1
|
Tyson AL, Verlet JRR. On the Mechanism of Phenolate Photo-Oxidation in Aqueous Solution. J Phys Chem B 2019; 123:2373-2379. [PMID: 30768899 DOI: 10.1021/acs.jpcb.8b11766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photo-oxidation dynamics following ultraviolet (257 nm) excitation of the phenolate anion in aqueous solution is studied using broadband (550-950 nm) transient absorption spectroscopy. A clear signature from electron ejection is observed on a sub-picosecond timescale, followed by cooling dynamics and the decay of the signal to a constant offset that is assigned to the hydrated electron. The dynamics are compared to the charge-transfer-to-solvent dynamics from iodide at the same excitation wavelength and are shown to be very similar to these. This is in stark contrast to a previous study on the phenolate anion excited at 266 nm, in which electron emission was observed over longer timescales. We account for the differences using a simple Marcus picture for electron emission in which the electron tunneling rate depends sensitively on the initial excitation energy. After electron emission, a contact pair is formed which undergoes geminate recombination and dissociation to form the free hydrated electron at rates that are slightly faster than those for the iodide system. Our results show that, although the underlying chemical physics of electron emission differs between iodide and phenolate, the observed dynamics can appear very similar.
Collapse
Affiliation(s)
| | - Jan R R Verlet
- Department of Chemistry , Durham University , Durham DH1 3LE , U.K
| |
Collapse
|
2
|
Glover WJ, Larsen RE, Schwartz BJ. First principles multielectron mixed quantum/classical simulations in the condensed phase. I. An efficient Fourier-grid method for solving the many-electron problem. J Chem Phys 2010; 132:144101. [DOI: 10.1063/1.3352564] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
3
|
Glover WJ, Larsen RE, Schwartz BJ. First principles multielectron mixed quantum/classical simulations in the condensed phase. II. The charge-transfer-to-solvent states of sodium anions in liquid tetrahydrofuran. J Chem Phys 2010; 132:144102. [DOI: 10.1063/1.3352565] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
4
|
Larsen MC, Schwartz BJ. Searching for solvent cavities via electron photodetachment: The ultrafast charge-transfer-to-solvent dynamics of sodide in a series of ether solvents. J Chem Phys 2009; 131:154506. [DOI: 10.1063/1.3245864] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
5
|
Glover WJ, Larsen RE, Schwartz BJ. The roles of electronic exchange and correlation in charge-transfer-to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase. J Chem Phys 2008; 129:164505. [DOI: 10.1063/1.2996350] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
6
|
Cavanagh MC, Young RM, Schwartz BJ. The roles of the solute and solvent cavities in charge-transfer-to-solvent dynamics: Ultrafast studies of potasside and sodide in diethyl ether. J Chem Phys 2008; 129:134503. [DOI: 10.1063/1.2977995] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
7
|
Bragg AE, Cavanagh MC, Schwartz BJ. Linear Response Breakdown in Solvation Dynamics Induced by Atomic Electron-Transfer Reactions. Science 2008; 321:1817-22. [DOI: 10.1126/science.1161511] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Shoshanim O, Ruhman S. Na− photolysis in THF: Charge transfer to solvent studied from the donors perspective in <10fs detail. J Chem Phys 2008; 129:044502. [DOI: 10.1063/1.2946701] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
9
|
Affiliation(s)
- Xiyi Chen
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482;
| | - Stephen E. Bradforth
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482;
| |
Collapse
|
10
|
Bragg AE, Schwartz BJ. Ultrafast Charge-Transfer-to-Solvent Dynamics of Iodide in Tetrahydrofuran. 2. Photoinduced Electron Transfer to Counterions in Solution. J Phys Chem A 2008; 112:3530-43. [DOI: 10.1021/jp712039u] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arthur E. Bragg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569
| | - Benjamin J. Schwartz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569
| |
Collapse
|
11
|
Bragg AE, Schwartz BJ. The ultrafast charge-transfer-to-solvent dynamics of iodide in tetrahydrofuran. 1. Exploring the roles of solvent and solute electronic structure in condensed-phase charge-transfer reactions. J Phys Chem B 2007; 112:483-94. [PMID: 18085770 DOI: 10.1021/jp076934s] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although they represent the simplest possible charge-transfer reactions, the charge-transfer-to-solvent (CTTS) dynamics of atomic anions exhibit considerable complexity. For example, the CTTS dynamics of iodide in water are very different from those of sodide (Na-) in tetrahydrofuran (THF), leading to the question of the relative importance of the solvent and solute electronic structures in controlling charge-transfer dynamics. In this work, we address this issue by investigating the CTTS spectroscopy and dynamics of I- in THF, allowing us to make detailed comparisons to the previously studied I-/H2O and Na-/THF CTTS systems. Since THF is weakly polar, ion pairing with the counterion can have a substantial impact on the CTTS spectroscopy and dynamics of I- in this solvent. In this study, we have isolated "counterion-free" I- in THF by complexing the Na+ counterion with 18-crown-6 ether. Ultrafast pump-probe experiments reveal that THF-solvated electrons (e-THF) appear 380 +/- 60 fs following the CTTS excitation of "free" I- in THF. The absorption kinetics are identical at all probe wavelengths, indicating that the ejected electrons appear with no significant dynamic solvation but rather with their equilibrium absorption spectrum. After their initial appearance, ejected electrons do not exhibit any additional dynamics on time scales up to approximately 1 ns, indicating that geminate recombination of e-THF with its iodine atom partner does not occur. Competitive electron scavenging measurements demonstrate that the CTTS excited state of I- in THF is quite large and has contact with scavengers that are several nanometers away from the iodide ion. The ejection time and lack of electron solvation observed for I- in THF are similar to what is observed following CTTS excitation of Na- in THF. However, the relatively slow ejection time, the complete lack of dynamic solvation, and the large ejection distance/lack of recombination dynamics are in marked contrast to the CTTS dynamics observed for I- in water, in which fast electron ejection, substantial solvation, and appreciable recombination have been observed. These differences in dynamical behavior can be understood in terms of the presence of preexisting, electropositive cavities in liquid THF that are a natural part of its liquid structure; these cavities provide a mechanism for excited electrons to relocate to places in the liquid that can be nanometers away, explaining the large ejection distance and lack of recombination following the CTTS excitation of I- in THF. We argue that the lack of dynamic solvation observed following CTTS excitation of both I- and Na- in THF is a direct consequence of the fact that little additional relaxation is required once an excited electron nonadiabatically relaxes into one of the preexisting cavities. In contrast, liquid water contains no such cavities, and CTTS excitation of I- in water leads to local electron ejection that involves substantial solvent reorganization.
Collapse
Affiliation(s)
- Arthur E Bragg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, USA
| | | |
Collapse
|
12
|
Cavanagh MC, Larsen RE, Schwartz BJ. Watching Na Atoms Solvate into (Na+,e-) Contact Pairs: Untangling the Ultrafast Charge-Transfer-to-Solvent Dynamics of Na- in Tetrahydrofuran (THF). J Phys Chem A 2007; 111:5144-57. [PMID: 17523607 DOI: 10.1021/jp071132i] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
With the large dye molecules employed in typical studies of solvation dynamics, it is often difficult to separate the intramolecular relaxation of the dye from the relaxation associated with dynamic solvation. One way to avoid this difficulty is to study solvation dynamics using an atom as the solvation probe; because atoms have only electronic degrees of freedom, all of the observed spectroscopic dynamics must result from motions of the solvent. In this paper, we use ultrafast transient absorption spectroscopy to investigate the solvation dynamics of newly created sodium atoms that are formed following the charge transfer to solvent (CTTS) ejection of an electron from sodium anions (sodide) in liquid tetrahydrofuran (THF). Because the absorption spectra of the sodide reactant, the sodium atom, and the solvated electron products overlap, we first examined the dynamics of the ejected CTTS electron in the infrared to build a detailed model of the CTTS process that allowed us to subtract the spectroscopic contributions of the sodide bleach and the solvated electron and cleanly reveal the spectroscopy of the solvated atom. We find that the neutral sodium species created following CTTS excitation of sodide initially absorbs near 590 nm, the position of the gas-phase sodium D-line, suggesting that it only weakly interacts with the surrounding solvent. We then see a fast solvation process that causes a red-shift of the sodium atom's spectrum in approximately 230 fs, a time scale that matches well with the results of MD simulations of solvation dynamics in liquid THF. After the fast solvation is complete, the neutral sodium atoms undergo a chemical reaction that takes place in approximately 740 fs, as indicated by the observation of an isosbestic point and the creation of a species with a new spectrum. The spectrum of the species created after the reaction then red-shifts on a approximately 10-ps time scale to become the equilibrium spectrum of the THF-solvated sodium atom, which is known from radiation chemistry experiments to absorb near approximately 900 nm. There has been considerable debate as to whether this 900-nm absorbing species is better thought of as a solvated atom or a sodium cation:solvated electron contact pair, (Na+,e-). The fact that we observe the initially created neutral Na atom undergoing a chemical reaction to ultimately become the 900-nm absorbing species suggests that it is better assigned as (Na+,e-). The approximately 10-ps solvation time we observe for this species is an order of magnitude slower than any other solvation process previously observed in liquid THF, suggesting that this species interacts differently with the solvent than the large molecules that are typically used as solvation probes. Together, all of the results allow us to build the most detailed picture to date of the CTTS process of Na- in THF as well as to directly observe the solvation dynamics associated with single sodium atoms in solution.
Collapse
Affiliation(s)
- Molly C Cavanagh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | |
Collapse
|
13
|
Smallwood CJ, Mejia CN, Glover WJ, Larsen RE, Schwartz BJ. A computationally efficient exact pseudopotential method. II. Application to the molecular pseudopotential of an excess electron interacting with tetrahydrofuran (THF). J Chem Phys 2006; 125:074103. [PMID: 16942318 DOI: 10.1063/1.2218835] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In the preceding paper, we presented an analytic reformulation of the Phillips-Kleinman (PK) pseudopotential theory. In the PK theory, the number of explicitly treated electronic degrees of freedom in a multielectron problem is reduced by forcing the wave functions of the few electrons of interest (the valence electrons) to be orthogonal to those of the remaining electrons (the core electrons); this results in a new Schrodinger equation for the valence electrons in which the effects of the core electrons are treated implicitly via an extra term known as the pseudopotential. Although this pseudopotential must be evaluated iteratively, our reformulation of the theory allows the exact pseudopotential to be found without ever having to evaluate the potential energy operator, providing enormous computational savings. In this paper, we present a detailed computational procedure for implementing our reformulation of the PK theory, and we illustrate our procedure on the largest system for which an exact pseudopotential has been calculated, that of an excess electron interacting with a tetrahyrdrofuran (THF) molecule. We discuss the numerical stability of several approaches to the iterative solution for the pseudopotential, and find that once the core wave functions are available, the full e(-)-THF pseudopotential can be calculated in less than 3 s on a relatively modest single processor. We also comment on how the choice of basis set affects the calculated pseudopotential, and provide a prescription for correcting unphysical behavior that arises at long distances if a localized Gaussian basis set is used. Finally, we discuss the effective e(-)-THF potential in detail, and present a multisite analytic fit of the potential that is suitable for use in molecular simulation.
Collapse
Affiliation(s)
- C Jay Smallwood
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | | | | | |
Collapse
|
14
|
Lian R, Oulianov DA, Crowell RA, Shkrob IA, Chen X, Bradforth SE. Electron Photodetachment from Aqueous Anions. 3. Dynamics of Geminate Pairs Derived from Photoexcitation of Mono- vs Polyatomic Anions. J Phys Chem A 2006; 110:9071-8. [PMID: 16854017 DOI: 10.1021/jp0610113] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photostimulated electron detachment from aqueous inorganic anions is the simplest example of solvent-mediated electron transfer reaction. As such, this photoreaction became the subject of many ultrafast studies. Most of these studied focused on the behavior of halide anions, in particular, iodide, that is readily accessible in the UV. In this study, we contrast the behavior of these halide anions with that of small polyatomic anions, such as pseudohalide anions (e.g., HS(-)) and common polyvalent anions (e.g., SO(3)(2-)). Geminate recombination dynamics of hydrated electrons generated by 200 nm photoexcitation of aqueous anions (I(-), Br(-), OH(-), HS(-), CNS(-), CO(3)(2-), SO(3)(2-), and Fe(CN)(6)(4-)) have been studied. Prompt quantum yields for the formation of solvated, thermalized electrons and quantum yields for free electrons were determined. Pump-probe kinetics for 200 nm photoexcitation were compared with kinetics obtained at lower photoexcitation energy (225 or 242 nm) for the same anions, where possible. Free diffusion and mean force potential models of geminate recombination dynamics were used to analyze these kinetics. These analyses suggest that for polyatomic anions (including all polyvalent anions studied) the initial electron distribution has a broad component, even at relatively low photoexcitation energy. There seems to be no well-defined threshold energy below which the broadening of this electron distribution does not occur, as is the case for halide anions. The constancy of (near-unity) prompt quantum yields vs the excitation energy as the latter is scanned across the lowest charge-transfer-to-solvent band of the anion is observed for halide anions but not for other anions: the prompt quantum yields are considerably less than unity and depend strongly on the excitation energy. Our study suggests that halide anions are in the class of their own; electron photodetachment from polyatomic, especially polyvalent, anions exhibits qualitatively different behavior.
Collapse
Affiliation(s)
- Rui Lian
- Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | | | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Bernd Winter
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Strasse 2A, D-12489 Berlin, Germany.
| | | |
Collapse
|
16
|
Shoshana O, Pérez Lustres JL, Ernsting NP, Ruhman S. Mapping CTTS dynamics of Na−in tetrahydrofurane with ultrafast multichannel pump–probe spectroscopy. Phys Chem Chem Phys 2006; 8:2599-609. [PMID: 16738713 DOI: 10.1039/b602933g] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using multichannel femtosecond spectroscopy we have followed Na- charge transfer to solvent (CTTS) dynamics in THF solution. Absorption of the primary photoproducts in the visible, resolved here for the first time, consists of an asymmetric triplet centered at 595 nm, which we assign to a metastable incompletely solvated neutral atomic sodium species. Decay of this feature within approximately 1 ps to a broad and structureless solvated neutral is accompanied by broadening and loss of spectral detail. Kinetic analysis shows that both the spectral structure and the decay of this band are independent of the excitation photon frequency in the range 400-800 nm. With different pump-probe polarizations the anisotropy in transient transmission has been charted and its variation with excitation wavelength surveyed. The anisotropies are assigned to the reactant bleach, indicating that due to solvent-induced symmetry breaking, the CTTS absorption band of Na- is made up of discreet orthogonally polarized sub bands. None of the anisotropy in transient absorption could be associated with the photoproduct triplet band even at the earliest measurable time delays. Along with the documented differences in the spatial distribution of ejected electrons across the tested excitation wavelength range, these results lead us to conclude that photoejection is extremely rapid, and that loss of correlations between the departing electron and its neutral core is faster than our time resolution of approximately 60 fs.
Collapse
Affiliation(s)
- O Shoshana
- Department of Physical Chemistry, and the Farkas Center for Light Induced Processes, the Hebrew University, Jerusalem, 91904, Israel.
| | | | | | | |
Collapse
|
17
|
Winter B, Weber R, Hertel IV, Faubel M, Jungwirth P, Brown EC, Bradforth SE. Electron Binding Energies of Aqueous Alkali and Halide Ions: EUV Photoelectron Spectroscopy of Liquid Solutions and Combined Ab Initio and Molecular Dynamics Calculations. J Am Chem Soc 2005; 127:7203-14. [PMID: 15884962 DOI: 10.1021/ja042908l] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photoelectron spectroscopy combined with the liquid microjet technique enables the direct probing of the electronic structure of aqueous solutions. We report measured and calculated lowest vertical electron binding energies of aqueous alkali cations and halide anions. In some cases, ejection from deeper electronic levels of the solute could be observed. Electron binding energies of a given aqueous ion are found to be independent of the counterion and the salt concentration. The experimental results are complemented by ab initio calculations, at the MP2 and CCSD(T) level, of the ionization energies of these prototype ions in the aqueous phase. The solvent effect was accounted for in the electronic structure calculations in two ways. An explicit inclusion of discrete water molecules using a set of snapshots from an equilibrium classical molecular dynamics simulations and a fractional charge representation of solvent molecules give good results for halide ions. The electron binding energies of alkali cations computed with this approach tend to be overestimated. On the other hand, the polarizable continuum model, which strictly provides adiabatic binding energies, performs well for the alkali cations but fails for the halides. Photon energies in the experiment were in the EUV region (typically 100 eV) for which the technique is probing the top layers of the liquid sample. Hence, the reported energies of aqueous ions are closely connected with both structures and chemical reactivity at the liquid interface, for example, in atmospheric aerosol particles, as well as fundamental bulk solvation properties.
Collapse
Affiliation(s)
- Bernd Winter
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Strasse 2A, D-12489 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
Cavity size effects on charge-transfer-to-solvent precursor excited states of internal halide water clusters X−(H2O)6. Chem Phys Lett 2004. [DOI: 10.1016/j.cplett.2004.09.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Sauer MC, Shkrob IA, Lian R, Crowell RA, Bartels DM, Chen X, Suffern D, Bradforth SE. Electron Photodetachment from Aqueous Anions. 2. Ionic Strength Effect on Geminate Recombination Dynamics and Quantum Yield for Hydrated Electron. J Phys Chem A 2004. [DOI: 10.1021/jp047435j] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
20
|
Crowell RA, Lian R, Shkrob IA, Bartels DM, Chen X, Bradforth SE. Ultrafast dynamics for electron photodetachment from aqueous hydroxide. J Chem Phys 2004; 120:11712-25. [PMID: 15268207 DOI: 10.1063/1.1739213] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Charge-transfer-to-solvent reactions of hydroxide induced by 200 nm monophotonic or 337 and 389 nm biphotonic excitation of this anion in aqueous solution have been studied by means of pump-probe ultrafast laser spectroscopy. Transient absorption kinetics of the hydrated electron, e(aq) (-), have been observed, from a few hundred femtoseconds out to 600 ps, and studied as function of hydroxide concentration and temperature. The geminate decay kinetics are bimodal, with a fast exponential component ( approximately 13 ps) and a slower power "tail" due to the diffusional escape of the electrons. For the biphotonic excitation, the extrapolated fraction of escaped electrons is 1.8 times higher than for the monophotonic 200 nm excitation (31% versus 17.5% at 25 degrees C, respectively), due to the broadening of the electron distribution. The biphotonic electron detachment is very inefficient; the corresponding absorption coefficient at 400 nm is <4 cm TW(-1) M(-1) (assuming unity quantum efficiency for the photodetachment). For [OH(-)] between 10 mM and 10 M, almost no concentration dependence of the time profiles of solvated electron kinetics was observed. At higher temperature, the escape fraction of the electrons increases with a slope of 3x10(-3) K(-1) and the recombination and diffusion-controlled dissociation of the close pairs become faster. Activation energies of 8.3 and 22.3 kJ/mol for these two processes were obtained. The semianalytical theory of Shushin for diffusion controlled reactions in the central force field was used to model the geminate dynamics. The implications of these results for photoionization of water are discussed.
Collapse
Affiliation(s)
- Robert A Crowell
- Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Sauer MC, Crowell RA, Shkrob IA. Electron Photodetachment from Aqueous Anions. 1. Quantum Yields for Generation of Hydrated Electron by 193 and 248 nm Laser Photoexcitation of Miscellaneous Inorganic Anions. J Phys Chem A 2004. [DOI: 10.1021/jp049722t] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Myran C. Sauer
- Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Robert A. Crowell
- Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Ilya A. Shkrob
- Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439
| |
Collapse
|
22
|
Martini IB, Schwartz BJ. Elucidating the initial dynamics of electron photodetachment from atoms in liquids using variably-time-delayed resonant multiphoton ionization. J Chem Phys 2004; 121:374-9. [PMID: 15260556 DOI: 10.1063/1.1756874] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We study the photodetachment of electrons from sodium anions in room temperature liquid tetrahydrofuran (THF) using a new type of three-pulse pump-probe spectroscopy. Our experiments use two variably-time-delayed pulses for excitation in what is essentially a resonant 1+1 two-photon ionization: By varying the arrival time of the second excitation pulse, we can directly observe how solvent motions stabilize and trap the excited electron prior to electron detachment. Moreover, by varying the arrival times of the ionization (excitation) and probe pulses, we also can determine the fate of the photoionized electrons and the distance they are ejected from their parent Na atoms. We find that as solvent reorganization proceeds, the second excitation pulse becomes less effective at achieving photoionization, and that the solvent motions that stabilize the excited electron following the first excitation pulse occur over a time of approximately 450 fs. We also find that there is no spectroscopic evidence for significant solvent relaxation after detachment of the electron is complete. In combination with the results of previous experiments and molecular dynamics simulations, the data provide new insight into the role of the solvent in solution-phase electron detachment and charge-transfer-to-solvent reactions.
Collapse
Affiliation(s)
- Ignacio B Martini
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095-1569, USA
| | | |
Collapse
|
23
|
Bedard-Hearn MJ, Larsen RE, Schwartz BJ. Understanding Nonequilibrium Solute and Solvent Motions through Molecular Projections: Computer Simulations of Solvation Dynamics in Liquid Tetrahydrofuran (THF). J Phys Chem B 2003. [DOI: 10.1021/jp035846e] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Michael J. Bedard-Hearn
- Department of Chemistry and Biochemistry, University of California, Los Angeles California, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569
| | - Ross E. Larsen
- Department of Chemistry and Biochemistry, University of California, Los Angeles California, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569
| | - Benjamin J. Schwartz
- Department of Chemistry and Biochemistry, University of California, Los Angeles California, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569
| |
Collapse
|