1
|
Zhao L, Liu J, Zhou P. Does the wavelength dependent photoisomerization process of the p‑coumaric acid come out from the electronic state dependent pathways? SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 211:203-211. [PMID: 30544011 DOI: 10.1016/j.saa.2018.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Similar to the anion photoactive yellow protein (PYP) chromophore, the neutral form of the PYP chromophore was also found to exhibit a the wavelength-dependent photoisomerization quantum yield. The isomerization quantum yield increases with the increasing excitation energy on the S1 state, while decreases when being excited to the S2 state. Does this wavelength dependent product yield come out from the specific reaction pathways of the S1 and S2 states? This would mean that, the relaxation pathway of the S2 state is distinct from that of the S1 state and does not involve twisting motion. Does it break Kasha's rule by exhibiting a direct transition from the S2 state to the ground state? The underlying mechanism needs further in. In this article, we employed the on-the-fly dynamics simulations and static electronic structure calculations to reveal the deactivation mechanism of the neutral form of the PYP chromophore. Our results indicated that the CC twisting motion dominates the S1 state decay process. In contrast, for the decay process of the S2 state, an ultrafast transition from the S2 to the S1 state through a planar conical intersection is observed, and the excess energy activates a new reaction channel to the ground state characterized by a puckering distortion of the ring. This pathway competes with the photoisomerization channel. No direct transition from S2 to S0 is observed, hence Kasha's rule is valid for this process. Our calcualtions can provide a reasonable explanation of the wavelength-dependent isomerization quantum yield of neutral PYP chromophore, and we hope it can provide theoretical foundations for comparing the effect of protonation state on the dynamcal behaviors of PYP chromophore.
Collapse
Affiliation(s)
- Li Zhao
- School of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| | - Jianyong Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Panwang Zhou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
2
|
Mix LT, Carroll EC, Morozov D, Pan J, Gordon WR, Philip A, Fuzell J, Kumauchi M, van Stokkum I, Groenhof G, Hoff WD, Larsen DS. Excitation-Wavelength-Dependent Photocycle Initiation Dynamics Resolve Heterogeneity in the Photoactive Yellow Protein from Halorhodospira halophila. Biochemistry 2018; 57:1733-1747. [PMID: 29465990 DOI: 10.1021/acs.biochem.7b01114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photoactive yellow proteins (PYPs) make up a diverse class of blue-light-absorbing bacterial photoreceptors. Electronic excitation of the p-coumaric acid chromophore covalently bound within PYP results in triphasic quenching kinetics; however, the molecular basis of this behavior remains unresolved. Here we explore this question by examining the excitation-wavelength dependence of the photodynamics of the PYP from Halorhodospira halophila via a combined experimental and computational approach. The fluorescence quantum yield, steady-state fluorescence emission maximum, and cryotrapping spectra are demonstrated to depend on excitation wavelength. We also compare the femtosecond photodynamics in PYP at two excitation wavelengths (435 and 475 nm) with a dual-excitation-wavelength-interleaved pump-probe technique. Multicompartment global analysis of these data demonstrates that the excited-state photochemistry of PYP depends subtly, but convincingly, on excitation wavelength with similar kinetics with distinctly different spectral features, including a shifted ground-state beach and altered stimulated emission oscillator strengths and peak positions. Three models involving multiple excited states, vibrationally enhanced barrier crossing, and inhomogeneity are proposed to interpret the observed excitation-wavelength dependence of the data. Conformational heterogeneity was identified as the most probable model, which was supported with molecular mechanics simulations that identified two levels of inhomogeneity involving the orientation of the R52 residue and different hydrogen bonding networks with the p-coumaric acid chromophore. Quantum calculations were used to confirm that these inhomogeneities track to altered spectral properties consistent with the experimental results.
Collapse
Affiliation(s)
- L Tyler Mix
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Elizabeth C Carroll
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Dmitry Morozov
- Department of Chemistry and NanoScience Center , University of Jyväskylä , P.O. Box 35, 40014 Jyväskylä , Finland
| | - Jie Pan
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | | | | | - Jack Fuzell
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Masato Kumauchi
- Department of Microbiology and Molecular Genetics , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| | - Ivo van Stokkum
- Faculty of Sciences , Vrije Universiteit Amsterdam , De Boelelaan 1081 , 1081 HV Amsterdam , The Netherlands
| | - Gerrit Groenhof
- Department of Chemistry and NanoScience Center , University of Jyväskylä , P.O. Box 35, 40014 Jyväskylä , Finland
| | - Wouter D Hoff
- Department of Microbiology and Molecular Genetics , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| | - Delmar S Larsen
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| |
Collapse
|
3
|
García-Prieto FF, Muñoz-Losa A, Fdez Galván I, Sánchez ML, Aguilar MA, Martín ME. QM/MM Study of Substituent and Solvent Effects on the Excited State Dynamics of the Photoactive Yellow Protein Chromophore. J Chem Theory Comput 2017; 13:737-748. [PMID: 28072537 DOI: 10.1021/acs.jctc.6b01069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Substituent and solvent effects on the excited state dynamics of the Photoactive Yellow Protein chromophore are studied using the average solvent electrostatic potential from molecular dynamics (ASEP/MD) method. Four molecular models were considered: the ester and thioester derivatives of the p-coumaric acid anion and their methylated derivatives. We found that the solvent produces dramatic modifications on the free energy profile of the S1 state: 1) Two twisted structures that are minima in the gas phase could not be located in aqueous solution. 2) Conical intersections (CIs) associated with the rotation of the single bond adjacent to the phenyl group are found for the four derivatives in water solution but only for thio derivatives in the gas phase. 3) The relative stability of minima and CIs is reverted with respect to the gas phase values, affecting the prevalent de-excitation paths. As a consequence of these changes, three competitive de-excitation channels are open in aqueous solution: the fluorescence emission from a planar minimum on S1, the trans-cis photoisomerization through a CI that involves the rotation of the vinyl double bond, and the nonradiative, nonreactive, de-excitation through the CI associated with the rotation of the single bond adjacent to the phenyl group. In the gas phase, the minima are the structures with the lower energy, while in solution these are the conical intersections. In solution, the de-excitation prevalent path seems to be the photoisomerization for oxo compounds, while thio compounds return to the initial trans ground state without emission.
Collapse
Affiliation(s)
- Francisco F García-Prieto
- Área de Química Física, University of Extremadura , Avda. Elvas s/n, Edif. José Ma Viguera Lobo 3a planta, Badajoz, 06006 Spain
| | - Aurora Muñoz-Losa
- Área de Química Física, University of Extremadura , Avda. Elvas s/n, Edif. José Ma Viguera Lobo 3a planta, Badajoz, 06006 Spain
| | - Ignacio Fdez Galván
- Department of Chemistry-Ångström, The Theoretical Chemistry Programme, Uppsala University , Box 518, 751 20 Uppsala, Sweden
| | - M Luz Sánchez
- Área de Química Física, University of Extremadura , Avda. Elvas s/n, Edif. José Ma Viguera Lobo 3a planta, Badajoz, 06006 Spain
| | - Manuel A Aguilar
- Área de Química Física, University of Extremadura , Avda. Elvas s/n, Edif. José Ma Viguera Lobo 3a planta, Badajoz, 06006 Spain
| | - M Elena Martín
- Área de Química Física, University of Extremadura , Avda. Elvas s/n, Edif. José Ma Viguera Lobo 3a planta, Badajoz, 06006 Spain
| |
Collapse
|
4
|
Hutchison CD, van Thor JJ. Populations and coherence in femtosecond time resolved X-ray crystallography of the photoactive yellow protein. INT REV PHYS CHEM 2017. [DOI: 10.1080/0144235x.2017.1276726] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Jasper J. van Thor
- Molecular Biophysics, Imperial College London, South Kensington Campus, London, UK
| |
Collapse
|
5
|
García-Prieto FF, Muñoz-Losa A, Luz Sánchez M, Elena Martín M, Aguilar MA. Solvent effects on de-excitation channels in the p-coumaric acid methyl ester anion, an analogue of the photoactive yellow protein (PYP) chromophore. Phys Chem Chem Phys 2016; 18:27476-27485. [DOI: 10.1039/c6cp03541h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Environmental effects on the deactivation channels of the PYP chromophore in the gas phase and water solution are compared at the CASPT2//CASSCF/cc-pVDZ level.
Collapse
Affiliation(s)
| | - Aurora Muñoz-Losa
- Institute of Theoretical Chemistry
- Faculty of Chemistry
- University of Vienna
- A-1090 Vienna
- Austria
| | - M. Luz Sánchez
- Área de Química Física
- University of Extremadura
- 06006 Badajoz
- Spain
| | - M. Elena Martín
- Área de Química Física
- University of Extremadura
- 06006 Badajoz
- Spain
| | | |
Collapse
|
6
|
Singh PK, Mora AK, Nath S. Ultrafast Torsional Relaxation of Thioflavin-T in Tris(pentafluoroethyl)trifluorophosphate (FAP) Anion-Based Ionic Liquids. J Phys Chem B 2015; 119:14252-60. [DOI: 10.1021/acs.jpcb.5b09028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Prabhat K. Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Aruna K. Mora
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Sukhendu Nath
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|
7
|
Singh PK, Murudkar S, Mora AK, Nath S. Ultrafast torsional dynamics of Thioflavin-T in an anionic cyclodextrin cavity. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2014.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Pepino AJ, Burgos Paci MA, Peláez WJ, Argüello GA. An experimental and theoretical study of the photoisomerization and thermal reversion on 5-arylmethylene-2-thioxoimidazolidin-4-one. Phys Chem Chem Phys 2015; 17:12927-34. [DOI: 10.1039/c4cp04748f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unraveling the photochemical behaviour of the GFP chromophore has attracted widespread attention among scientists. Results for a new chromophore analog are presented.
Collapse
Affiliation(s)
- A. J. Pepino
- INFIQC-Dpto. de Fisicoquímica
- Facultad de Ciencias Químicas
- UNC
- Córdoba
- Argentina
| | - M. A. Burgos Paci
- INFIQC-Dpto. de Fisicoquímica
- Facultad de Ciencias Químicas
- UNC
- Córdoba
- Argentina
| | - W. J. Peláez
- INFIQC-Dpto. de Fisicoquímica
- Facultad de Ciencias Químicas
- UNC
- Córdoba
- Argentina
| | - G. A. Argüello
- INFIQC-Dpto. de Fisicoquímica
- Facultad de Ciencias Químicas
- UNC
- Córdoba
- Argentina
| |
Collapse
|
9
|
Tan EMM, Amirjalayer S, Mazzella P, Bakker BH, van Maarseveen JH, Bieraugel H, Buma WJ. Molecular Beam and ab Initio Studies of Photoactive Yellow Protein Chromophores: Influence of the Thioester Functionality and Single Bond Rotation. J Phys Chem B 2014; 118:12395-403. [DOI: 10.1021/jp5075169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eric M. M. Tan
- van
’t Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Saeed Amirjalayer
- van
’t Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Physical
Institute and Center for Nanotechnology (CeNTech) Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
| | - Paul Mazzella
- van
’t Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Bert H. Bakker
- van
’t Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Jan H. van Maarseveen
- van
’t Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Hans Bieraugel
- van
’t Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Wybren J. Buma
- van
’t Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
10
|
Creelman M, Kumauchi M, Hoff WD, Mathies RA. Chromophore Dynamics in the PYP Photocycle from Femtosecond Stimulated Raman Spectroscopy. J Phys Chem B 2014; 118:659-67. [DOI: 10.1021/jp408584v] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mark Creelman
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Masato Kumauchi
- Department
of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Wouter D. Hoff
- Department
of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Richard A. Mathies
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Singh PK, Mora AK, Murudkar S, Nath S. Dynamics under confinement: torsional dynamics of Auramine O in a nanocavity. RSC Adv 2014. [DOI: 10.1039/c4ra03324h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Confinement inside the novel anionic sulphobutylether β-cyclodextrin nanocavity significantly slows down the torsional relaxation in Auramine O as compared to native β-CD.
Collapse
Affiliation(s)
- Prabhat K. Singh
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085, India
| | - Aruna K. Mora
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085, India
| | - Sushant Murudkar
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085, India
| | - Sukhendu Nath
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085, India
| |
Collapse
|
12
|
Mendonça L, Hache F, Changenet-Barret P, Plaza P, Chosrowjan H, Taniguchi S, Imamoto Y. Ultrafast Carbonyl Motion of the Photoactive Yellow Protein Chromophore Probed by Femtosecond Circular Dichroism. J Am Chem Soc 2013; 135:14637-43. [DOI: 10.1021/ja404503q] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lucille Mendonça
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique/CNRS/INSERM, 91128 Palaiseau cedex, France
| | - François Hache
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique/CNRS/INSERM, 91128 Palaiseau cedex, France
| | | | - Pascal Plaza
- Ecole Normale Supérieure,
Département de Chimie, UMR 8640 CNRS-ENS-UPMC, 24 rue Lhomond,
75005 Paris, France
| | - Haik Chosrowjan
- Institute for Laser Technology, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Seiji Taniguchi
- Institute for Laser Technology, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasushi Imamoto
- Department
of Biophysics, Graduate School of Sciences, Kyoto University, Kyoto 6068502, Japan
| |
Collapse
|
13
|
Liu J, Yabushita A, Taniguchi S, Chosrowjan H, Imamoto Y, Sueda K, Miyanaga N, Kobayashi T. Ultrafast Time-Resolved Pump–Probe Spectroscopy of PYP by a Sub-8 fs Pulse Laser at 400 nm. J Phys Chem B 2013; 117:4818-26. [DOI: 10.1021/jp4001016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jun Liu
- Advanced Ultrafast Laser Research
Center, University of Electro-Communications, Chofugaoka 1-5-1, Chofu, Tokyo 182-8585 Japan
- State Key Laboratory of High
Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Core Research for Evolutional
Science and Technology (CREST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Atsushi Yabushita
- Department of Electrophysics, National Chiao Tung University, 1001 Ta Hsueh Road,
Hsinchu 300, Taiwan
| | - Seiji Taniguchi
- Institute
for Laser Technology, Osaka University,
Yamadaoka 2-6, Suita Osaka, 565-0871
Japan
| | - Haik Chosrowjan
- Institute
for Laser Technology, Osaka University,
Yamadaoka 2-6, Suita Osaka, 565-0871
Japan
| | - Yasushi Imamoto
- Department of Biophysics,
Graduate
School of Science, Kyoto University, Kitashirakawa-Oiwake,
Sakyo, Kyoto 606-8502 Japan
| | - Keiichi Sueda
- Institute of Laser Engineering, Osaka University, Yamadakami 2-6, Suita 565-0871, Ibaraki
567-0047, Japan
| | - Noriaki Miyanaga
- Institute of Laser Engineering, Osaka University, Yamadakami 2-6, Suita 565-0871, Ibaraki
567-0047, Japan
| | - Takayoshi Kobayashi
- Advanced Ultrafast Laser Research
Center, University of Electro-Communications, Chofugaoka 1-5-1, Chofu, Tokyo 182-8585 Japan
- Core Research for Evolutional
Science and Technology (CREST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Department of Electrophysics, National Chiao Tung University, 1001 Ta Hsueh Road,
Hsinchu 300, Taiwan
- Institute of Laser Engineering, Osaka University, Yamadakami 2-6, Suita 565-0871, Ibaraki
567-0047, Japan
| |
Collapse
|
14
|
Nakamura R, Hamada N, Abe K, Yoshizawa M. Ultrafast hydrogen-bonding dynamics in the electronic excited state of photoactive yellow protein revealed by femtosecond stimulated Raman spectroscopy. J Phys Chem B 2012; 116:14768-75. [PMID: 23210980 DOI: 10.1021/jp308433a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ultrafast structural dynamics in the electronic excited state of photoactive yellow protein (PYP) is studied by femtosecond stimulated Raman spectroscopy. Stimulated Raman spectra in the electronic excited state, S(1), can be obtained by using a Raman pump pulse in resonance with the S(1)-S(0) transition. This is confirmed by comparing the experimental results with numerical calculations based on the density matrix treatment. We also investigate the hydrogen-bonding network surrounding the wild-type (WT)-PYP chromophore in the ground and excited states by comparing its stimulated Raman spectra with those of the E46Q-PYP mutant. We focus on the relative intensity of the Raman band at 1555 cm(-1), which includes both vinyl bond C═C stretching and ring vibrations and is sensitive to the hydrogen-bonding network around the phenolic oxygen of the chromophore. The relative intensity for the WT-PYP decreases after actinic excitation within the 150 fs time resolution and reaches a similar intensity to that for E46Q-PYP. These observations indicate that the WT-PYP hydrogen-bonding network is immediately rearranged in the electronic excited state to form a structure similar to that of E46Q-PYP.
Collapse
Affiliation(s)
- Ryosuke Nakamura
- Science and Technology Entrepreneurship Laboratory, Osaka University, Suita, Osaka, Japan.
| | | | | | | |
Collapse
|
15
|
Lincoln CN, Fitzpatrick AE, van Thor JJ. Photoisomerisation quantum yield and non-linear cross-sections with femtosecond excitation of the photoactive yellow protein. Phys Chem Chem Phys 2012; 14:15752-64. [PMID: 23090503 DOI: 10.1039/c2cp41718a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The quantum yield of photoisomerisation of the photoactive yellow protein (PYP) strongly depends on peak power and wavelength with femtosecond optical excitation. Using systematic power titrations and addition of second order dispersion resulting in 140, 300 and 600 fs pulse durations, the one and multi-photon cross-sections at 400, 450 and 490 nm have been assessed from transient absorption spectroscopy and additionally the Z-scan technique. Applying a target model that incorporates photoselection theory, estimates for the cross-sections for stimulated emission and absorption of the first excited state, the amount of ultrafast internal conversion and the underlying species associated dynamics have been determined. The final quantum yields for photoisomerisation were found to be 0.06, 0.14-0.19 and 0.02 for excitation wavelengths 400, 450 and 490 nm and found to increase with increasing pulse durations. Transient absorption measurements and Z-scan measurements at 450 nm, coinciding with the maximum wavelength of the ground state absorption, indicate that the photochemical quantum yield is intrinsically limited by an ultrafast internal conversion reaction as well as by stimulated emission cross-section. With excitation at 400 nm photoisomerisation quantum yield is further significantly limited by competing multi-photon excitation into excited state absorption at 385 nm previously proposed to result in photoionisation. With excitation at 490 nm the photoisomerisation quantum yield is predominantly limited further by the significantly higher stimulated emission cross-section compared to ground state cross-section as well as multi-photon processes. In addition to photoionisation, a second product of multi-photon excitation is identified and characterised by an induced absorption at 500 nm and a time constant of 2 ps for relaxation. With power densities up to 138 GW cm(-2) the measurements have not provided indication for coherent multi-photon absorption of PYP. In the saturation regime with 450 nm excitation, the limit for the photoisomerisation quantum yield was found to be 0.14-0.19 and the excited state absorption cross-section 6.1 × 10(-17) cm(2) or 0.36 times the ground state cross-section of 1.68 × 10(-16) cm(2) per molecule. This places a fundamental restriction on the maximum populations and sample penetration that may be achieved for instance in femtosecond pump-probe experiments with molecular crystals of PYP.
Collapse
Affiliation(s)
- Craig N Lincoln
- Imperial College London, Division of Molecular Biosciences, South Kensington campus, SW7 2AZ, London, UK
| | | | | |
Collapse
|
16
|
Sato S, Matubara Y, Koike K, Falkenström M, Katayama T, Ishibashi Y, Miyasaka H, Taniguchi S, Chosrowjan H, Mataga N, Fukazawa N, Koshihara S, Onda K, Ishitani O. Photochemistry of fac-[Re(bpy)(CO)3Cl]. Chemistry 2012; 18:15722-34. [PMID: 23081708 PMCID: PMC3546374 DOI: 10.1002/chem.201202734] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 08/15/2012] [Indexed: 12/04/2022]
Abstract
The photochemistry of fac-[Re(bpy)(CO)3Cl] (1 a; bpy=2,2′-bipyridine) initiated by irradiation using <330 nm light has been investigated. Isomerization proceeded in THF to give the corresponding mer-isomer 1 b. However, in the presence of a small amount of MeCN, the main product was the CO-ligand-substituted complex (OC-6-24)-[Re(bpy)(CO)2Cl(MeCN)] (2 c; bpy=2,2′-bipyridine). In MeCN, two isomers, 2 c and its (OC-6-34) form (2 a), were produced. Only 2 c thermally isomerized to produce the (OC-6-44) form 2 b. A detailed investigation led to the conclusion that both 1 b and 2 c are produced by a dissociative mechanism, whereas 2 a forms by an associative mechanism. A comparison of the ultrafast transient UV-visible absorption, emission, and IR spectra of 1 a acquired by excitation using higher-energy light (e.g., 270 nm) and lower-energy light (e.g., 400 nm) gave detailed information about the excited states, intermediates, and kinetics of the photochemical reactions and photophysical processes of 1 a. Irradiation of 1 a using the higher-energy light resulted in the generation of the higher singlet excited state with τ≤25 fs, from which intersystem crossing proceeded to give the higher triplet state (3HES(1)). In THF, 3HES(1) was competitively converted to both the triplet ligand field (3LF) and metal-to-ligand charge transfer (3mLCT) with lifetimes of 200 fs, in which the former is a reactive state that converts to [Re(bpy)(CO)2Cl(thf)]+ (1 c) within 10 ps by means of a dissociative mechanism. Re-coordination of CO to 1 c gives both 1 a and 1 b. In MeCN, irradiation of 1 a by using high-energy light gives the coordinatively unsaturated complex, which rapidly converted to 2 c. A seven-coordinate complex is also produced within several hundred femtoseconds, which is converted to 2 a within several hundred picoseconds.
Collapse
Affiliation(s)
- Shunsuke Sato
- Department of Chemistry, Graduate School of Science and Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Changenet-Barret P, Lacombat F, Plaza P. Reaction-coordinate tracking in the excited-state deactivation of the photoactive yellow protein chromophore in solution. J Photochem Photobiol A Chem 2012. [DOI: 10.1016/j.jphotochem.2012.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Singh PK, Kumbhakar M, Pal H, Nath S. Confined ultrafast torsional dynamics of Thioflavin-T in a nanocavity. Phys Chem Chem Phys 2011; 13:8008-14. [PMID: 21445410 DOI: 10.1039/c0cp02635b] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The influence of confinement in the supramolecular β-cyclodextrin nanocavity on the excited state torsional dynamics of the amyloid fibril sensor, Thioflavin-T, is explored using subpicosecond fluorescence up-conversion spectroscopy. In the presence of β-cyclodextrin, the emission intensity and the fluorescence lifetime of Thioflavin-T significantly increases, indicating the confinement effect of the nanocage on the photophysical behaviour of the dye. Detailed time-resolved fluorescence studies show an appreciable dynamic Stokes' shift for the dye in the β-cyclodextrin nanocavity. Analysis of the time-resolved area normalized emission spectra (TRANES) indicates the formation of an emissive TICT state. The rate of formation of the TICT state, as calculated from the time dependent changes in the peak frequency and the width of the emission spectra, is found to be substantially slower in the β-cyclodextrin nanocavity compared to that in bulk water. Present results indicate that ultrafast torsional motion in Thioflavin-T is significantly retarded due to confinement by the β-cyclodextrin nanocavity.
Collapse
Affiliation(s)
- Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | | | | | | |
Collapse
|
19
|
Singh PK, Kumbhakar M, Pal H, Nath S. Viscosity Effect on the Ultrafast Bond Twisting Dynamics in an Amyloid Fibril Sensor: Thioflavin-T. J Phys Chem B 2010; 114:5920-7. [DOI: 10.1021/jp100371s] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Prabhat K. Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Manoj Kumbhakar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Haridas Pal
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Sukhendu Nath
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| |
Collapse
|
20
|
Briand J, Bräm O, Réhault J, Léonard J, Cannizzo A, Chergui M, Zanirato V, Olivucci M, Helbing J, Haacke S. Coherent ultrafast torsional motion and isomerization of a biomimetic dipolar photoswitch. Phys Chem Chem Phys 2010; 12:3178-87. [PMID: 20237707 DOI: 10.1039/b918603d] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Femtosecond fluorescence up-conversion, UV-Vis and IR transient absorption spectroscopy are used to study the photo-isomerization dynamics of a new type of zwitterionic photoswitch based on a N-alkylated indanylidene pyrroline Schiff base framework (ZW-NAIP). The system is biomimetic, as it mimics the photophysics of retinal, in coupling excited state charge translocation and isomerization. While the fluorescence lifetime is 140 fs, excited state absorption persists over 230 fs in the form of a vibrational wavepacket according to twisting of the isomerizing double bond. After a short "dark" time window in the UV-visible spectra, which we associate with the passage through a conical intersection (CI), the wavepacket appears on the ground state potential energy surface, as evidenced by the transient mid-IR data. This allows for a precise timing of the photoreaction all the way from the initial Franck-Condon region, through the CI and into both ground state isomers, until incoherent vibrational relaxation dominates the dynamics. The photo-reaction dynamics remarkably follow those observed for retinal in rhodopsin, with the additional benefit that in ZW-NAIP the conformational change reverses the zwitterion dipole moment direction. Last, the pronounced low-frequency coherences make these molecules ideal systems for investigating wavepacket dynamics in the vicinity of a CI and for coherent control experiments.
Collapse
Affiliation(s)
- Julien Briand
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg University, CNRS, IPCMS-DON, 23, rue du Loess, 67034 Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Changenet-Barret P, Loukou C, Ley C, Lacombat F, Plaza P, Mallet JM, Martin MM. Primary photodynamics of a biomimetic model of photoactive yellow protein (PYP). Phys Chem Chem Phys 2010; 12:13715-23. [DOI: 10.1039/c0cp00618a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Vibronic Coupling In Inorganic Systems: Photochemistry, Conical Intersections, And The Jahn–Teller And Pseudo-Jahn–Teller Effects. ADVANCES IN INORGANIC CHEMISTRY 2010. [DOI: 10.1016/s0898-8838(10)62009-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Miyasaka H, Satoh Y, Ishibashi Y, Ito S, Nagasawa Y, Taniguchi S, Chosrowjan H, Mataga N, Kato D, Kikuchi A, Abe J. Ultrafast Photodissociation Dynamics of a Hexaarylbiimidazole Derivative with Pyrenyl Groups: Dispersive Reaction from Femtosecond to 10 ns Time Regions. J Am Chem Soc 2009; 131:7256-63. [DOI: 10.1021/ja809195s] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hiroshi Miyasaka
- Division of Frontier Materials Science, Graduate School of Engineering Science and Center for Quantum Science and Technology under Extreme Conditions, Osaka University, Toyonaka, and CREST, JST, Osaka 560-8531, Japan, Institute for Laser Technology, Utsubo-Honmachi 1-8-4, Nishi-ku, Osaka 550-0004, Japan, and Department of Chemistry, Aoyama Gakuin University, Fuchinobe 5-10-1, Sagamihara, Kanagawa 229-8558, Japan
| | - Yusuke Satoh
- Division of Frontier Materials Science, Graduate School of Engineering Science and Center for Quantum Science and Technology under Extreme Conditions, Osaka University, Toyonaka, and CREST, JST, Osaka 560-8531, Japan, Institute for Laser Technology, Utsubo-Honmachi 1-8-4, Nishi-ku, Osaka 550-0004, Japan, and Department of Chemistry, Aoyama Gakuin University, Fuchinobe 5-10-1, Sagamihara, Kanagawa 229-8558, Japan
| | - Yukihide Ishibashi
- Division of Frontier Materials Science, Graduate School of Engineering Science and Center for Quantum Science and Technology under Extreme Conditions, Osaka University, Toyonaka, and CREST, JST, Osaka 560-8531, Japan, Institute for Laser Technology, Utsubo-Honmachi 1-8-4, Nishi-ku, Osaka 550-0004, Japan, and Department of Chemistry, Aoyama Gakuin University, Fuchinobe 5-10-1, Sagamihara, Kanagawa 229-8558, Japan
| | - Syoji Ito
- Division of Frontier Materials Science, Graduate School of Engineering Science and Center for Quantum Science and Technology under Extreme Conditions, Osaka University, Toyonaka, and CREST, JST, Osaka 560-8531, Japan, Institute for Laser Technology, Utsubo-Honmachi 1-8-4, Nishi-ku, Osaka 550-0004, Japan, and Department of Chemistry, Aoyama Gakuin University, Fuchinobe 5-10-1, Sagamihara, Kanagawa 229-8558, Japan
| | - Yutaka Nagasawa
- Division of Frontier Materials Science, Graduate School of Engineering Science and Center for Quantum Science and Technology under Extreme Conditions, Osaka University, Toyonaka, and CREST, JST, Osaka 560-8531, Japan, Institute for Laser Technology, Utsubo-Honmachi 1-8-4, Nishi-ku, Osaka 550-0004, Japan, and Department of Chemistry, Aoyama Gakuin University, Fuchinobe 5-10-1, Sagamihara, Kanagawa 229-8558, Japan
| | - Seiji Taniguchi
- Division of Frontier Materials Science, Graduate School of Engineering Science and Center for Quantum Science and Technology under Extreme Conditions, Osaka University, Toyonaka, and CREST, JST, Osaka 560-8531, Japan, Institute for Laser Technology, Utsubo-Honmachi 1-8-4, Nishi-ku, Osaka 550-0004, Japan, and Department of Chemistry, Aoyama Gakuin University, Fuchinobe 5-10-1, Sagamihara, Kanagawa 229-8558, Japan
| | - Haik Chosrowjan
- Division of Frontier Materials Science, Graduate School of Engineering Science and Center for Quantum Science and Technology under Extreme Conditions, Osaka University, Toyonaka, and CREST, JST, Osaka 560-8531, Japan, Institute for Laser Technology, Utsubo-Honmachi 1-8-4, Nishi-ku, Osaka 550-0004, Japan, and Department of Chemistry, Aoyama Gakuin University, Fuchinobe 5-10-1, Sagamihara, Kanagawa 229-8558, Japan
| | - Noboru Mataga
- Division of Frontier Materials Science, Graduate School of Engineering Science and Center for Quantum Science and Technology under Extreme Conditions, Osaka University, Toyonaka, and CREST, JST, Osaka 560-8531, Japan, Institute for Laser Technology, Utsubo-Honmachi 1-8-4, Nishi-ku, Osaka 550-0004, Japan, and Department of Chemistry, Aoyama Gakuin University, Fuchinobe 5-10-1, Sagamihara, Kanagawa 229-8558, Japan
| | - Daisuke Kato
- Division of Frontier Materials Science, Graduate School of Engineering Science and Center for Quantum Science and Technology under Extreme Conditions, Osaka University, Toyonaka, and CREST, JST, Osaka 560-8531, Japan, Institute for Laser Technology, Utsubo-Honmachi 1-8-4, Nishi-ku, Osaka 550-0004, Japan, and Department of Chemistry, Aoyama Gakuin University, Fuchinobe 5-10-1, Sagamihara, Kanagawa 229-8558, Japan
| | - Azusa Kikuchi
- Division of Frontier Materials Science, Graduate School of Engineering Science and Center for Quantum Science and Technology under Extreme Conditions, Osaka University, Toyonaka, and CREST, JST, Osaka 560-8531, Japan, Institute for Laser Technology, Utsubo-Honmachi 1-8-4, Nishi-ku, Osaka 550-0004, Japan, and Department of Chemistry, Aoyama Gakuin University, Fuchinobe 5-10-1, Sagamihara, Kanagawa 229-8558, Japan
| | - Jiro Abe
- Division of Frontier Materials Science, Graduate School of Engineering Science and Center for Quantum Science and Technology under Extreme Conditions, Osaka University, Toyonaka, and CREST, JST, Osaka 560-8531, Japan, Institute for Laser Technology, Utsubo-Honmachi 1-8-4, Nishi-ku, Osaka 550-0004, Japan, and Department of Chemistry, Aoyama Gakuin University, Fuchinobe 5-10-1, Sagamihara, Kanagawa 229-8558, Japan
| |
Collapse
|
24
|
Abstract
Functions of biologically active molecules are frequently initiated by elementary chemical reactions such as energy and electron transfer, cis-trans isomerizations, and proton transfer. The nature of these reactions generally makes them very fast and efficient, occurring on picosecond and femtosecond timescales. Ultrafast spectroscopy has played an important role in the study of a number of biological processes and has provided unique information about several of nature's responses to light. Here I review the current understanding of light-energy collection and conversion in photosynthesis, the function of carotenoid molecules in photosynthesis, and the primary light-initiated reactions of the photoreceptors rhodopsin, bacteriorhodopsin, photoactive yellow protein, phytochrome, and a new type of blue-light receptor based on flavin chromophores.
Collapse
Affiliation(s)
- Villy Sundström
- Department of Chemical Physics, Lund University, S-221 00 Lund, Sweden.
| |
Collapse
|
25
|
Kumauchi M, Hara MT, Stalcup P, Xie A, Hoff WD. Identification of Six New Photoactive Yellow ProteinsDiversity and StructureFunction Relationships in a Bacterial Blue Light Photoreceptor. Photochem Photobiol 2008; 84:956-69. [DOI: 10.1111/j.1751-1097.2008.00335.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Nakamura R, Hamada N, Ichida H, Tokunaga F, Kanematsu Y. Coherent oscillations in ultrafast fluorescence of photoactive yellow protein. J Chem Phys 2008; 127:215102. [PMID: 18067379 DOI: 10.1063/1.2802297] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ultrafast photoinduced dynamics of photoactive yellow protein in aqueous solution were studied at room temperature by femtosecond fluorescence spectroscopy using an optical Kerr-gate technique. Coherent oscillations of the wave packet were directly observed in the two-dimensional time-energy map of ultrafast fluorescence with 180 fs time resolution and 5 nm spectral resolution. The two-dimensional map revealed that four or more oscillatory components exist within the broad bandwidth of the fluorescence spectrum, each of which is restricted in the respective narrow spectral region. Typical frequencies of the oscillatory modes are 50 and 120 cm(-1). In the landscape on the map, the oscillatory components were recognized as the ridges which were winding and descending with time. The amplitude of the oscillatory and winding behaviors is a few hundred cm(-1), which is the same order as the frequencies of the oscillations. The mean spectral positions of the oscillatory components in the two-dimensional map are well explained by considering the vibrational energies of intramolecular modes in the electronic ground state of the chromophore. The entire view of the wave packet oscillations and broadening in the electronic excited state, accompanied by fluorescence transitions to the vibrational sublevels belonging to the electronic ground state, was obtained.
Collapse
Affiliation(s)
- Ryosuke Nakamura
- JST-CREST, Venture Business Laboratory, Center for Advanced Science and Innovation, Osaka University, Suita, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
27
|
Putschögl M, Zirak P, Penzkofer A. Absorption and emission behaviour of trans-p-coumaric acid in aqueous solutions and some organic solvents. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2007.10.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Li QS, Zhang RQ. Computation of large systems with an economic basis set: systems in excited states. Theor Chem Acc 2007. [DOI: 10.1007/s00214-007-0400-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Gromov EV, Burghardt I, Hynes JT, Köppel H, Cederbaum LS. Electronic structure of the photoactive yellow protein chromophore: Ab initio study of the low-lying excited singlet states. J Photochem Photobiol A Chem 2007. [DOI: 10.1016/j.jphotochem.2007.04.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Imamoto Y, Kataoka M. Structure and photoreaction of photoactive yellow protein, a structural prototype of the PAS domain superfamily. Photochem Photobiol 2007; 83:40-9. [PMID: 16939366 DOI: 10.1562/2006-02-28-ir-827] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Photoactive yellow protein (PYP) is a water-soluble photosensor protein found in purple photosynthetic bacteria. Unlike bacterial rhodopsins, photosensor proteins composed of seven transmembrane helices and a retinal chromophore in halophilic archaebacteria, PYP is a highly soluble globular protein. The alpha/beta fold structure of PYP is a structural prototype of the PAS domain superfamily, many members of which function as sensors for various kinds of stimuli. To absorb a photon in the visible region, PYP has a p-coumaric acid chromophore binding to the cysteine residue via a thioester bond. It exists in a deprotonated trans form in the dark. The primary photochemical event is photo-isomerization of the chromophore from trans to cis form. The twisted cis chromophore in early intermediates is relaxed and finally protonated. Consequently, the chromophore becomes electrostatically neutral and rearrangement of the hydrogen-bonding network triggers overall structural change of the protein moiety, in which local conformational change around the chromophore is propagated to the N-terminal region. Thus, it is an ideal model for protein conformational changes that result in functional change, responding to stimuli and expressing physiological activity. In this paper, recent progress in investigation of the photoresponse of PYP is reviewed.
Collapse
Affiliation(s)
- Yasushi Imamoto
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan.
| | | |
Collapse
|
31
|
Kühn O, Wöste L. Biological systems: Applications and perspectives. ANALYSIS AND CONTROL OF ULTRAFAST PHOTOINDUCED REACTIONS 2007. [PMCID: PMC7122019 DOI: 10.1007/978-3-540-68038-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Oliver Kühn
- Institut f. Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, D-14195 Berlin, Germany
| | - Ludger Wöste
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
32
|
Masciangioli T, Devanathan S, Cusanovich MA, Tollin G, El-Sayed MA. Probing the Primary Event in the Photocycle of Photoactive Yellow Protein Using Photochemical Hole-burning Technique¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0720639ptpeit2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Nakamura R, Hamada N, Ichida H, Tokunaga F, Kanematsu Y. Ultrafast Dynamics of Photoactive Yellow Protein via the Photoexcitation and Emission Processes†. Photochem Photobiol 2007; 83:397-402. [PMID: 17576348 DOI: 10.1562/2006-06-23-ra-946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pump-dump fluorescence spectroscopy was performed for photoactive yellow protein (PYP) at room temperature. The effect of the dump pulse on the population of the potential energy surface of the electronic excited state was examined as depletion in the stationary fluorescence intensity. The dynamic behavior of the population in the electronic excited state was successfully probed in the various combinations of the pump-dump delay, the dump-pulse wavelength, the dump-pulse energy and the observation wavelength. The experimental results were compared with the results obtained by the femtosecond time-resolved fluorescence spectroscopy.
Collapse
Affiliation(s)
- Ryosuke Nakamura
- JST-CREST, Venture Business Laboratory, Center for Advanced Science and Innovation, Osaka University, Suita, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
34
|
Changenet-Barret P, Plaza P, Martin MM, Chosrowjan H, Taniguchi S, Mataga N, Imamoto Y, Kataoka M. Role of arginine 52 on the primary photoinduced events in the PYP photocycle. Chem Phys Lett 2007. [DOI: 10.1016/j.cplett.2006.12.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Tomi T, Shibata Y, Ikeda Y, Taniguchi S, Haik C, Mataga N, Shimada K, Itoh S. Energy and electron transfer in the photosynthetic reaction center complex of Acidiphilium rubrum containing Zn-bacteriochlorophyll a studied by femtosecond up-conversion spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:22-30. [PMID: 17169326 DOI: 10.1016/j.bbabio.2006.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 10/11/2006] [Accepted: 10/27/2006] [Indexed: 11/21/2022]
Abstract
A photosynthetic reaction center (RC) complex was isolated from a purple bacterium, Acidiphilium rubrum. The RC contains bacteriochlorophyll a containing Zn as a central metal (Zn-BChl a) and bacteriopheophytin a (BPhe a) but no Mg-BChl a. The absorption peaks of the Zn-BChl a dimer (P(Zn)), the accessory Zn-BChl a (B(Zn)), and BPhe a (H) at 4 K in the RC showed peaks at 875, 792, and 753 nm, respectively. These peaks were shorter than the corresponding peaks in Rhodobacter sphaeroides RC that has Mg-BChl a. The kinetics of fluorescence from P(Zn)(*), measured by fluorescence up-conversion, showed the rise and the major decay with time constants of 0.16 and 3.3 ps, respectively. The former represents the energy transfer from B(Zn)(*) to P(Zn), and the latter, the electron transfer from P(Zn) to H. The angle between the transition dipoles of B(Zn) and P(Zn) was estimated to be 36 degrees based on the fluorescence anisotropy. The time constants and the angle are almost equal to those in the Rb. sphaeroides RC. The high efficiency of A. rubrum RC seems to be enabled by the chemical property of Zn-BChl a and by the L168HE modification of the RC protein that modifies P(Zn).
Collapse
Affiliation(s)
- Tetsuo Tomi
- Department of Material Science (Physics), Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8602, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Espagne A, Paik DH, Changenet-Barret P, Plaza P, Martin MM, Zewail AH. Ultrafast light-induced response of photoactive yellow protein chromophore analogues. Photochem Photobiol Sci 2007; 6:780-7. [PMID: 17609772 DOI: 10.1039/b700927e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The fluorescence decays of several analogues of the photoactive yellow protein (PYP) chromophore in aqueous solution have been measured by femtosecond fluorescence up-conversion and the corresponding time-resolved fluorescence spectra have been reconstructed. The native chromophore of PYP is a thioester derivative of p-coumaric acid in its trans deprotonated form. Fluorescence kinetics are reported for a thioester phenyl analogue and for two analogues where the thioester group has been changed to amide and carboxylate groups. The kinetics are compared to those we previously reported for the analogues bearing ketone and ester groups. The fluorescence decays of the full series are found to lie in the 1-10 ps range depending on the electron-acceptor character of the substituent, in good agreement with the excited-state relaxation kinetics extracted from transient absorption measurements. Steady-state photolysis is also examined and found to depend strongly on the nature of the substituent. While it has been shown that the ultrafast light-induced response of the chromophore in PYP is controlled by the properties of the protein nanospace, the present results demonstrate that, in solution, the relaxation dynamics and pathway of the chromophore is controlled by its electron donor-acceptor structure: structures of stronger electron donor-acceptor character lead to faster decays and less photoisomerisation.
Collapse
Affiliation(s)
- Agathe Espagne
- UMR CNRS-ENS 8640 PASTEUR, Département de Chimie, Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France
| | | | | | | | | | | |
Collapse
|
37
|
van Wilderen LJGW, van der Horst MA, van Stokkum IHM, Hellingwerf KJ, van Grondelle R, Groot ML. Ultrafast infrared spectroscopy reveals a key step for successful entry into the photocycle for photoactive yellow protein. Proc Natl Acad Sci U S A 2006; 103:15050-5. [PMID: 17015839 PMCID: PMC1940041 DOI: 10.1073/pnas.0603476103] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photoactive proteins such as PYP (photoactive yellow protein) are generally accepted as model systems for studying protein signal state formation. PYP is a blue-light sensor from the bacterium Halorhodospira halophila. The formation of PYP's signaling state is initiated by trans-cis isomerization of the p-coumaric acid chromophore upon the absorption of light. The quantum yield of signaling state formation is approximately 0.3. Using femtosecond visible pump/mid-IR probe spectroscopy, we investigated the structure of the very short-lived ground state intermediate (GSI) that results from an unsuccessful attempt to enter the photocycle. This intermediate and the first stable GSI on pathway into the photocycle, I0, both have a mid-IR difference spectrum that is characteristic of a cis isomer, but only the I0 intermediate has a chromophore with a broken hydrogen bond with the backbone N atom of Cys-69. We suggest, therefore, that breaking this hydrogen bond is decisive for a successful entry into the photocycle. The chromophore also engages in a hydrogen-bonding network by means of its phenolate group with residues Tyr-42 and Glu-46. We have investigated the role of this hydrogen bond by exchanging the H bond-donating residue Glu-46 with the weaker H bond-donating glutamine (i.e., Gln-46). We have observed that this mutant exhibits virtually identical kinetics and product yields as WT PYP, even though during the I0-to-I1 transition, on the 800-ps time scale, the hydrogen bond of the chromophore with Gln-46 is broken, whereas this hydrogen bond remains intact with Glu-46.
Collapse
Affiliation(s)
- L J G W van Wilderen
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
38
|
Espagne A, Paik DH, Changenet-Barret P, Martin MM, Zewail AH. Ultrafast Photoisomerization of Photoactive Yellow Protein Chromophore Analogues in Solution: Influence of the Protonation State. Chemphyschem 2006; 7:1717-26. [PMID: 16847839 DOI: 10.1002/cphc.200600137] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We investigate solvent viscosity and polarity effects on the photoisomerization of the protonated and deprotonated forms of two analogues of the photoactive yellow protein (PYP) chromophore. These are trans-p-hydroxybenzylidene acetone and trans-p-hydroxyphenyl cinnamate, studied in solutions of different polarity and viscosity at room temperature, by means of femtosecond fluorescence up-conversion. The fluorescence lifetimes of the protonated forms are found to be barely sensitive to solvent viscosity, and to increase with increasing solvent polarity. In contrast, the fluorescence decays of the deprotonated forms are significantly slowed down in viscous media and accelerated in polar solvents. These results elucidate the dramatic influence of the protonation state of the PYP chromophore analogues on their photoinduced dynamics. The viscosity and polarity effects are, respectively, interpreted in terms of different isomerization coordinates and charge redistribution in S(1). A trans-to-cis isomerization mechanism involving mainly the ethylenic double-bond torsion and/or solvation is proposed for the anionic forms, whereas "concerted" intramolecular motions are proposed for the neutral forms.
Collapse
Affiliation(s)
- Agathe Espagne
- UMR CNRS-ENS 8640 Pasteur, Département de Chimie, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
39
|
Abstract
The photoactive yellow protein (PYP) is the photoreceptor protein responsible for initiating the blue-light repellent response of the Halorhodospira halophila bacterium. Optical excitation of the intrinsic chromophore in PYP, p-coumaric acid, leads to the initiation of a photocycle that comprises several distinct intermediates. The dynamical processes responsible for the initiation of the PYP photocycle have been explored with several time-resolved techniques, which include ultrafast electronic and vibrational spectroscopies. Ultrafast electronic spectroscopies, such as pump-visible probe, pump-dump-visible probe, and fluorescence upconversion, are useful in identifying the timescales and connectivity of the transient intermediates, while ultrafast vibrational spectroscopies link these intermediates to dynamic structures. Herein, we present the use of these techniques for exploring the initial dynamics of PYP, and show how these techniques provide the basis for understanding the complex relationship between protein and chromophore, which ultimately results in biological function.
Collapse
Affiliation(s)
- Delmar S Larsen
- Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
| | | |
Collapse
|
40
|
Espagne A, Changenet-Barret P, Plaza P, Martin MM. Solvent Effect on the Excited-State Dynamics of Analogues of the Photoactive Yellow Protein Chromophore. J Phys Chem A 2006; 110:3393-404. [PMID: 16526618 DOI: 10.1021/jp0563843] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously reported that two analogues of the Photoactive Yellow Protein chromophore, trans-p-hydroxycinnamic acid (pCA(2-)) and its amide derivative (pCM-) in their deprotonated forms, undergo a trans-cis photoisomerization whereas the thioester derivative, trans-p-hydroxythiophenyl cinnamate (pCT-), does not. pCT- is also the only one to exhibit a short-lived intermediate on its excited-state deactivation pathway. We here further stress the existence of two different relaxation mechanisms for these molecules and examine the reaction coordinates involved. We looked at the effect of the solvent properties (viscosity, polarity, solvation dynamics) on their excited-state relaxation dynamics, probed by ultrafast transient absorption spectroscopy. Sensitivity to the solvent properties is found to be larger for pCT- than for pCA(2-) and pCM-. This difference is considered to reveal that either the relaxation pathway or the reaction coordinate is different for these two classes of analogues. It is also found to be correlated to the electron donor-acceptor character of the molecule. We attribute the excited-state deactivation of analogues bearing a weaker acceptor group, pCA(2-) and pCM-, to a stilbene-like photoisomerization mechanism with the concerted rotation of the ethylenic bond and one adjacent single bond. For pCT-, which contains a stronger acceptor group, we consider a photoisomerization mechanism mainly involving the single torsion of the ethylenic bond. The excited-state deactivation of pCT- would lead to the formation of a ground-state intermediate at the "perp" geometry, which would return to the initial trans conformation without net isomerization.
Collapse
Affiliation(s)
- Agathe Espagne
- Département de Chimie, Ecole Normale Supérieure (UMR CNRS 8640 PASTEUR), 24 rue Lhomond, 75231 Paris Cedex 05, France
| | | | | | | |
Collapse
|
41
|
Mondal JA, Ghosh HN, Ghanty TK, Mukherjee T, Palit DK. Twisting Dynamics in the Excited Singlet State of Michler's Ketone. J Phys Chem A 2006; 110:3432-46. [PMID: 16526622 DOI: 10.1021/jp0555450] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ultrafast relaxation dynamics of the excited singlet (S(1)) state of Michler's ketone (MK) has been investigated in different kinds of solvents using a time-resolved absorption spectroscopic technique with 120 fs time resolution. This technique reveals that conversion of the locally excited (LE) state to the twisted intramolecular charge transfer (TICT) state because of twisting of the N,N-dimethylanilino groups with respect to the central carbonyl group is the major relaxation process responsible for the multi-exponential and probe-wavelength-dependent transient absorption dynamics of the S1 state of MK, but solvation dynamics does not have a significant role in this process. Theoretical optimization of the ground-state geometry of MK shows that the dimethylanilino groups attached to the central carbonyl group are at a dihedral angle of about 51 degrees with respect to each other because of steric interaction between the phenyl rings. Following photoexcitation of MK to its S1 state, two kinds of twisting motions have been resolved. Immediately after photoexcitation, an ultrafast "anti-twisting" motion of the dimethylanilino groups brings back the pretwisted molecule to a near-planar geometry with high mesomeric interaction and intramolecular charge transfer (ICT) character. This motion is observed in all kinds of solvents. Additionally, in solvents of large polarity, the dimethylamino groups undergo further twisting to about 90 degrees with respect to the phenyl ring, to which it is attached, leading to the conversion of the ICT state to the TICT state. Similar characteristics of the absorption spectra of the TICT state and the anion radical of MK establish the nearly pure electron transfer (ET) character of the TICT state. In aprotic solvents, because of the steep slope of the potential energy surface near the Franck-Condon (FC) or LE state region, the LE state is nearly nonemissive at room temperature and fluorescence emission is observed from only the ICT and TICT states. Alternatively, in protic solvents, because of an intermolecular hydrogen-bonding interaction between MK and the solvent, the LE region is more flat and stimulated emission from this state is also observed. However, a stronger hydrogen-bonding interaction between the TICT state and the solvent as well as the closeness between the two potential energy surfaces due to the TICT and the ground states cause the nonradiative coupling between these states to be very effective and, hence, cause the TICT state to be weakly emissive. The multi-exponentiality and strong wavelength-dependence of the kinetics of the relaxation process taking place in the S1 state of MK have arisen for several reasons, such as strong overlapping of transient absorption and stimulated emission spectra of the LE, ICT, and TICT states, which are formed consecutively following photoexcitation of the molecule, as well as the fact that different probe wavelengths monitor different regions of the potential energy surface representing the twisting motion of the excited molecule.
Collapse
Affiliation(s)
- Jahur A Mondal
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | | | | | | | | |
Collapse
|
42
|
van Stokkum IHM, Gobets B, Gensch T, Mourik FV, Hellingwerf KJ, Grondelle RV, Kennis JTM. (Sub)-Picosecond Spectral Evolution of Fluorescence in Photoactive Proteins Studied with a Synchroscan Streak Camera System. Photochem Photobiol 2006; 82:380-8. [PMID: 16613489 DOI: 10.1562/2005-06-15-ra-572] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The spectral evolution of three photoactive proteins has been investigated by measuring the fluorescence with good temporal and wavelength resolution and a high signal-to-noise ratio. Upon excitation at 400 nm wild-type (wt) PYP both at neutral pH and in the low-pH blueshifted pBdark state exhibited a strong quenching of the fluorescence, the major part of which could be described by lifetimes of about 1.7 and 7.7 ps. The remaining fluorescence decay occurred multiexponentially with lifetimes between 30 and 125 ps. Additionally, in wtPYP at neutral pH, a dynamic Stokes shift was found to occur with a time constant of about 0.25 ps. In a PYP preparation that was reconstituted with the chromophore 7-hydroxy-coumarin-3- carboxylic acid rather than the native coumaric acid, and which is therefore not capable of performing the cis-trans-isomerization that initiates the photocycle in wtPYP, the fluorescence was found to decay multiexponentially with lifetimes of 51 ps, 0.33 and 3.77 ns. Additionally, dynamic Stokes shifts were observed with time constants of about 0.1 and 3.5 ps. Upon comparison of the dynamics of this preparation with that of wtPYP the multiexponential decay with lifetimes of 1.7 and 7.7 ps found in wtPYP was attributed to photochemistry of the p-coumaric-acid chromophore. The emission from bacteriorhodopsin mutant D85S upon excitation at 635 nm decays biexponentially with estimated lifetimes of 5.2 and 19.1 ps. No dynamic Stokes shift was observed here. Four lifetimes were needed to describe the decay of the emission from the A* state in the green fluorescent protein. From a target analysis it was concluded that the longer lifetimes are accompanied by a decreasing probability of forming I*, which approaches zero with the longest A* lifetime of 1.5 ns. These observations may be explained by heterogeneity of A and by relaxation of A*. In all three systems studied, multiexponential decay of emission was present, suggesting that heterogeneity is a common feature of these chromophore protein complexes.
Collapse
Affiliation(s)
- I H M van Stokkum
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
43
|
Li QS, Fang WH. Ab initio study on the structures and properties of trans-p-coumaric acid in low-lying electronic states. Chem Phys 2005. [DOI: 10.1016/j.chemphys.2004.12.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Larsen DS, van Stokkum IHM, Vengris M, van Der Horst MA, de Weerd FL, Hellingwerf KJ, van Grondelle R. Incoherent manipulation of the photoactive yellow protein photocycle with dispersed pump-dump-probe spectroscopy. Biophys J 2005; 87:1858-72. [PMID: 15345564 PMCID: PMC1304590 DOI: 10.1529/biophysj.104.043794] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photoactive yellow protein is the protein responsible for initiating the "blue-light vision" of Halorhodospira halophila. The dynamical processes responsible for triggering the photoactive yellow protein photocycle have been disentangled with the use of a novel application of dispersed ultrafast pump-dump-probe spectroscopy, where the photocycle can be started and interrupted with appropriately tuned and timed laser pulses. This "incoherent" manipulation of the photocycle allows for the detailed spectroscopic investigation of the underlying photocycle dynamics and the construction of a fully self-consistent dynamical model. This model requires three kinetically distinct excited-state intermediates, two (ground-state) photocycle intermediates, I(0) and pR, and a ground-state intermediate through which the protein, after unsuccessful attempts at initiating the photocycle, returns to the equilibrium ground state. Also observed is a previously unknown two-photon ionization channel that generates a radical and an ejected electron into the protein environment. This second excitation pathway evolves simultaneously with the pathway containing the one-photon photocycle intermediates.
Collapse
Affiliation(s)
- Delmar S Larsen
- Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
45
|
Vengris M, Larsen DS, van der Horst MA, Larsen OFA, Hellingwerf KJ, van Grondelle R. Ultrafast Dynamics of Isolated Model Photoactive Yellow Protein Chromophores: “Chemical Perturbation Theory” in the Laboratory. J Phys Chem B 2005; 109:4197-208. [PMID: 16851482 DOI: 10.1021/jp045763d] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pump-probe and pump-dump probe experiments have been performed on several isolated model chromophores of the photoactive yellow protein (PYP). The observed transient absorption spectra are discussed in terms of the spectral signatures ascribed to solvation, excited-state twisting, and vibrational relaxation. It is observed that the protonation state has a profound effect on the excited-state lifetime of p-coumaric acid. Pigments with ester groups on the coumaryl tail end and charged phenolic moieties show dynamics that are significantly different from those of other pigments. Here, an unrelaxed ground-state intermediate could be observed in pump-probe signals. A similar intermediate could be identified in the sinapinic acid and in isomerization-locked chromophores by means of pump-dump probe spectroscopy; however, in these compounds it is less pronounced and could be due to ground-state solvation and/or vibrational relaxation. Because of strong protonation-state dependencies and the effect of electron donor groups, it is argued that charge redistribution upon excitation determines the twisting reaction pathway, possibly through interaction with the environment. It is suggested that the same pathway may be responsible for the initiation of the photocycle in native PYP.
Collapse
Affiliation(s)
- Mikas Vengris
- Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
46
|
Changenet-Barret P, Espagne A, Plaza P, Hellingwerf KJ, Martin MM. Investigations of the primary events in a bacterial photoreceptor for photomotility: photoactive yellow protein (PYP). NEW J CHEM 2005. [DOI: 10.1039/b418134d] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Yamada A, Ishikura T, Yamato T. Role of protein in the primary step of the photoreaction of yellow protein. Proteins 2004; 55:1063-9. [PMID: 15146503 DOI: 10.1002/prot.20006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We show the unexpectedly important role of the protein environment in the primary step of the photoreaction of the yellow protein after light illumination. The driving force of the trans-to-cis isomerization reaction was analyzed by a computational method. The force was separated into two different components: the term due to the protein-chromophore interaction and the intrinsic term of the chromophore itself. As a result, we found that the contribution from the interaction term was much greater than that coming from the intrinsic term. This accounts for the efficiency of the isomerization reaction in the protein environment in contrast to that in solution environments. We then analyzed the relaxation process of the chromophore on the excited-state energy surface and compared the process in the protein environment and that in a vacuum. Based on this analysis, we found that the bond-selectivity of the isomerization reaction also comes from the interaction between the chromophore and the protein environment.
Collapse
Affiliation(s)
- Atsushi Yamada
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | | | | |
Collapse
|
48
|
Yamada A, Ishikura T, Yamato T. Direct measure of functional importance visualized atom-by-atom for photoactive yellow protein: Application to photoisomerization reaction. Proteins 2004; 55:1070-7. [PMID: 15146504 DOI: 10.1002/prot.20063] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Photoreceptor proteins serve as efficient nano-machines for the photoenergy conversion and the photosignal transduction of living organisms. For instance, the photoactive yellow protein derived from a halophilic bacterium has the p-coumaric acid chromophore, which undergoes an ultrafast photoisomerization reaction after light illumination. To understand the structure-function relationship at the atomic level, we used a computational method to find functionally important atoms for the photoisomerization reaction of the photoactive yellow protein. In the present study, a "direct" measure of the functional significance was quantitatively evaluated for each atom by calculating the partial atomic driving force for the photoisomerization reaction. As a result, we revealed the reaction mechanism in which the specific role of each functionally important atom has been well characterized in a systematic manner. In addition, we observed that this mechanism is strongly conserved during the thermal fluctuation of the photoactive yellow protein. We compared the experimental data of fluorescence decay constant of several different mutants and the present analysis. As a result, we found that the reaction rate constant is decreased when a large positive driving force is missing.
Collapse
Affiliation(s)
- Atsushi Yamada
- Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | | | | |
Collapse
|
49
|
Singh AK, Ramakrishna G, Ghosh HN, Palit DK. Photophysics and Ultrafast Relaxation Dynamics of the Excited States of Dimethylaminobenzophenone. J Phys Chem A 2004. [DOI: 10.1021/jp037132+] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Glasbeek M, Zhang H. Femtosecond Studies of Solvation and Intramolecular Configurational Dynamics of Fluorophores in Liquid Solution. Chem Rev 2004; 104:1929-54. [PMID: 15080717 DOI: 10.1021/cr0206723] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Max Glasbeek
- Laboratory for Physical Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands.
| | | |
Collapse
|