1
|
Effect of antimicrobial peptides from Galleria mellonella on molecular models of Leishmania membrane. Thermotropic and fluorescence anisotropy study. J Antibiot (Tokyo) 2018; 71:642-652. [PMID: 29679042 DOI: 10.1038/s41429-018-0050-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/28/2018] [Indexed: 11/08/2022]
Abstract
Antimicrobial peptides are molecules of natural origin, produced by organisms such as insects, which have focused attention as potential antiparasitic agents. They can cause the death of parasites such Leishmania by interacting with their membrane. In this study, additional information was obtained on how the anionic peptide 2 and cecropin D-like peptide derived from Galleria mellonella interact with liposomes that mimic the composition of the Leishmania membrane. In order to do this, lipid bilayers consisting of dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylethanolamine, dimyristoylphosphatidylserine, and dimyristoylphosphatidylglycerol were constructed. The effect of the peptides on these membranes was evaluated using calorimetry analysis and fluorescence spectroscopy. The results obtained using differential scanning calorimetry indicated a concentration-dependent effect on membranes composed of phosphatidylserine and phosphatidylglycerol, showing a preference of both peptides for anionic lipids. The binding of the peptides drastically reduced the transition enthalpy in the phosphatidylserine and phosphatidylglycerol liposomes. The results suggest that the mode of action of anionic peptide 2 and cecropin D-like peptide is different, with a higher effect of cecropin D-like on the anionic lipids, which led to changes in the main transition temperature and a complete solubilization of the vesicles. Interactions between peptides and phosphatidylcholine, which is the most abundant lipid on the surface of Leishmania cells, were evaluated using isothermal titration calorimetry and the anisotropy of fluorescence of DPH. The peptides had a slight effect on the gel phase of the phosphatidylcholine, with changes in the anisotropy correlated with that observed by DSC. The results showed a selectivity of these peptides toward some lipids, which will direct the study of the development of new drugs.
Collapse
|
2
|
Henriques VB, Germano R, Lamy MT, Tamashiro MN. Phase transitions and spatially ordered counterion association in ionic-lipid membranes: theory versus experiment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:13130-13143. [PMID: 21848301 DOI: 10.1021/la202302x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Aqueous dispersions of phosphatidylglycerol (PG) lipids may present an anomalous chain-melting transition at low ionic strengths, as seen by different experimental techniques such as calorimetry or light scattering. The anomaly disappears at high ionic strengths or for longer acyl-chain lengths. In this article, we use a statistical model for the bilayer that distinguishes both lipid chain and headgroup states in order to compare model and experimental thermotropic and electrical properties. The effective van der Waals interactions among hydrophobic chains compete with the electrostatic repulsions between polar headgroups, which may be ionized (counterion dissociated) or electrically neutral (associated with counterions). Electric degrees of freedom introduce new thermotropic charge-ordered phases in which headgroup charges may be spatially ordered, depending on the electrolyte ionic strength, introducing a new rationale for experimental data on PGs. The thermal phases presented by the model for different chain lengths, at fixed ionic strength, compare well with an experimental phase diagram constructed on the basis of differential scanning calorimetry profiles. In the case of dispersions of DMPG (dimyristoyl phosphatidylglycerol) with added monovalent salt, the model properties reproduce the main features displayed by data from differential scanning calorimetry as well as the characteristic profile for the degree of ionization of the bilayer surface across the anomalous transition region, obtained from the theoretical interpretation of electrokinetic (conductivity and electrophoretic mobility) measurements.
Collapse
Affiliation(s)
- V B Henriques
- Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, 05314-970 São Paulo, SP, Brazil.
| | | | | | | |
Collapse
|
3
|
Tamashiro MN, Barbetta C, Germano R, Henriques VB. Phase transitions and spatially ordered counterion association in ionic-lipid membranes: a statistical model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:031909. [PMID: 22060405 DOI: 10.1103/physreve.84.031909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Indexed: 05/31/2023]
Abstract
We propose a statistical model to account for the gel-fluid anomalous phase transitions in charged bilayer- or lamellae-forming ionic lipids. The model Hamiltonian comprises effective attractive interactions to describe neutral-lipid membranes as well as the effect of electrostatic repulsions of the discrete ionic charges on the lipid headgroups. The latter can be counterion dissociated (charged) or counterion associated (neutral), while the lipid acyl chains may be in gel (low-temperature or high-lateral-pressure) or fluid (high-temperature or low-lateral-pressure) states. The system is modeled as a lattice gas with two distinct particle types--each one associated, respectively, with the polar-headgroup and the acyl-chain states--which can be mapped onto an Ashkin-Teller model with the inclusion of cubic terms. The model displays a rich thermodynamic behavior in terms of the chemical potential of counterions (related to added salt concentration) and lateral pressure. In particular, we show the existence of semidissociated thermodynamic phases related to the onset of charge order in the system. This type of order stems from spatially ordered counterion association to the lipid headgroups, in which charged and neutral lipids alternate in a checkerboard-like order. Within the mean-field approximation, we predict that the acyl-chain order-disorder transition is discontinuous, with the first-order line ending at a critical point, as in the neutral case. Moreover, the charge order gives rise to continuous transitions, with the associated second-order lines joining the aforementioned first-order line at critical end points. We explore the thermodynamic behavior of some physical quantities, like the specific heat at constant lateral pressure and the degree of ionization, associated with the fraction of charged lipid headgroups.
Collapse
Affiliation(s)
- M N Tamashiro
- Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-970, Campinas, SP, Brazil.
| | | | | | | |
Collapse
|
4
|
Kinoshita M, Kato S, Takahashi H. NaCl-dependent formation of the highly crystalline phase in sufficiently hydrated dimyristoylphosphatidylglycerol bilayers. Chem Phys Lipids 2009; 161:1-10. [DOI: 10.1016/j.chemphyslip.2009.06.143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 05/01/2009] [Accepted: 06/18/2009] [Indexed: 11/15/2022]
|
5
|
Shearman GC, Ugazio S, Soubiran L, Hubbard J, Ces O, Seddon JM, Templer RH. Factors Controlling the Stability of a Kinetically Hindered Lamellar−Lamellar Transition. J Phys Chem B 2009; 113:1948-53. [DOI: 10.1021/jp807998d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gemma C. Shearman
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
- Unilever Research and Development, Port Sunlight, Quarry Road East, Bebington, Wirral CH63 3JW, United Kingdom
| | - Stephane Ugazio
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
- Unilever Research and Development, Port Sunlight, Quarry Road East, Bebington, Wirral CH63 3JW, United Kingdom
| | - Laurent Soubiran
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
- Unilever Research and Development, Port Sunlight, Quarry Road East, Bebington, Wirral CH63 3JW, United Kingdom
| | - John Hubbard
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
- Unilever Research and Development, Port Sunlight, Quarry Road East, Bebington, Wirral CH63 3JW, United Kingdom
| | - Oscar Ces
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
- Unilever Research and Development, Port Sunlight, Quarry Road East, Bebington, Wirral CH63 3JW, United Kingdom
| | - John M. Seddon
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
- Unilever Research and Development, Port Sunlight, Quarry Road East, Bebington, Wirral CH63 3JW, United Kingdom
| | - Richard H. Templer
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
- Unilever Research and Development, Port Sunlight, Quarry Road East, Bebington, Wirral CH63 3JW, United Kingdom
| |
Collapse
|
6
|
Kinoshita M, Kato S, Takahashi H. Effect of bilayer morphology on the subgel phase formation. Chem Phys Lipids 2008; 151:30-40. [DOI: 10.1016/j.chemphyslip.2007.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 08/13/2007] [Accepted: 09/20/2007] [Indexed: 11/28/2022]
|
7
|
Zhao W, Róg T, Gurtovenko AA, Vattulainen I, Karttunen M. Atomic-scale structure and electrostatics of anionic palmitoyloleoylphosphatidylglycerol lipid bilayers with Na+ counterions. Biophys J 2006; 92:1114-24. [PMID: 17114222 PMCID: PMC1783877 DOI: 10.1529/biophysj.106.086272] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anionic palmitoyloleoylphosphatidylglycerol (POPG) is one of the most abundant lipids in nature, yet its atomic-scale properties have not received significant attention. Here we report extensive 150-ns molecular dynamics simulations of a pure POPG lipid membrane with sodium counterions. It turns out that the average area per lipid of the POPG bilayer under physiological conditions is approximately 19% smaller than that of a bilayer built from its zwitterionic phosphatidylcholine analog, palmitoyloleoylphosphatidylcholine. This suggests that there are strong attractive interactions between anionic POPG lipids, which overcome the electrostatic repulsion between negative charges of PG headgroups. We demonstrate that interlipid counterion bridges and strong intra- and intermolecular hydrogen bonding play a key role in this seemingly counterintuitive behavior. In particular, the substantial strength and stability of ion-mediated binding between anionic lipid headgroups leads to complexation of PG molecules and ions and formation of large PG-ion clusters that act in a concerted manner. The ion-mediated binding seems to provide a possible molecular-level explanation for the low permeability of PG-containing bacterial membranes to organic solvents: highly polar interactions at the water/membrane interface are able to create a high free energy barrier for hydrophobic molecules such as benzene.
Collapse
Affiliation(s)
- Wei Zhao
- Biophysics and Statistical Mechanics Group, Laboratory of Computational Engineering, Helsinki Institute of Physics, Helsinki University of Technology, Espoo
| | | | | | | | | |
Collapse
|
8
|
Hayakawa T, Hirano Y, Makino A, Michaud S, Lagarde M, Pageaux JF, Doutheau A, Ito K, Fujisawa T, Takahashi H, Kobayashi T. Differential Membrane Packing of Stereoisomers of Bis(monoacylglycero)phosphate. Biochemistry 2006; 45:9198-209. [PMID: 16866366 DOI: 10.1021/bi060722o] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bis(monoacylglycero)phosphate (BMP) reveals an unusual sn-1,sn-1' stereoconfiguration of glycerophosphate. We synthesized sn-(3-myristoyl-2-hydroxy)glycerol-1-phospho-sn-1'-(3'-myristoyl-2'-hydroxy)glycerol (1,1'-DMBMP) and characterized the thermotropic phase behavior and membrane structure, in comparison with those of the corresponding sn-3:sn-1' stereoisomer (3,1'-DMBMP), by means of differential scanning calorimetry (DSC), small- and wide-angle X-ray scattering (SAXS and WAXS, respectively), pressure-area (pi-A) isotherms, epifluorescence microscopy of monolayers, and molecular dynamics (MD) simulations. In DSC, these lipids exhibited weakly energetic broad peaks with an onset temperature of 9 degrees C for 1,1'-DMBMP and 18 degrees C for 3,1'-DMBMP. In addition, a highly cooperative, strongly energetic transition peak was observed at approximately 40 degrees C for 1,1'-DMBMP and approximately 42 degrees C for 3,1'-DMBMP. These results are supported by the observation that 1,1'-DMBMP exhibited a larger phase transition pressure (pi(c)) than 3,1'-DMBMP. Small- and wide-angle X-ray scattering measurements identified these small and large energetic transitions as a quasi-crystalline (L(c1))-quasi-crystalline with different tilt angle (L(c2)) phase transition and an L(c2)-L(alpha) main phase transition, respectively. X-ray measurements also revealed that these DMBMPs undergo an unbinding at the main phase transition temperature. The MD simulations estimated stronger hydrogen bonding formation in the 3,1'-DMBMP membrane than in 1,1'-DMBMP, supporting the experimental data.
Collapse
Affiliation(s)
- Tomohiro Hayakawa
- Lipid Biology Laboratory, RIKEN (Institute of Physical and Chemical Research), 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Taylor TM, Davidson PM, Bruce BD, Weiss J. Liposomal nanocapsules in food science and agriculture. Crit Rev Food Sci Nutr 2006; 45:587-605. [PMID: 16371329 DOI: 10.1080/10408390591001135] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Liposomes, spherical bilayer vesicles from dispersion of polar lipids in aqueous solvents, have been widely studied for their ability to act as drug delivery vehicles by shielding reactive or sensitive compounds prior to release. Liposome entrapment has been shown to stabilize encapsulated, bioactive materials against a range of environmental and chemical changes, including enzymatic and chemical modification, as well as buffering against extreme pH, temperature, and ionic strength changes. Liposomes have been especially useful to researchers in studies of various physiological processes as models of biological membranes in both eukaryotes and prokaryotes. Industrial applications include encapsulation of pharmaceuticals and therapeutics, cosmetics, anti-cancer and gene therapy drugs. In the food industry, liposomes have been used to deliver food flavors and nutrients and more recently have been investigated for their ability to incorporate food antimicrobials that could aid in the protection of food products against growth of spoilage and pathogenic microorganisms. In this review we briefly introduce key physicochemical properties of liposomes and review competing methods for liposome production. A survey of non-agricultural and food applications of liposomes are given. Finally, a detailed up-to-date summary of the emerging usage of liposomes in the food industry as delivery vehicles of nutrients, nutraceuticals, food additives, and food antimicrobials is provided.
Collapse
Affiliation(s)
- T Matthew Taylor
- Department of Food Science and Technology, The University of Tennessee, 2605 River Road, Knoxville, 37996-4591, USA
| | | | | | | |
Collapse
|
10
|
Meyer HW, Richter W, Rettig W, Stumpf M. Bilayer fragments and bilayered micelles (bicelles) of dimyristoylphosphatidylglycerol (DMPG) are induced by storage in distilled water at 4°C. Colloids Surf A Physicochem Eng Asp 2001. [DOI: 10.1016/s0927-7757(01)00561-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Tenchov B, Koynova R, Rapp G. New ordered metastable phases between the gel and subgel phases in hydrated phospholipids. Biophys J 2001; 80:1873-90. [PMID: 11259300 PMCID: PMC1301376 DOI: 10.1016/s0006-3495(01)76157-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Formation of low-temperature ordered gel phases in several fully hydrated phosphatidylethanolamines (PEs) and phosphatidylcholines (PCs) with saturated chains as well as in dipalmitoylphosphatidylglycerol (DPPG) was observed by synchrotron x-ray diffraction, microcalorimetry, and densitometry. The diffraction patterns recorded during slow cooling show that the gel-phase chain reflection cooperatively splits into two reflections, signaling a transformation of the usual gel phase into a more ordered phase, with an orthorhombic chain packing (the Y-transition). This transition is associated with a small decrease (2-4 microl/g) or inflection of the partial specific volume. It is fully reversible with the temperature and displays in heating direction as a small (0.1-0.7 kcal/mol) endothermic event. We recorded a Y-transition in distearoyl PE, dipalmitoyl PE (DPPE), mono and dimethylated DPPE, distearoyl PC, dipalmitoyl PC, diC(15)PC, and DPPG. No such transition exists in dimyristoyl PE and dilauroyl PE where the gel L(beta) phase transforms directly into subgel L(c) phase, as well as in the unsaturated dielaidoyl PE. The PE and PC low-temperature phases denoted L(R1) and SGII, respectively, have different hydrocarbon chain packing. The SGII phase is with tilted chains, arranged in an orthorhombic lattice of two-nearest-neighbor type. Except for the PCs, it was also registered in ionized DPPG. In the L(R1) phase, the chains are perpendicular to the bilayer plane and arranged in an orthorhombic lattice of four-nearest-neighbor type. It was observed in PEs and in protonated DPPG. The L(R1) and SGII phases are metastable phases, which may only be formed by cooling the respective gel L(beta) and L(beta') phases, and not by heating the subgel L(c) phase. Whenever present, they appear to represent an indispensable intermediate step in the formation of the latter phase.
Collapse
Affiliation(s)
- B Tenchov
- Institute of Biophysics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | | | | |
Collapse
|