a quaternary ammonium modified β-cyclodextrin (QA-β-CD) and human serum albumin (HSA) protein in aqueous solutions at pH 7 were studied using steady-state, stopped-flow, and femtosecond to millisecond spectroscopy. TSPP forms 1:1 and 1:2 complexes with QA-β-CD (K(1) = 1.9 × 10(5) M(-1) and K(2) = 7 × 10(3) M(-1)) at 293 K, whereas with the HSA protein only 1:1 complex (K(1) = 1.7 × 10(6) M(-1)) has been found. The chemical and biological nanocavities have notable effects on the fluorescence lifetimes of the Q(x) state (from 9.3 to 11.1 ns in QA-β-CD and 11.6 ns in HSA). Furthermore, the rotational times (400 ps for the free TSPP, 1.6 and 19 ns for QA-β-CD and HSA protein complexes, respectively) clearly indicate the robustness of the formed entities. The confined environment does not affect much the fs dynamics (0.1-0.2 ps) of the encapsulated molecule. However, it clearly affect the ps one (1-2 ps (H(2)O) and 5-10 ps (QA-β-CD and HSA)). The effect of O(2) on the relaxation of the triplet state of the free and encapsulated TSPP is also studied and the obtained results are discussed in light of the shielding effect provided by the chemical and biological cavities. The observed difference, longer triplet lifetime upon encapsulation, might be relevant to the efficiency of this porphyrin in photodynamic therapy. The presteady-state kinetics of the TSPP:HSA has been studied by the stopped-flow spectrometer, and a two-step model was proposed for the complexation processes. The results show the importance of the initial association step for the overall ligand recognition process. This first step occurs with rate constant of ~4 × 10(5) M(-1) s(-1), which is about 5 orders of magnitude larger than the rate constant of the consecutive relaxation processes. We believe that our observations of molecular interaction between TSPP, QA-β-CD, and HSA protein from femtosecond to second at both ground and electronically first excited state give detailed information to improve our understanding of this kind of system and thus for a better design of drug delivery nanocarriers.
Collapse
Affiliation(s)
- Yilun Wang
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Toledo, Spain
| | | | | | | |
Collapse
|
38
|
de Miguel G, Marchena M, Zitnan M, Pandey SS, Hayase S, Douhal A. Femto to millisecond observations of indole-based squaraine molecules photodynamics in solution. Phys Chem Chem Phys 2012; 14:1796-805. [DOI: 10.1039/c1cp22864a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
|
40
|
Mandal S, Rao VG, Ghatak C, Pramanik R, Sarkar S, Sarkar N. Photophysics and Photodynamics of 1′-Hydroxy-2′-acetonaphthone (HAN) in Micelles and Nonionic Surfactants Forming Vesicles: A Comparative Study of Different Microenvironments of Surfactant Assemblies. J Phys Chem B 2011; 115:12108-19. [PMID: 21905698 DOI: 10.1021/jp204224f] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sarthak Mandal
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Vishal Govind Rao
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Chiranjib Ghatak
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Rajib Pramanik
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Souravi Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| |
Collapse
|
41
|
Cohen B, Martin Álvarez C, Alarcos Carmona N, Organero JA, Douhal A. Proton-Transfer Reaction Dynamics within the Human Serum Albumin Protein. J Phys Chem B 2011; 115:7637-47. [DOI: 10.1021/jp200294q] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Boiko Cohen
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Cristina Martin Álvarez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Noemí Alarcos Carmona
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Juan Angel Organero
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| |
Collapse
|
42
|
Marchena M, Gil M, Martín C, Organero JA, Sanchez F, Douhal A. Stability and Photodynamics of Lumichrome Structures in Water at Different pHs and in Chemical and Biological Caging Media. J Phys Chem B 2011; 115:2424-35. [DOI: 10.1021/jp110134f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maria Marchena
- Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Departamento de Quimica Fisica, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N. 45071 Toledo, Spain
- Facultad de Quimica, Departamento de Quimica Fisica, Universidad de Sevilla, Calle Profesor Garcia Gonzalez, S.N. 41012 Sevilla, Spain
| | - Michał Gil
- Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Departamento de Quimica Fisica, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N. 45071 Toledo, Spain
| | - Cristina Martín
- Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Departamento de Quimica Fisica, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N. 45071 Toledo, Spain
| | - Juan Angel Organero
- Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Departamento de Quimica Fisica, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N. 45071 Toledo, Spain
| | - Francisco Sanchez
- Facultad de Quimica, Departamento de Quimica Fisica, Universidad de Sevilla, Calle Profesor Garcia Gonzalez, S.N. 41012 Sevilla, Spain
| | - Abderrazzak Douhal
- Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Departamento de Quimica Fisica, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N. 45071 Toledo, Spain
| |
Collapse
|
43
|
Ziółek M, Tacchini I, Martínez MT, Yang X, Sun L, Douhal A. A photo-induced electron transfer study of an organic dye anchored on the surfaces of TiO2 nanotubes and nanoparticles. Phys Chem Chem Phys 2011; 13:4032-44. [DOI: 10.1039/c0cp01898h] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Cohen B, Álvarez CM, Carmona NA, Organero JA, Douhal A. Single molecule photobehavior of a chromophore interacting with silica-based nanomaterials. Phys Chem Chem Phys 2011; 13:1819-26. [DOI: 10.1039/c0cp02240c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Synak A, Ziǒłek M, Organero JA, Douhal A. Femtosecond Dynamics of a Porphyrin Derivative Confined by the Human Serum Albumin Protein. J Phys Chem B 2010; 114:16567-73. [DOI: 10.1021/jp105351h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anna Synak
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquimicas, and INAMOL, Campus Tecnológico de Toledo, Avenida Carlos III, S/N, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| | - Marcin Ziǒłek
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquimicas, and INAMOL, Campus Tecnológico de Toledo, Avenida Carlos III, S/N, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| | - Juan Angel Organero
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquimicas, and INAMOL, Campus Tecnológico de Toledo, Avenida Carlos III, S/N, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquimicas, and INAMOL, Campus Tecnológico de Toledo, Avenida Carlos III, S/N, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| |
Collapse
|
46
|
Ziółek M, Yang X, Sun L, Douhal A. Interrogating the ultrafast dynamics of an efficient dye for sunlight conversion. Phys Chem Chem Phys 2010; 12:8098-107. [DOI: 10.1039/c002338h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Ziółek M, Gil M, Organero JA, Douhal A. What is the difference between the dynamics of anion- and keto-type of photochromic salicylaldehyde azine? Phys Chem Chem Phys 2010; 12:2107-15. [DOI: 10.1039/b920951d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Confinement effect of nanocages and nanotubes of mesoporous materials on the keto forms photodynamics of Sudan I. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Maity SS, Samanta S, Sardar PS, Pal A, Dasgupta S, Ghosh S. Fluorescence, anisotropy and docking studies of proteins through excited state intramolecular proton transfer probe molecules. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2008.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Tormo L, Organero JÁ, Cohen B, Martin C, Santos L, Douhal A. Dynamical and Structural Changes of an Anesthetic Analogue in Chemical and Biological Nanocavities. J Phys Chem B 2008; 112:13641-7. [DOI: 10.1021/jp803083y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Laura Tormo
- Departamento de Química Física, Sección de Químicas, Facultad de Ciencias del Medio Ambiente, Universidad de Castilla-La Mancha, Avda. Carlos III, s/n, 45071 Toledo, Spain, and Departamento de Química Física, Facultad de Ciencias, Avda Camilo José Cela 13071, Ciudad Real, Spain
| | - Juan Ángel Organero
- Departamento de Química Física, Sección de Químicas, Facultad de Ciencias del Medio Ambiente, Universidad de Castilla-La Mancha, Avda. Carlos III, s/n, 45071 Toledo, Spain, and Departamento de Química Física, Facultad de Ciencias, Avda Camilo José Cela 13071, Ciudad Real, Spain
| | - Boiko Cohen
- Departamento de Química Física, Sección de Químicas, Facultad de Ciencias del Medio Ambiente, Universidad de Castilla-La Mancha, Avda. Carlos III, s/n, 45071 Toledo, Spain, and Departamento de Química Física, Facultad de Ciencias, Avda Camilo José Cela 13071, Ciudad Real, Spain
| | - Cristina Martin
- Departamento de Química Física, Sección de Químicas, Facultad de Ciencias del Medio Ambiente, Universidad de Castilla-La Mancha, Avda. Carlos III, s/n, 45071 Toledo, Spain, and Departamento de Química Física, Facultad de Ciencias, Avda Camilo José Cela 13071, Ciudad Real, Spain
| | - Lucia Santos
- Departamento de Química Física, Sección de Químicas, Facultad de Ciencias del Medio Ambiente, Universidad de Castilla-La Mancha, Avda. Carlos III, s/n, 45071 Toledo, Spain, and Departamento de Química Física, Facultad de Ciencias, Avda Camilo José Cela 13071, Ciudad Real, Spain
| | - Abderrazzak Douhal
- Departamento de Química Física, Sección de Químicas, Facultad de Ciencias del Medio Ambiente, Universidad de Castilla-La Mancha, Avda. Carlos III, s/n, 45071 Toledo, Spain, and Departamento de Química Física, Facultad de Ciencias, Avda Camilo José Cela 13071, Ciudad Real, Spain
| |
Collapse
|