1
|
Xu X, Pan Y, Zhan L, Sun Y, Chen S, Zhu J, Luo L, Zhang W, Li Y. The Wnt/β-catenin pathway is involved in 2,5-hexanedione-induced ovarian granulosa cell cycle arrest. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115720. [PMID: 37995618 DOI: 10.1016/j.ecoenv.2023.115720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023]
Abstract
N-Hexane causes significant ovarian toxicity, and its main active metabolite 2,5-hexanedione (2,5-HD) can induce ovarian injury through mechanisms such as inducing apoptosis in ovarian granulosa cells (GCs); however, the specific mechanism has not been fully elucidated. In this study, we investigated the effects on the cell cycle of rat ovarian GCs exposed in vitro to different concentrations of 2,5-HD (0 mM, 20 mM, 40 mM, and 60 mM) and further explored the mechanism by mRNA and miRNA microarray analyses. The flow cytometry results sindicated that compared with control cells, in ovarian GCs, there was significant cell cycle arrest after 2,5-HD treatment. Cell cycle- and apoptosis- related gene (Cdk2, Ccnd1, Bax, Bcl-2, Caspase3, and Caspase9) expression was altered. The mRNA and miRNA microarray results suggested that 5678 mRNAs and 32 miRNAs were differentially expressed in the 2,5-HD-treated group. A total of 262 target mRNAs were obtained by miRNA and mRNA coexpression analysis, forming 368 miRNA-mRNA coexpression relationship pairs with 27 miRNAs. GO and KEGG analyses showed that differentially expressed genes were significantly enriched in the cell cycle and Wnt signaling pathways. Furthermore, significant changes in the expression of Wnt signaling pathway and cell cycle- related genes (Fzd1, Lrp6, Tcf3, Tcf4, Fzd6, Lrp5, β-catenin, Lef1, GSK3β, and Dvl3) after 2,5-HD treatment were confirmed by qRT-PCR and Western blotting. Ther results of dual-luciferase assays indicated decreased β-catenin/TCF transcriptional activity after 2,5-HD treatment. In addition, Wnt pathway-related miRNAs (rno-miR-145-5p, rno-miR-143-3p, rno-miR-214-3p, rno-miR-138-5p, and rno-miR-199a-3p) were changed significantly after 2,5-HD treatment. In summary, 2,5-HD induced cell cycle arrest in ovarian GCs, and the Wnt/β-catenin signaling pathway may play a very critical role in this process. Alterations in the expression of miRNAs such as rno-miR-145-5p may have significant implications.
Collapse
Affiliation(s)
- Xueming Xu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Yimei Pan
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Liqin Zhan
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Sichuan Chen
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Jianlin Zhu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Lingfeng Luo
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China.
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China.
| |
Collapse
|
2
|
Sun Y, Chen H, Chen S, Xu X, Zhang W, Li Y. The Hippo signaling pathway contributes to the 2,5-Hexadion-induced apoptosis of ovarian granulosa cells. J Ovarian Res 2023; 16:161. [PMID: 37563629 PMCID: PMC10416496 DOI: 10.1186/s13048-023-01249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Although n-hexane can induce ovarian damage by inducing ovarian granulosa cell (GC) apoptosis, the mechanism underlying this induction of apoptosis has not been fully elucidated. In this study, rat ovarian GCs were exposed to different concentrations of 2,5-hexanedione (2,5-HD) (the main metabolite of n-hexane) in vitro to observe apoptosis, and the mechanism was further explored via mRNA microarray analysis. Hoechst 33258 staining and flow cytometry suggested that the apoptosis rate of ovarian GC apoptosis was significantly increased in the 2,5-HD-treated group. Subsequently, microarray analysis revealed that a total of 5677 mRNAs were differentially expressed, and further GO and KEGG analyses revealed that the differentially expressed genes were significantly enriched in many signaling pathways, including the Hippo pathway. A total of 7 differentially expressed genes that function upstream of the Hippo signaling pathway (Nf2, Wwc1, Ajuba, Llgl1, Dlg3, Rassf6 and Rassf1) were selected to confirm the microarray results by qRT-PCR, and the expression of these genes did change. Subsequently, the expression of key effector genes (Yap1, Mst1 and Lats1) and target genes (Ctgf and Puma) of the Hippo signaling was measured, and the results suggested that the mRNA and protein levels of Yap1, Mst1, Lats1, and Ctgf were significantly decreased while those of Puma were significantly increased after 2,5-HD treatment. Further CO-IP analysis suggested that the interaction between YAP1 and TEAD was significantly reduced after 2,5-HD treatment, while the interaction between YAP1 and P73 was not affected. In summary, during the 2,5-HD-induced apoptosis of ovarian GCs, the Hippo signaling pathway is inhibited, and downregulation of the pro-proliferation gene Ctgf and upregulated of the pro-apoptosis gene Puma are important. Decreased Ctgf expression was associated with decreased binding of YAP1 to TEAD. However, increased PUMA expression was not associated with YAP1 binding to P73.
Collapse
Affiliation(s)
- Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Huiting Chen
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Sichuan Chen
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Xueming Xu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
| |
Collapse
|
3
|
Chen X, Liu W, Wang L, Lin D, Nie L, He K, Guo Z, Zhu F, Feng W, Liu W, Yuan J, Yang X, Spencer P, Liu J. Diabetes mellitus is associated with elevated urinary pyrrole markers of γ-diketones known to cause axonal neuropathy. BMJ Open Diabetes Res Care 2020; 8:8/1/e001575. [PMID: 32912928 PMCID: PMC7484872 DOI: 10.1136/bmjdrc-2020-001575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/03/2020] [Accepted: 07/18/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Progressive distal symmetrical axonal neuropathy, a complication of diabetes mellitus (DM), has an unknown cause. Normal physiological metabolism and diabetic dysmetabolism are associated with the generation of γ-diketones. γ-Diketones form pyrroles with protein amines, notably with axonal proteins required for the maintenance of nerve fiber integrity, especially elongate, large-diameter peripheral nerve fibers innervating the extremities. We tested the hypothesis that neuropathy-associated γ-diketone pyrroles are elevated in DM. RESEARCH DESIGN AND METHODS We measured the urinary concentration of γ-diketone pyrroles in age-matched and gender-matched elderly (60-84 years) persons with (n=267) or without (n=267) indicators of DM based in a community population (9411 community older adults aged ≥60 years) in Shenzhen city, Guangdong, China. We used statistical methods, including a generalized linear model, multivariate logistic regression analysis and restricted cubic splines, to assess linear and nonlinear relationships between urinary γ-diketone pyrroles and indicators of DM. RESULTS Compared with healthy controls, those with DM had significantly higher levels of fasting blood glucose, glycated hemoglobin A1c, urinary ketone bodies and urinary γ-diketone pyrroles. The median concentration of urinary γ-diketone pyrrole adducts was significantly higher (p<0.0001) in individuals with DM (7.5 (5.4) μM) compared with healthy controls (5.9 (4.3) μM). Both linear and non-linear relations were found between urinary γ-diketone pyrroles and indicators of DM. CONCLUSIONS Diabetic dysmetabolism includes increased generation and excretion of neuropathy-associated γ-diketone pyrroles. These findings form the foundation for studies to test whether γ-diketone pyrrole concentration correlates with quantitative sensory (vibration and temperature) and electrodiagnostic testing.
Collapse
Affiliation(s)
- Xiao Chen
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Health Toxicology, (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Wei Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Health Toxicology, (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Lu Wang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Health Toxicology, (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dafeng Lin
- Poison Detection Center, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Lulin Nie
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Health Toxicology, (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Kaiwu He
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Health Toxicology, (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Zhiwei Guo
- Shenzhen Luohu Hospital for Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Feiqi Zhu
- Cognitive Impairment ward of Neurology, The 3rd Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Wenting Feng
- Poison Detection Center, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Weimin Liu
- Shenzhen Luohu Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Health Toxicology, (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Peter Spencer
- Neurology, School of Medicine, and Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Health Toxicology, (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Hill E, Nagel D, Parri R, Coleman M. Stem cell-derived astrocytes: are they physiologically credible? J Physiol 2016; 594:6595-6606. [PMID: 26634807 PMCID: PMC5108894 DOI: 10.1113/jp270658] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/28/2015] [Indexed: 01/29/2023] Open
Abstract
Astrocytes are now increasingly acknowledged as having fundamental and sophisticated roles in brain function and dysfunction. Unravelling the complex mechanisms that underlie human brain astrocyte-neuron interactions is therefore an essential step on the way to understanding how the brain operates. Insights into astrocyte function to date have almost exclusively been derived from studies conducted using murine or rodent models. Whilst these have led to significant discoveries, preliminary work with human astrocytes has revealed a hitherto unknown range of astrocyte types with potentially greater functional complexity and increased neuronal interaction with respect to animal astrocytes. It is becoming apparent, therefore, that many important functions of astrocytes will only be discovered by direct physiological interrogation of human astrocytes. Recent advancements in the field of stem cell biology have provided a source of human-based models. These will provide a platform to facilitate our understanding of normal astrocyte functions as well as their role in CNS pathology. A number of recent studies have demonstrated that stem cell-derived astrocytes exhibit a range of properties, suggesting that they may be functionally equivalent to their in vivo counterparts. Further validation against in vivo models will ultimately confirm the future utility of these stem cell-based approaches in fulfilling the need for human-based cellular models for basic and clinical research. In this review we discuss the roles of astrocytes in the brain and highlight the extent to which human stem cell-derived astrocytes have demonstrated functional activities that are equivalent to those observed in vivo.
Collapse
Affiliation(s)
- Eric Hill
- Aston Research Centre for Healthy AgeingLife and Health SciencesAston UniversityBirminghamB4 7ETUK
| | - David Nagel
- Aston Research Centre for Healthy AgeingLife and Health SciencesAston UniversityBirminghamB4 7ETUK
| | - Rheinallt Parri
- Aston Research Centre for Healthy AgeingLife and Health SciencesAston UniversityBirminghamB4 7ETUK
| | - Michael Coleman
- Aston Research Centre for Healthy AgeingLife and Health SciencesAston UniversityBirminghamB4 7ETUK
| |
Collapse
|
5
|
A multi-organ chip co-culture of neurospheres and liver equivalents for long-term substance testing. J Biotechnol 2015; 205:36-46. [PMID: 25678136 DOI: 10.1016/j.jbiotec.2015.02.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 01/23/2015] [Accepted: 02/02/2015] [Indexed: 12/12/2022]
Abstract
Current in vitro and animal tests for drug development are failing to emulate the systemic organ complexity of the human body and, therefore, often do not accurately predict drug toxicity, leading to high attrition rates in clinical studies (Paul et al., 2010). The phylogenetic distance between humans and laboratory animals is enormous, this affects the transferability of animal data on the efficacy of neuroprotective drugs. Therefore, many neuroprotective treatments that have shown promise in animals have not been successful when transferred to humans (Dragunow, 2008; Gibbons and Dragunow, 2010). We present a multi-organ chip capable of maintaining 3D tissues derived from various cell sources in a combined media circuit which bridges the gap in systemic and human tests. A steady state co-culture of human artificial liver microtissues and human neurospheres exposed to fluid flow over two weeks in the multi-organ chip has successfully proven its long-term performance. Daily lactate dehydrogenase activity measurements of the medium and immunofluorescence end-point staining proved the viability of the tissues and the maintenance of differentiated cellular phenotypes. Moreover, the lactate production and glucose consumption values of the tissues cultured indicated that a stable steady-state was achieved after 6 days of co-cultivation. The neurospheres remained differentiated neurons over the two-week cultivation in the multi-organ chip, proven by qPCR and immunofluorescence of the neuronal markers βIII-tubulin and microtubule-associated protein-2. Additionally, a two-week toxicity assay with a repeated substance exposure to the neurotoxic 2,5-hexanedione in two different concentrations induced high apoptosis within the neurospheres and liver microtissues, as shown by a strong increase of lactate dehydrogenase activity in the medium. The principal finding of the exposure of the co-culture to 2,5-hexanedione was that not only toxicity profiles of two different doses could be discriminated, but also that the co-cultures were more sensitive to the substance compared to respective single-tissue cultures in the multi-organ-chip. Thus, we provide here a new in vitro tool which might be utilized to predict the safety and efficacy of substances in clinical studies more accurately in the future.
Collapse
|
6
|
Song F, Zhang Q, Kou R, Zou C, Gao Y, Xie K. 2,5-hexanedione altered the degradation of low-molecular-weight neurofilament in rat nerve tissues. Food Chem Toxicol 2012; 50:4277-84. [PMID: 22967723 DOI: 10.1016/j.fct.2012.08.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 08/07/2012] [Accepted: 08/23/2012] [Indexed: 02/03/2023]
Abstract
Occupational exposure to n-hexane produces a central-peripheral distal axonopathy, which is characterized by giant axonal swellings filled with neurofilaments (NFs). To investigate the change of NFs degradation and their possible role in n-hexane neuropathy, adult male Wistar rats were administered intraperitoneally at a dosage of 400 mg/kg/day 2,5-hexanedione (2,5-HD) for 4 weeks. The time course of low-molecular-weight neurofilament (NF-L) degradation and autophagy-related protein in rat sciatic nerves and spinal cords was determined by Western blotting. The results demonstrated that the administration of 2,5-HD inhibited NF-L degradation to an undetectable level in sciatic nerves. Furthermore, a significant reduction of NF-L degradation in spinal cords was observed in the early stage of 2,5-HD exposure. In the meantime, 2,5-HD significantly decreased the level of Beclin-1, a key autophagy-regulated protein in sciatic nerves of rats while increased the level of P62, a selective substrate of autophagy degrading pathway, which indicated a dysfunctional autophagy in rat nerve tissues. Collectively, our findings suggested that the inhibition of autophagy by 2,5-HD might be responsible for the reduction of NF-L degradation in rat sciatic nerves, and involved in the pathogenesis of 2,5-HD-induced axonopathy.
Collapse
Affiliation(s)
- Fuyong Song
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, 250012, PR China
| | | | | | | | | | | |
Collapse
|
7
|
Zhang W, Huang L, Kong C, Liu J, Luo L, Huang H. Apoptosis of rat ovarian granulosa cells by 2,5-hexanedionein vitroand its relevant gene expression. J Appl Toxicol 2012; 33:661-9. [PMID: 22337490 DOI: 10.1002/jat.2714] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 11/25/2011] [Accepted: 11/26/2011] [Indexed: 12/20/2022]
Affiliation(s)
- Wenchang Zhang
- Key Laboratory of Environment and Health; Fujian Medical University; Fuzhou; People's Republic of China
| | - Lei Huang
- Key Laboratory of Environment and Health; Fujian Medical University; Fuzhou; People's Republic of China
| | - Cancan Kong
- The First Affiliated Hospital of Fujian Medical University; Fuzhou; People's Republic of China
| | - Jin Liu
- Key Laboratory of Environment and Health; Fujian Medical University; Fuzhou; People's Republic of China
| | - Lingfeng Luo
- Key Laboratory of Environment and Health; Fujian Medical University; Fuzhou; People's Republic of China
| | - Huiling Huang
- Union Hospital of Fujian Medical University; Fuzhou; People's Republic of China
| |
Collapse
|
8
|
Zhang L, Gavin T, DeCaprio AP, LoPachin RM. Gamma-diketone axonopathy: analyses of cytoskeletal motors and highways in CNS myelinated axons. Toxicol Sci 2010; 117:180-9. [PMID: 20554699 DOI: 10.1093/toxsci/kfq176] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
2,5-Hexanedione (HD) intoxication is associated with axon atrophy that might be responsible for the characteristic gait abnormalities, hindlimb skeletal muscle weakness and other neurological deficits that accompany neurotoxicity. Although previous mechanistic research focused on neurofilament triplet proteins (NFL, NFM, NFH), other cytoskeletal targets are possible. Therefore, to identify potential non-NF protein targets, we characterized the effects of HD on protein-protein interactions in cosedimentation assays using microtubules and NFs prepared from spinal cord of rats intoxicated at different daily dose rates (175 and 400 mg/kg/day). Results indicate that HD did not alter the presence of alpha- or beta-tubulins in these preparations, nor were changes noted in the distribution of either anterograde (KIF1A, KIF3, KIF5) or retrograde (dynein) molecular motors. The cosedimentation of dynactin, a dynein-associated protein, also was not affected. Immunoblot analysis of microtubule-associated proteins (MAPs) in microtubule preparations revealed substantial reductions (45-80%) in MAP1A, MAP1B heavy chain, MAP2, and tau regardless of HD dose rate. MAP1B light chain content was not altered. Finally, HD intoxication did not influence native NF protein content in either preparation. As per previous research, microtubule and NF preparations were enriched in high-molecular weight NF species. However, these NF derivatives were common to both HD and control samples, suggesting a lack of pathognomonic relevance. These data indicate that, although motor proteins were not affected, HD selectively impaired MAP-microtubule binding, presumably through adduction of lysine residues that mediate such interactions. Given their critical role in cytoskeletal physiology, MAPs could represent a relevant target for the induction of gamma-diketone axonopathy.
Collapse
Affiliation(s)
- Lihai Zhang
- Department of Anesthesiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York 10467-2490, USA
| | | | | | | |
Collapse
|
9
|
Woehrling EK, Hill EJ, Coleman MD. Evaluation of the importance of astrocytes when screening for acute toxicity in neuronal cell systems. Neurotox Res 2009; 17:103-13. [PMID: 19593679 DOI: 10.1007/s12640-009-9084-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 04/24/2009] [Accepted: 07/01/2009] [Indexed: 12/17/2022]
Abstract
Reliable, high throughput, in vitro preliminary screening batteries have the potential to greatly accelerate the rate at which regulatory neurotoxicity data is generated. This study evaluated the importance of astrocytes when predicting acute toxic potential using a neuronal screening battery of pure neuronal (NT2.N) and astrocytic (NT2.A) and integrated neuronal/astrocytic (NT2.N/A) cell systems derived from the human NT2.D1 cell line, using biochemical endpoints (mitochondrial membrane potential (MMP) depolarisation and ATP and GSH depletion). Following exposure for 72 h, the known acute human neurotoxicants trimethyltin-chloride, chloroquine and 6-hydroxydopamine were frequently capable of disrupting biochemical processes in all of the cell systems at non-cytotoxic concentrations. Astrocytes provide key metabolic and protective support to neurons during toxic challenge in vivo and generally the astrocyte containing cell systems showed increased tolerance to toxicant insult compared with the NT2.N mono-culture in vitro. Whilst there was no consistent relationship between MMP, ATP and GSH log IC(50) values for the NT2.N/A and NT2.A cell systems, these data did provide preliminary evidence of modulation of the acute neuronal toxic response by astrocytes. In conclusion, the suitability of NT2 neurons and astrocytes as cell systems for acute toxicity screening deserves further investigation.
Collapse
Affiliation(s)
- E K Woehrling
- School of Life and Health Sciences, Aston University, Birmingham, UK.
| | | | | |
Collapse
|
10
|
Coleman MD, Zilz TR, Griffiths HR, Woehrling EK. A comparison of the apoptotic and cytotoxic effects of hexanedione derivatives on human non-neuronal lines and the neuroblastoma line SH-SY5Y. Basic Clin Pharmacol Toxicol 2007; 102:25-9. [PMID: 17973901 DOI: 10.1111/j.1742-7843.2007.00148.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effects of the alpha-diketone derivatives 2,3- and 3,4-hexanediones were investigated in three non-neuronal cell lines (MCF7, HepG(2) and CaCo-2) as well as in the neuroblastoma line, SH-SY5Y. The MTT reduction assay was employed to determine the necrotic effects of the alpha-diketones and the neurotoxin 2,5-hexanedione over 4, 24 and 48 hr exposures. Flow cytometry was also used to study the effects of the three isomers on the cell cycle of the SH-SY5Y line only. With 2,5-hexanedione, the mean MTT IC(50) decreased more than 10-fold from 4 to 48 hr. The toxicities of both alpha-diketones were similar, with a more than 18-fold increase in sensitivity of the SH-SY5Y at 24 hr compared to that of 4 hr. With flow cytometry at 48 hr, SH-SY5Y apoptosis with 2,5-hexanedione rose throughout the concentration range evaluated (0-30 mM) while 2,3- and 3,4-hexanediones showed apoptosis over the concentration range 1-1.6 mM, with 3,4-hexanedione being the more potent compared to the 2,3-isomer. At 1.6 mM nearly all the cells had entered apoptosis in the presence of the 3,4-isomer, (94.9 +/- 1.4%) but only 57.5 +/- 4.1% of the 2,3-isomer-treated cells had reached that stage. The 2,3- and 3,4-isomers in diets alone may not pose a serious threat to human health. Further studies may be necessary to evaluate the effects of other dietary components on their toxicity. These alpha-diketones also display a degree of toxic selectivity towards neuroblastoma cells, which may have therapeutic implications.
Collapse
Affiliation(s)
- Michael D Coleman
- School of Life and Health Sciences, Aston University, Birmingham, UK.
| | | | | | | |
Collapse
|
11
|
Woehrling EK, Zilz TR, Coleman MD. The toxicity of hexanedione isomers in neural and astrocytic cell lines. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2006; 22:249-254. [PMID: 21783717 DOI: 10.1016/j.etap.2005.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 12/29/2005] [Indexed: 05/31/2023]
Abstract
The metabolite 2,5-hexanedione (HD) is the cause of neurotoxicity linked with chronic n-hexane exposure. Acute exposure to high levels of 2,5-HD, have also shown toxic effects in neuronal cells and non-neuronal cells. Isomers of 2,5-HD, 2,3- and 3,4-HD, added to foodstuffs, are reported to be non-toxic. The acute cytotoxic effects of 2,5-, 2,3- and 3,4-HD were evaluated in neural (NT2.N, SK-N-SH), astrocytic (CCF-STTG1) and non-neural (NT2.D1) cell lines. All the cell lines were highly resistant to 2,5-HD (34-426mM) at 4-h exposure, although sensitivity was greatest with NT2.D1, then SK-N-SH, NT2.N and finally the CCF-STTG1 line. At 24-h exposure, cell vulnerability increased 5-10-fold. The NT2.D1 cells were again the most sensitive, followed by NT2.N, SK-N-SH and then the CCF-STTG1 cells. 2,3- and 3,4-HD (8-84mM), were significantly more toxic towards all four cell lines compared with 2,5-HD, after 4-h exposure. After 24-h exposure there was a 12-fold increase in inhibition of MTT turnover in the SK-N-SH cells and a 4-fold increase in the CCF-STTG1 cells, compared with 2,5-HD exposure. 2,3- and 3,4-HD, were significantly less toxic to the NT2.N cells than the SK-N-SH cells after 24-h exposure to the compounds, demonstrating a differing toxin vulnerability between these neural and neuroblastoma cell lines. This study indicates that these non-neuronal and neuronal cells are acutely resistant to 2,5-HD cytotoxicity, whilst the previously unreported sensitivity of all four cell lines to the 2,3- and 3,4- isomers of HD to has been shown to be significantly greater than that of 2,5-HD.
Collapse
|
12
|
Impaired spatial cognition and synaptic potentiation in a murine model of human immunodeficiency virus type 1 encephalitis. J Neurosci 2002. [PMID: 11896149 DOI: 10.1523/jneurosci.22-06-02096.2002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Injection of human immunodeficiency virus type 1 (HIV-1)-infected human monocyte-derived macrophages (MDMs) into the basal ganglia of severe combined immunodeficient mice recapitulates histopathologic features of HIV-1 encephalitis (HIVE). Here, we show that the neural damage in HIVE mice extends beyond the basal ganglia and is associated with cognitive impairment. Morris water maze tests showed impaired spatial learning 8 d after MDM injection. Moreover, impaired synaptic potentiation in the hippocampal CA1 subregion was demonstrated at 8 and 15 d. By day 15, post-tetanic, short-term, and long-term potentiation were reduced by 14.1, 29.5, and 45.3% in HIVE mice compared with sham-injected or control animals. Neurofilament (NF) and synaptophysin (SP) antigens were decreased significantly in the CA2 hippocampal subregion of HIVE mice with limited neuronal apoptosis. By day 15, the CA2 region of HIVE mice expressed 3.8- and 2.6-fold less NF and SP than shams. These findings support the notion that HIV-1-infected and immune-competent brain macrophages can cause neuronal damage at distant anatomic sites. Importantly, the findings demonstrate the value of the model in exploring the physiological basis and therapeutic potential for HIV-1-associated dementia.
Collapse
|