1
|
Chen HQ, Chen DJ, Li Y, Han F, Jiang X, Cao J, Liu JY, Liu WB. DNA methylation and hydroxymethylation associated with gene expression regulatory network during 3-methylcholanthrene induced lung cell malignant transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144839. [PMID: 33545462 DOI: 10.1016/j.scitotenv.2020.144839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 12/05/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
3-methylcholanthrene (3-MCA) is a typical representative PAH. It has strong toxicity and is a typical chemical carcinogen. However, the epigenetic mechanisms underlying 3-MCA-induced tumourigenesis are largely unknown. In this study, a model of the 3-MCA-induced malignant transformation of human bronchial epithelial (HBE) cells was established successfully. The profiles of gene expression and DNA methylation and hydroxymethylation were obtained and analysed with an Illumina HiSeq 4000. A total of 707 genes were found to be significantly up-regulated, and 686 genes were found to be significantly down-regulated. Compared to control cells, 8545 mRNA-associated differentially methylated regions and 15,121 mRNA-associated differentially hydroxymethylated regions in promoters were found to be significantly altered in transformed cells. By using mRNA expression and DNA methylation and hydroxymethylation interaction analysis, 99 differentially expressed genes were identified. Among them, CA9 and EGLN3 were verified to be significantly down-regulated, and CARD6 and LCP1 were shown to be significantly up-regulated, and these genes mainly participated in cell growth, migration and invasion, indicating that these genes were key genes involved in the 3-MCA-induced malignant transformation of HBE cells. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that a large number of differentially expressed genes (DEGs) were involved mainly in RNA polymerase II transcription factor activity, chemical carcinogenesis, base-excision repair (BER), cytokine-cytokine receptor interactions, glycerolipid metabolism, steroid hormone biosynthesis, cAMP signalling pathways and other signalling pathways. Our study suggested that characteristic gene alterations associated with DNA methylation and hydroxymethylation could play important roles in environmental 3-MCA-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Dong-Jiao Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; College of Public Health and Management, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yan Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; Department of Emergency, Yun Qiao Hospital, Kunming 650224, China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.
| |
Collapse
|
2
|
Chen HQ, Chen DJ, Li Y, Yuan WB, Fan J, Zhang Z, Han F, Jiang X, Chen JP, Wang DD, Cao J, Liu JY, Liu WB. Epigenetic silencing of TET1 mediated hydroxymethylation of base excision repair pathway during lung carcinogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115860. [PMID: 33120142 DOI: 10.1016/j.envpol.2020.115860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/26/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
The methylcytosine dioxygenase Ten-eleven translocation 1 (TET1) is an important regulator for the balance of DNA methylation and hydroxymethylation through various pathways. Increasing evidence has suggested that TET1 probably involved in DNA methylation and demethylation dysregulation during chemical carcinogenesis. However, the role and mechanism of TET1 during lung cancer remains unclear. In this study, we found that TET1 expression was significantly down-regulated and the methylation level was significantly up-regulated in 3-methylcholanthrene (3-MCA) induced cell malignant transformation model, rat chemical carcinogenesis model, and human lung cancer tissues. Demethylation experiment further confirmed that DNA methylation negatively regulated TET1 gene expression. TET1 overexpression inhibited cell proliferation, migration and invasion in vitro and in vivo, while knockdown of TET1 resulted in an opposite phenotype. DNA hydroxymethylation level in the promoter region of base excision repair (BER) pathway key genes XRCC1, OGG1, APEX1 significantly decreased and the degree of methylation gradually increased in malignant transformed cells. After differential expression of TET1, the level of hydroxymethylation, methylation and expression of these genes also changed significantly. Furthermore, TET1 binds to XRCC1, OGG1, and APEX1 to maintain them hydroxymethylated. Blockade of BER pathway key gene alone or in combination significantly diminished the effect of TET1. Our study demonstrated for the first time that TET1 expression is regulated by DNA methylation and TET1-mediated hydroxymethylation regulates BER pathway to inhibit the proliferation, migration and invasion during 3-MCA-induced lung carcinogenesis. These results suggested that TET1 gene can be a potential biomarker and therapy target for lung cancer.
Collapse
Affiliation(s)
- Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Dong-Jiao Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; College of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Yan Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Department of Emergency, Yun Qiao Hospital, Kunming, 650224, PR China
| | - Wen-Bo Yuan
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; School of Public Health, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Jun Fan
- Department of Breast and Thyroid Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, PR China
| | - Zhe Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, PR China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jian-Ping Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Dan-Dan Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.
| |
Collapse
|
3
|
Štampar M, Breznik B, Filipič M, Žegura B. Characterization of In Vitro 3D Cell Model Developed from Human Hepatocellular Carcinoma (HepG2) Cell Line. Cells 2020; 9:E2557. [PMID: 33260628 PMCID: PMC7759933 DOI: 10.3390/cells9122557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
In genetic toxicology, there is a trend against the increased use of in vivo models as highlighted by the 3R strategy, thus encouraging the development and implementation of alternative models. Two-dimensional (2D) hepatic cell models, which are generally used for studying the adverse effects of chemicals and consumer products, are prone to giving misleading results. On the other hand, newly developed hepatic three-dimensional (3D) cell models provide an attractive alternative, which, due to improved cell interactions and a higher level of liver-specific functions, including metabolic enzymes, reflect in vivo conditions more accurately. We developed an in vitro 3D cell model from the human hepatocellular carcinoma (HepG2) cell line. The spheroids were cultured under static conditions and characterised by monitoring their growth, morphology, and cell viability during the time of cultivation. A time-dependent suppression of cell division was observed. Cell cycle analysis showed time-dependent accumulation of cells in the G0/G1 phase. Moreover, time-dependent downregulation of proliferation markers was shown at the mRNA level. Genes encoding hepatic markers, metabolic phase I/II enzymes, were time-dependently deregulated compared to monolayers. New knowledge on the characteristics of the 3D cell model is of great importance for its further development and application in the safety assessment of chemicals, food products, and complex mixtures.
Collapse
Affiliation(s)
- Martina Štampar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.Š.); (B.B.); (M.F.)
- Jozef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.Š.); (B.B.); (M.F.)
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.Š.); (B.B.); (M.F.)
- Jozef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.Š.); (B.B.); (M.F.)
- Jozef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Pappas P, Sotiropoulou M, Karamanakos P, Kostoula A, Levidiotou S, Marselos M. Acute-phase response to benzo[a]pyrene and induction of rat ALDH3A1. Chem Biol Interact 2003; 143-144:55-62. [PMID: 12604189 DOI: 10.1016/s0009-2797(02)00172-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aldehyde dehydrogenase-3A1 (ALDH3A1) enzyme, encoded by a member of the [Ah]-gene family, is dramatically increased (more than 100-fold) by benzo[a]pyrene (BaP) and other polycyclic hydrocarbons. Although much is known regarding the mechanism for the drug-metabolizing enzymes up-regulated by the Ah receptor, the physiological role of that tremendously increased ALDH3A1 enzyme activity is not yet fully clarified. The aim of this study was to identify a possible acute-phase response to different classes of xenobiotics affecting the metabolic capacity of the hepatocyte, by studying possible changes of serum acute-phase proteins (APPs) of hepatic origin, before and after BaP administration. Male Wistar rats were used in different series of experiments. The effects of BaP were estimated in terms of dose-response and time-response, with regard to the serum level of several APPs such as alpha-1-acid-glycoprotein (AAG), alpha-1-antitrypsin (AAT), C-reactive protein (CRP), and haptoglobin (HPT). In parallel experiments, levels of the same proteins have been determined after a time-dependent treatment with lipopolysaccharide (LPS). The changes in serum proteins were compared with the results of BaP or LPS administration on both hepatic ALDH3A1 and total ALDH enzyme activities. The results showed that BaP induced CRP and HPT in a time-dependent way, proportional to that caused by LPS. Additionally, ALDH3A1, CRP, and HPT were induced by BaP subacute treatment, whereas another type of ALDH inducer, phenobarbital, did not affect the levels of APPs or ALDH3A1, but did increase ALDH1A3 activity. Former studies of our group have shown that the inhibitory effects of different non-steroidal anti-inflammatory drugs (NSAIDs) on the ALDH3A1 induction were most possibly due to a decreased formation of arachidonic products like prostaglandins. Considering the changes of APPs caused by BaP, this study further supports the suggestion that the induction of ALDH3A1 is related to an atypical hepatocyte inflammation produced by xenobiotics.
Collapse
Affiliation(s)
- Periklis Pappas
- Department of Pharmacology, Medical School, University of Ioannina, 45110, Ioannina, Greece.
| | | | | | | | | | | |
Collapse
|