1
|
Al Said T, Weber S, Schleicher E. OOP-ESEEM Spectroscopy: Accuracies of Distances of Spin-Correlated Radical Pairs in Biomolecules. Front Mol Biosci 2022; 9:890826. [PMID: 35813811 PMCID: PMC9262093 DOI: 10.3389/fmolb.2022.890826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
In addition to the commonly used electron-electron double resonance (ELDOR) technique, there are several other electron paramagnetic resonance (EPR) methods by which structure information can be obtained by exploiting the dipolar coupling between two radicals based on its characteristic r -3 dependence. In this contribution, we explore the potential of out-of-phase-electron-spin echo envelope modulation (OOP-ESEEM) spectroscopy to collect accurate distance information in photo-sensitive (bio) molecules. Although the method has already been applied to spin-correlated radical pairs in several classes of light-active proteins, the accuracy of the information obtained has not yet been extensively evaluated. To do this in a system-independent fashion, OOP-ESEEM time traces simulated with different values of the dipolar and exchange couplings were generated and analyzed in a best-possible way. Excellent agreement between calculated and numerically fitted values over a wide range of distances (between 15 and 45 Å) was obtained. Furthermore, the limitations of the method and the dependence on various experimental parameters could be evaluated.
Collapse
Affiliation(s)
| | | | - Erik Schleicher
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Hochstoeger T, Al Said T, Maestre D, Walter F, Vilceanu A, Pedron M, Cushion TD, Snider W, Nimpf S, Nordmann GC, Landler L, Edelman N, Kruppa L, Dürnberger G, Mechtler K, Schuechner S, Ogris E, Malkemper EP, Weber S, Schleicher E, Keays DA. The biophysical, molecular, and anatomical landscape of pigeon CRY4: A candidate light-based quantal magnetosensor. SCIENCE ADVANCES 2020; 6:eabb9110. [PMID: 32851187 PMCID: PMC7423367 DOI: 10.1126/sciadv.abb9110] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
The biophysical and molecular mechanisms that enable animals to detect magnetic fields are unknown. It has been proposed that birds have a light-dependent magnetic compass that relies on the formation of radical pairs within cryptochrome molecules. Using spectroscopic methods, we show that pigeon cryptochrome clCRY4 is photoreduced efficiently and forms long-lived spin-correlated radical pairs via a tetrad of tryptophan residues. We report that clCRY4 is broadly and stably expressed within the retina but enriched at synapses in the outer plexiform layer in a repetitive manner. A proteomic survey for retinal-specific clCRY4 interactors identified molecules that are involved in receptor signaling, including glutamate receptor-interacting protein 2, which colocalizes with clCRY4. Our data support a model whereby clCRY4 acts as an ultraviolet-blue photoreceptor and/or a light-dependent magnetosensor by modulating glutamatergic synapses between horizontal cells and cones.
Collapse
Affiliation(s)
- Tobias Hochstoeger
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Tarek Al Said
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, Freiburg 79104, Germany
| | - Dante Maestre
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Florian Walter
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Alexandra Vilceanu
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Miriam Pedron
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Thomas D. Cushion
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - William Snider
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Simon Nimpf
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Gregory Charles Nordmann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Lukas Landler
- Institute of Zoology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Nathaniel Edelman
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Lennard Kruppa
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, Freiburg 79104, Germany
| | - Gerhard Dürnberger
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), VBC, Dr. Bohr-Gasse 3, Vienna 1030, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), VBC, Dr. Bohr-Gasse 3, Vienna 1030, Austria
| | - Stefan Schuechner
- Monoclonal Antibody Facility, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, Vienna 1030, Austria
| | - Egon Ogris
- Monoclonal Antibody Facility, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, Vienna 1030, Austria
| | - E. Pascal Malkemper
- Monoclonal Antibody Facility, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, Vienna 1030, Austria
- Max Planck Research Group Neurobiology of Magnetoreception, Center of Advanced European Studies and Research (CAESAR), Ludwig-Erhard-Allee 2, Bonn 53175, Germany
| | - Stefan Weber
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, Freiburg 79104, Germany
| | - Erik Schleicher
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, Freiburg 79104, Germany
| | - David A. Keays
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Australia
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| |
Collapse
|
3
|
Beletskaya EA, Lukina EA, Uvarov MN, Popov AA, Kulik LV. Geminate recombination in organic photovoltaic blend PCDTBT/PC 71BM studied by out-of-phase electron spin echo spectroscopy. J Chem Phys 2020; 152:044706. [PMID: 32007084 DOI: 10.1063/1.5131855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The key process in organic solar cell operation is charge separation under light illumination. Due to the low dielectric constant of organic materials, the Coulomb attraction energy within the interfacial charge-transfer state (CTS) is larger than the thermal energy. Understanding the mechanism of charge separation at the organic donor/acceptor interface still remains a challenge and requires knowledge of the CTS temporal evolution. To address this problem, the CTS in the benchmark photovoltaic blend PCDTBT/PC71BM was studied by the out-of-phase Electron Spin Echo (ESE). The protocol for determining the CTS geminate recombination rate for certain electron-hole distances was developed. Simulating the out-of-phase ESE trace for the CTS in the PCDTBT/PC71BM blend allows precise determination of the electron-hole distance distribution function and its evolution with the increase in the delay after the laser flash. Distances of charge separation up to 6 nm were detected upon thermalization at a temperature of 20 K. Assuming the exponential decay of the recombination rate, the attenuation factor β = 0.08 Å-1 is estimated for the PCDTBT/PC71BM blend. Such a low attenuation factor is probably caused by a high degree of hole delocalization along the PCDTBT chain.
Collapse
Affiliation(s)
- E A Beletskaya
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya Str. 3, 630090 Novosibirsk, Russia
| | - E A Lukina
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya Str. 3, 630090 Novosibirsk, Russia
| | - M N Uvarov
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya Str. 3, 630090 Novosibirsk, Russia
| | - A A Popov
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya Str. 3, 630090 Novosibirsk, Russia
| | - L V Kulik
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya Str. 3, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Nohr D, Weber S, Schleicher E. EPR spectroscopy on flavin radicals in flavoproteins. Methods Enzymol 2019; 620:251-275. [PMID: 31072489 DOI: 10.1016/bs.mie.2019.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Flavin semiquinone redox states are important intermediates in a broad variety of reactions catalyzed by flavoproteins. As paramagnetic states they can be favorably probed by EPR spectroscopy in all its flavors. This review summarizes recent results in the characterization of flavin radicals. On the one hand, flavin radical states, e.g., trapped as reaction intermediates, can be characterized using modern pulsed EPR methods to unravel their electronic structure and to gain information about the surrounding environment and its changes on protein action. On the other hand, short-lived intermediate flavin radical states generated, e.g., photochemically, can be followed by time-resolved EPR, which allows a direct tracking of flavin-dependent reactions with a temporal resolution reaching nanoseconds.
Collapse
Affiliation(s)
- Daniel Nohr
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Stefan Weber
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Erik Schleicher
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Nohr D, Paulus B, Rodriguez R, Okafuji A, Bittl R, Schleicher E, Weber S. Bestimmung des Radikal-Radikal-Abstands in lichtaktiven Proteinen im angeregten Zustand und dessen Bedeutung für die biologische Magnetorezeption. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel Nohr
- Institut für Physikalische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstraße 21 79104 Freiburg Deutschland
| | - Bernd Paulus
- Institut für Physikalische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstraße 21 79104 Freiburg Deutschland
| | - Ryan Rodriguez
- Institut für Physikalische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstraße 21 79104 Freiburg Deutschland
| | - Asako Okafuji
- Institut für Physikalische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstraße 21 79104 Freiburg Deutschland
| | - Robert Bittl
- Fachbereich Physik; Freie Universität Berlin; Arnimallee 14 14195 Berlin Deutschland
| | - Erik Schleicher
- Institut für Physikalische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstraße 21 79104 Freiburg Deutschland
| | - Stefan Weber
- Institut für Physikalische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstraße 21 79104 Freiburg Deutschland
| |
Collapse
|
6
|
Nohr D, Paulus B, Rodriguez R, Okafuji A, Bittl R, Schleicher E, Weber S. Determination of Radical-Radical Distances in Light-Active Proteins and Their Implication for Biological Magnetoreception. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/anie.201700389] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel Nohr
- Institute of Physical Chemistry; Albert-Ludwigs-Universität Freiburg; Albertstrasse 21 79104 Freiburg Germany
| | - Bernd Paulus
- Institute of Physical Chemistry; Albert-Ludwigs-Universität Freiburg; Albertstrasse 21 79104 Freiburg Germany
| | - Ryan Rodriguez
- Institute of Physical Chemistry; Albert-Ludwigs-Universität Freiburg; Albertstrasse 21 79104 Freiburg Germany
| | - Asako Okafuji
- Institute of Physical Chemistry; Albert-Ludwigs-Universität Freiburg; Albertstrasse 21 79104 Freiburg Germany
| | - Robert Bittl
- Department of Physics; Freie Universität Berlin; Arnimallee 14 14195 Berlin Germany
| | - Erik Schleicher
- Institute of Physical Chemistry; Albert-Ludwigs-Universität Freiburg; Albertstrasse 21 79104 Freiburg Germany
| | - Stefan Weber
- Institute of Physical Chemistry; Albert-Ludwigs-Universität Freiburg; Albertstrasse 21 79104 Freiburg Germany
| |
Collapse
|
7
|
Popov AA, Lukina EA, Rapatskiy L, Kulik LV. Time-domain shape of electron spin echo signal of spin-correlated radical pairs in polymer/fullerene blends. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 276:86-94. [PMID: 28157560 DOI: 10.1016/j.jmr.2017.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/22/2016] [Accepted: 01/19/2017] [Indexed: 06/06/2023]
Abstract
Temporal shape of electron spin echo (ESE) signal of photoinduced spin-correlated radical pairs (SCRP) in composite of conductive polymer P3HT and substituted fullerene PCBM is studied in details. ESE signals of radical pairs (RP) P3HT+/PCBM- are calculated in realistic model, taking into account finite microwave pulse length. Inhomogeneous broadening of resonant lines and interradical distance distribution are included. Experimentally observed ESE time-domain shape was found to contradict predictions of conventional SCRP theory, which would be valid in the case of very fast electron transfer. Thus, instantaneous formation of singlet SCRP is not the case for P3HT+/PCBM- pair, and spin system has enough time to evolve coherently during sequential electron transfer. While it is impossible to reproduce experimental data within simple singlet SCRP model, assumption of presence of additional - with respect to what is predicted by singlet SCRP theory - AE (absorption/emission) spin polarization gives convincing accordance with the experiment. Density matrix of RP P3HT+/PCBM- is a superposition of two contributions, namely the parts reflecting (i) antiphase polarization of original singlet-born SCRP and (ii) additional AE-polarization which is generated during initial stage of charge separation. AE-polarization affects experimental ESEEM (electron spin echo envelope modulation) traces, as well as ESE shape, making impossible their interpretation via simple singlet SCRP model. However, this effect can be eliminated by averaging of ESEEM traces over EPR spectral positions. Finally, choosing the optimal gate for ESE time-domain integration and proper microwave detection phase tuning are considered.
Collapse
Affiliation(s)
- Alexander A Popov
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia; Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, Institutskaya 3, Novosibirsk 630090, Russia.
| | - Ekaterina A Lukina
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia; Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, Institutskaya 3, Novosibirsk 630090, Russia.
| | - Leonid Rapatskiy
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34 - 36, D - 45470 Mülheim an der Ruhr, Germany.
| | - Leonid V Kulik
- Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, Institutskaya 3, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia.
| |
Collapse
|
8
|
Lukina EA, Popov AA, Uvarov MN, Kulik LV. Out-of-Phase Electron Spin Echo Studies of Light-Induced Charge-Transfer States in P3HT/PCBM Composite. J Phys Chem B 2015; 119:13543-8. [DOI: 10.1021/acs.jpcb.5b02142] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ekaterina A. Lukina
- Voevodsky
Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, Institutskaya 3, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova
2, Novosibirsk 630090, Russia
| | - Alexander A. Popov
- Voevodsky
Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, Institutskaya 3, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova
2, Novosibirsk 630090, Russia
| | - Mikhail N. Uvarov
- Voevodsky
Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, Institutskaya 3, Novosibirsk 630090, Russia
| | - Leonid V. Kulik
- Voevodsky
Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, Institutskaya 3, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova
2, Novosibirsk 630090, Russia
| |
Collapse
|
9
|
Santabarbara S, Kuprov I, Poluektov O, Casal A, Russell CA, Purton S, Evans MCW. Directionality of Electron-Transfer Reactions in Photosystem I of Prokaryotes: Universality of the Bidirectional Electron-Transfer Model. J Phys Chem B 2010; 114:15158-71. [PMID: 20977227 DOI: 10.1021/jp1044018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefano Santabarbara
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, Scotland, United Kingdom; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States; and School of Biological
| | - Ilya Kuprov
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, Scotland, United Kingdom; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States; and School of Biological
| | - Oleg Poluektov
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, Scotland, United Kingdom; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States; and School of Biological
| | - Antonio Casal
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, Scotland, United Kingdom; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States; and School of Biological
| | - Charlotte A. Russell
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, Scotland, United Kingdom; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States; and School of Biological
| | - Saul Purton
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, Scotland, United Kingdom; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States; and School of Biological
| | - Michael C. W. Evans
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, Scotland, United Kingdom; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States; and School of Biological
| |
Collapse
|
10
|
Santabarbara S, Galuppini L, Casazza AP. Bidirectional electron transfer in the reaction centre of photosystem I. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:735-749. [PMID: 20666929 DOI: 10.1111/j.1744-7909.2010.00977.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In the past decade light-induced electron transfer reactions in photosystem I have been the subject of intensive investigations that have led to the elucidation of some unique characteristics, the most striking of which is the existence of two parallel, functional, redox active cofactors chains. This process is generally referred to as bidirectional electron transfer. Here we present a review of the principal evidences that have led to the uncovering of bidirectionality in the reaction centre of photosystem I. A special focus is dedicated to the results obtained combining time-resolved spectroscopic techniques, either difference absorption or electron paramagnetic resonance, with molecular genetics, which allows, through modification of the binding of redox active cofactors with the reaction centre subunits, an effect on their physical-chemical properties.
Collapse
|
11
|
Rodgers CT, Hore PJ. Chemical magnetoreception in birds: the radical pair mechanism. Proc Natl Acad Sci U S A 2009; 106:353-60. [PMID: 19129499 PMCID: PMC2626707 DOI: 10.1073/pnas.0711968106] [Citation(s) in RCA: 326] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Indexed: 11/18/2022] Open
Abstract
Migratory birds travel vast distances each year, finding their way by various means, including a remarkable ability to perceive the Earth's magnetic field. Although it has been known for 40 years that birds possess a magnetic compass, avian magnetoreception is poorly understood at all levels from the primary biophysical detection events, signal transduction pathways and neurophysiology, to the processing of information in the brain. It has been proposed that the primary detector is a specialized ocular photoreceptor that plays host to magnetically sensitive photochemical reactions having radical pairs as fleeting intermediates. Here, we present a physical chemist's perspective on the "radical pair mechanism" of compass magnetoreception in birds. We outline the essential chemical requirements for detecting the direction of an Earth-strength approximately 50 microT magnetic field and comment on the likelihood that these might be satisfied in a biologically plausible receptor. Our survey concludes with a discussion of cryptochrome, the photoactive protein that has been put forward as the magnetoreceptor molecule.
Collapse
Affiliation(s)
- Christopher T. Rodgers
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom; and
- Oxford Centre for Clinical Magnetic Resonance Research, Level 0, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - P. J. Hore
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom; and
| |
Collapse
|
12
|
An electron paramagnetic resonance investigation of the electron transfer reactions in the chlorophyll d containing photosystem I of Acaryochloris marina. FEBS Lett 2007; 581:1567-71. [PMID: 17382323 DOI: 10.1016/j.febslet.2007.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 03/05/2007] [Accepted: 03/06/2007] [Indexed: 11/19/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy reveals functional and structural similarities between the reaction centres of the chlorophyll d-binding photosystem I (PS I) and chlorophyll a-binding PS I. Continuous wave EPR spectrometry at 12K identifies iron-sulphur centres as terminal electron acceptors of chlorophyll d-binding PS I. A transient light-induced electron spin echo (ESE) signal indicates the presence of a quinone as the secondary electron acceptor (Q) between P(740)(+) and the iron-sulphur centres. The distance between P(740)(+) and Q(-) was estimated within point-dipole approximation as 25.23+/-0.05A, by the analysis of the electron spin echo envelope modulation.
Collapse
|
13
|
Santabarbara S, Kuprov I, Hore PJ, Casal A, Heathcote P, Evans MCW. Analysis of the Spin-Polarized Electron Spin Echo of the [P700+A1-] Radical Pair of Photosystem I Indicates That Both Reaction Center Subunits Are Competent in Electron Transfer in Cyanobacteria, Green Algae, and Higher Plants. Biochemistry 2006; 45:7389-403. [PMID: 16752928 DOI: 10.1021/bi060330h] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The decay of the light-induced spin-correlated radical pair [P700+ A1-] and the associated electron spin echo envelope modulation (ESEEM) have been studied in either thylakoid membranes, cellular membranes, or purified photosystem I prepared from the wild-type strains of Synechocystis sp. PCC 6803, Chlamydomonas reinhardtii, and Spinaceae oleracea. The decay of the spin-correlated radical pair is described in the wild-type membrane by two exponential components with lifetimes of 2-4 and 16-25 micros. The proportions of the two components can be altered by preillumination of the membranes in the presence of reductant at temperatures lower than 220 K, which leads to the complete reduction of the iron-sulfur electron acceptors F(A), F(B), and F(X) and partial photoaccumulation of the reduced quinone electron acceptor A1A-. The "out-of-phase" (OOP) ESEEM attributed to the [P700+ A1-] radical pair has been investigated in the three species as a function of the preillumination treatment. Values of the dipolar (D) and the exchange (J) interactions were extracted by time-domain fitting of the OOP-ESEEM. The results obtained in the wild-type systems are compared with two site-directed mutants of C. reinhardtii [Santabarbara et al. (2005) Biochemistry 44, 2119-2128], in which the spin-polarized signal on either the PsaA- or PsaB-bound electron transfer pathway is suppressed so that the radical pair formed on each electron transfer branch could be monitored selectively. This comparison indicates that when all of the iron-sulfur centers are oxidized, only the echo modulation associated with the A branch [P700+ A1A-] radical pair is observed. The reduction of the iron-sulfur clusters and the quinone A1 by preillumination treatment induces a shift in the ESEEM frequency. In all of the systems investigated this observation can be interpreted in terms of different proportions of the signal associated with the [P700+ A1A-] and [P700+ A1B-] radical pairs, suggesting that bidirectionality of electron transfer in photosystem I is a common feature of all species rather than being confined to green algae.
Collapse
Affiliation(s)
- Stefano Santabarbara
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom.
| | | | | | | | | | | |
Collapse
|
14
|
Borovykh IV, Gast P, Dzuba SA. “Glass Transition” near 200 K in the Bacterial Photosynthetic Reaction Center Protein Detected by Studying the Distances in the Transient P+QA- Radical Pair. J Phys Chem B 2005; 109:7535-9. [PMID: 16851865 DOI: 10.1021/jp0451750] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transient radical pair P(+)Q(A)(-) in the photosynthetic reaction center from Rhodobacter sphaeroides R26 was studied over a wide temperature range using out-of-phase electron spin-echo envelope modulation (ESEEM) spectroscopy. This method is sensitive to the magnetic dipole-dipole interaction between the two electron spins of the pair and allows precise determination of the distance in the pair P(+)Q(A)(-). The out-of-phase data were complemented by normal in-phase ESEEM spectra from the two stable radicals of P(+) and Q(A)(-). The results seem to indicate that the radical pair undergoes a noticeable molecular motion around 200 K that may be characterized by a change in the distance in the pair by approximately 0.3 nm. As the two cofactors, P(+) and Q(A)(-), are held in a well-defined relative position by the reaction center protein, this means that the protein becomes flexible at 200 K. This effect may be ascribed to a dynamic glass transition around 200 K. The relation with the temperature dependence of the back reaction of P(+)Q(A)(-) is discussed.
Collapse
Affiliation(s)
- Igor V Borovykh
- Department of Biophysics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | | | | |
Collapse
|
15
|
Santabarbara S, Kuprov I, Fairclough WV, Purton S, Hore PJ, Heathcote P, Evans MCW. Bidirectional Electron Transfer in Photosystem I: Determination of Two Distances between P700+ and A1- in Spin-Correlated Radical Pairs. Biochemistry 2005; 44:2119-28. [PMID: 15697238 DOI: 10.1021/bi048445d] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The spin-correlated radical pair [P(700)(+)A(1)(-)] gives rise to a characteristic "out-of-phase" electron spin-echo signal. The electron spin-echo envelope modulation (ESEEM) of these signals has been studied in thylakoids prepared from the wild-type strain of Chlamydomonas reinhardtii and in two site-directed mutants, in which the methionine residue which acts as the axial ligand to the chlorin electron acceptor A(0) has been substituted with a histidine either on the PsaA (PsaA-M684H) or the PsaB (PsaB-M664H) reaction center subunits. The analysis of the time domain ESEEM provides information about the spin-spin interaction in the [P(700)(+)A(1)(-)] radical pair, and the values of the dipolar (D) and the exchange (J) interaction can be extracted. From the distance dependence of the dipolar coupling term, the distance between the unpaired electron spin density clouds of the primary donor P(700)(+) and the phyllosemiquinone A(1)(-) can be determined. The [P(700)(+)A(1)(-)] ESEEM spectrum obtained in wild-type thylakoids can be reconstructed using a linear combination of the spectra measured in the PsaA and PsaB A(0) mutants, demonstrating that electron transfer resulting in charge separation is occurring on both the PsaA and PsaB branches. The [P(700)(+)A(1B)(-)] distance in the point dipole approximation in the PsaA-M684H mutant is 24.27 +/- 0.02 A, and the [P(700)(+)A(1A)(-)] distance in the PsaB-M664H mutant is 25.43 +/- 0.01 A. An intermediate value of 25.01 +/- 0.02 A is obtained in the wild-type membranes which exhibit both spin-polarized pairs.
Collapse
Affiliation(s)
- Stefano Santabarbara
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
16
|
Borovykh I, Kulik L, Gast P, Dzuba S. Conformation transition in the protein of a photosynthetic reaction center observed at the nanometer range of distances at cryogenic temperatures. Chem Phys 2003. [DOI: 10.1016/s0301-0104(03)00323-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
|
18
|
|
19
|
Cavassila S, Deval S, Huegen C, van Ormondt D, Graveron-Demilly D. Cramér-Rao bounds: an evaluation tool for quantitation. NMR IN BIOMEDICINE 2001; 14:278-83. [PMID: 11410946 DOI: 10.1002/nbm.701] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Cramér-Rao lower bounds (CRBs) are the lowest possible standard deviations of all unbiased model parameter estimates obtained from the data. Consequently they give insight into the potential performance of quantitation estimators. Using analytical CRB expressions for spectral parameters of singlets and doublets in noise, one is able to judge the precision as a function of spectral and experimental parameters. We point out the usefulness of these expressions for experimental design. The influence of constraints (chemical prior knowledge) on spectral parameters of the peaks of doublets is demonstrated and the inherent benefits for quantitation are shown. Abbreviations used: CRB Cramér-Rao lower bounds
Collapse
Affiliation(s)
- S Cavassila
- Laboratoire RMN, CNRS UMR 5012, UCB Lyon I-CPE, Villeurbanne, France
| | | | | | | | | |
Collapse
|
20
|
Cavassila S, Deval S, Huegen C, Graveron-Demilly D. Cramer-Rao bound expressions for parametric estimation of overlapping peaks: influence of prior knowledge. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2000; 143:311-20. [PMID: 10729257 DOI: 10.1006/jmre.1999.2002] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We have derived analytical expressions of the Cramer-Rao lower bounds on spectral parameters for singlet, doublet, and triplet peaks in noise. We considered exponential damping (Lorentzian lineshape) and white Gaussian noise. The expressions, valid if a sufficiently large number of samples is used, were derived in the time domain for algebraic convenience. They enable one to judge the precision of any unbiased estimator as a function of the spectral and experimental parameters, which is useful for quantitation objectives and experimental design. The influence of constraints (chemical prior knowledge) on parameters of the peaks of doublets and triplets is demonstrated both analytically and numerically and the inherent benefits for quantitation are shown. Our expressions also enable analysis of spectra comprising many peaks. Copyright 2000 Academic Press.
Collapse
Affiliation(s)
- S Cavassila
- Lab. RMN, UCB LYON I-CPE, Villeurbanne, 69622, France
| | | | | | | |
Collapse
|