1
|
Wang J, Liu Z, Xu M, Han X, Ren C, Yang X, Zhang C, Fang F. Cinical, Metabolic, and Genetic Analysis and Follow-Up of Eight Patients With HIBCH Mutations Presenting With Leigh/Leigh-Like Syndrome. Front Pharmacol 2021; 12:605803. [PMID: 33762937 PMCID: PMC7982470 DOI: 10.3389/fphar.2021.605803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/22/2021] [Indexed: 11/26/2022] Open
Abstract
3-Hydroxyisobutyryl-CoA hydrolase (HIBCH, NM_014362.3) gene mutation can cause HIBCH deficiency, leading to Leigh/Leigh-like disease. To date, few case series have investigated the relationship between metabolites and clinical phenotypes or the effects of treatment, although 34 patients with HIBCH mutations from 27 families have been reported. The purpose of this study was to analyze the phenotypic spectrum, follow-up results, metabolites, and genotypes of patients with HIBCH deficiency presenting with Leigh/Leigh-like syndrome and explore specific metabolites related to disease diagnosis and prognosis through retrospective and longitudinal studies. Applying next-generation sequencing, we identified eight patients with HIBCH mutations from our cohort of 181 cases of genetically diagnosed Leigh/Leigh-like syndrome. Six novel HIBCH mutations were identified: c.977T>G [p.Leu326Arg], c.1036G>T [p.Val346Phe], c.750+1G>A, c.810-2A>C, c.469C>T [p.Arg157*], and c.236delC [p.Pro79Leufs*5]. The Newcastle Pediatric Mitochondrial Disease Scale (NPMDS) was employed to assess disease progression and clinical outcomes. The non-invasive approach of metabolite analysis showed that levels of some were associated with clinical phenotype severity. Five (5/7) patients presented with elevated C4-OH in dried blood spots, and the level was probably correlated with the NPMDS scores during the peak disease phase. 2,3-Dihydroxy-2-methylbutyrate in urine was elevated in six (6/7) patients and elevated S-(2-caboxypropyl)cysteamine in urine was found in three patients (3/3). The median age at initial presentation was 13 months (8–18 months), and the median follow-up was 2.3 years (range 1.3–7.2 years). We summarized and compared with all reported patients with HIBCH mutations. The most prominent clinical manifestations were developmental regression/delay, hypotonia, encephalopathy, and feeding difficulties. We administered drug and dietary treatment. During follow-up, five patients responded positively to treatment with a significant decrease in NPMDS scores. Our research is the largest case series of patients with HIBCH mutations.
Collapse
Affiliation(s)
- Junling Wang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zhimei Liu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Manting Xu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaodi Han
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Changhong Ren
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xinying Yang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Chunhua Zhang
- Department of Research, Development of MILS International, Ishikawa, Japan
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
2
|
Shao X, Cao HY, Zhao F, Peng M, Wang P, Li CY, Shi WL, Wei TD, Yuan Z, Zhang XH, Chen XL, Todd JD, Zhang YZ. Mechanistic insight into 3-methylmercaptopropionate metabolism and kinetical regulation of demethylation pathway in marine dimethylsulfoniopropionate-catabolizing bacteria. Mol Microbiol 2019; 111:1057-1073. [PMID: 30677184 PMCID: PMC6850173 DOI: 10.1111/mmi.14211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2019] [Indexed: 01/25/2023]
Abstract
The vast majority of oceanic dimethylsulfoniopropionate (DMSP) is thought to be catabolized by bacteria via the DMSP demethylation pathway. This pathway contains four enzymes termed DmdA, DmdB, DmdC and DmdD/AcuH, which together catabolize DMSP to acetylaldehyde and methanethiol as carbon and sulfur sources respectively. While molecular mechanisms for DmdA and DmdD have been proposed, little is known of the catalytic mechanisms of DmdB and DmdC, which are central to this pathway. Here, we undertake physiological, structural and biochemical analyses to elucidate the catalytic mechanisms of DmdB and DmdC. DmdB, a 3-methylmercaptopropionate (MMPA)-coenzyme A (CoA) ligase, undergoes two sequential conformational changes to catalyze the ligation of MMPA and CoA. DmdC, a MMPA-CoA dehydrogenase, catalyzes the dehydrogenation of MMPA-CoA to generate MTA-CoA with Glu435 as the catalytic base. Sequence alignment suggests that the proposed catalytic mechanisms of DmdB and DmdC are likely widely adopted by bacteria using the DMSP demethylation pathway. Analysis of the substrate affinities of involved enzymes indicates that Roseobacters kinetically regulate the DMSP demethylation pathway to ensure DMSP functioning and catabolism in their cells. Altogether, this study sheds novel lights on the catalytic and regulative mechanisms of bacterial DMSP demethylation, leading to a better understanding of bacterial DMSP catabolism.
Collapse
Affiliation(s)
- Xuan Shao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Hai-Yan Cao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Fang Zhao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Ming Peng
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Peng Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Chun-Yang Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China.,College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,Suzhou Institute of Shandong University, Suzhou, 215123, China
| | - Wei-Ling Shi
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Tian-Di Wei
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Zenglin Yuan
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China.,College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
3
|
Kerimi A, Williamson G. Differential Impact of Flavonoids on Redox Modulation, Bioenergetics, and Cell Signaling in Normal and Tumor Cells: A Comprehensive Review. Antioxid Redox Signal 2018; 29:1633-1659. [PMID: 28826224 PMCID: PMC6207159 DOI: 10.1089/ars.2017.7086] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SIGNIFICANCE Flavonoids can interact with multiple molecular targets to elicit their cellular effects, leading to changes in signal transduction, gene expression, and/or metabolism, which can, subsequently, affect the entire cell and organism. Immortalized cell lines, derived from tumors, are routinely employed as a surrogate for mechanistic studies, with the results extrapolated to tissues in vivo. Recent Advances: We review the activities of selected flavonoids on cultured tumor cells derived from various tissues in comparison to corresponding primary cells or tissues in vivo, mainly using quercetin and flavanols (epicatechin and (-)-epigallocatechin gallate) as exemplars. Several studies have indicated that flavonoids could retard cancer progression in vivo in animal models as well as in tumor cell models. CRITICAL ISSUES Extrapolation from in vitro and animal models to humans is not straightforward given both the extensive conjugation and complex microbiota-dependent metabolism of flavonoids after consumption, as well as the heterogeneous metabolism of different tumors. FUTURE DIRECTIONS Comparison of data from studies on primary cells or in vivo are essential not only to validate results obtained from cultured cell models, but also to highlight whether any differences may be further exploited in the clinical setting for chemoprevention. Tumor cell models can provide a useful mechanistic tool to study the effects of flavonoids, provided that the limitations of each model are understood and taken into account in interpretation of the data.
Collapse
Affiliation(s)
- Asimina Kerimi
- School of Food Science and Nutrition, University of Leeds , Leeds, United Kingdom
| | - Gary Williamson
- School of Food Science and Nutrition, University of Leeds , Leeds, United Kingdom
| |
Collapse
|
4
|
Latimer S, Li Y, Nguyen TTH, Soubeyrand E, Fatihi A, Elowsky CG, Block A, Pichersky E, Basset GJ. Metabolic reconstructions identify plant 3-methylglutaconyl-CoA hydratase that is crucial for branched-chain amino acid catabolism in mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:358-370. [PMID: 29742810 DOI: 10.1111/tpj.13955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
The proteinogenic branched-chain amino acids (BCAAs) leucine, isoleucine and valine are essential nutrients for mammals. In plants, BCAAs double as alternative energy sources when carbohydrates become limiting, the catabolism of BCAAs providing electrons to the respiratory chain and intermediates to the tricarboxylic acid cycle. Yet, the actual architecture of the degradation pathways of BCAAs is not well understood. In this study, gene network modeling in Arabidopsis and rice, and plant-prokaryote comparative genomics detected candidates for 3-methylglutaconyl-CoA hydratase (4.2.1.18), one of the missing plant enzymes of leucine catabolism. Alignments of these protein candidates sampled from various spermatophytes revealed non-homologous N-terminal extensions that are lacking in their bacterial counterparts, and green fluorescent protein-fusion experiments demonstrated that the Arabidopsis protein, product of gene At4g16800, is targeted to mitochondria. Recombinant At4g16800 catalyzed the dehydration of 3-hydroxymethylglutaryl-CoA into 3-methylglutaconyl-CoA, and displayed kinetic features similar to those of its prokaryotic homolog. When at4g16800 knockout plants were subjected to dark-induced carbon starvation, their rosette leaves displayed accelerated senescence as compared with control plants, and this phenotype was paralleled by a marked increase in the accumulation of free and total leucine, isoleucine and valine. The seeds of the at4g16800 mutant showed a similar accumulation of free BCAAs. These data suggest that 3-methylglutaconyl-CoA hydratase is not solely involved in the degradation of leucine, but is also a significant contributor to that of isoleucine and valine. Furthermore, evidence is shown that unlike the situation observed in Trypanosomatidae, leucine catabolism does not contribute to the formation of the terpenoid precursor mevalonate.
Collapse
Affiliation(s)
- Scott Latimer
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, 32611, USA
| | - Yubing Li
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, 32611, USA
| | - Thuong T H Nguyen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Eric Soubeyrand
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, 32611, USA
| | - Abdelhak Fatihi
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Christian G Elowsky
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Anna Block
- Center for Medical, Agricultural and Veterinary Entomology, ARS, USDA, Gainesville, Florida, 32608, USA
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Gilles J Basset
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, 32611, USA
| |
Collapse
|
5
|
Ruiz-Rodado V, Nicoli ER, Probert F, Smith DA, Morris L, Wassif CA, Platt FM, Grootveld M. 1H NMR-Linked Metabolomics Analysis of Liver from a Mouse Model of NP-C1 Disease. J Proteome Res 2016; 15:3511-3527. [PMID: 27503774 DOI: 10.1021/acs.jproteome.6b00238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Clinical manifestations of Niemann-Pick type C1 (NP-C1) disease include neonatal hepatosplenomegaly and in some patients progressive liver dysfunction and failure. This study involved a 1H NMR-linked metabolomics analysis of liver samples collected from a NP-C1 disease mutant mouse model in order to explore time-dependent imbalances in metabolic pathways associated with NP-C1 liver dysfunction, including fibrosis. NP-C1 mutant (Npc1-/-; NP-C1), control (Npc1+/+; WT), and NP-C1 heterozygous mice (Npc1+/-; HET) were generated from heterozygote matings. Aqueous extracts of these liver samples collected at time points of 3, 6, 9, and 11 weeks were subjected to high-resolution NMR analysis, and multivariate (MV) metabolomics analyses of data sets acquired were performed. A MV random forests (RFs) model effectively discriminated between NP-C1 and a combined WT/HET hepatic NMR profiles with very high predictive accuracy and reliability. Key distinguishing features included significant upregulations in the hepatic concentrations of phenylalanine, tyrosine, glutamate, lysine/ornithine, valine, threonine, and hypotaurine/methionine, and diminished levels of nicotinate/niacinamide, inosine, phosphoenolpyruvate, and 3-hydroxyphenylacetate. Quantitative pathway topological analysis confirmed that imbalances in tyrosine biosynthesis, and hepatic phenylalanine, tyrosine, glutamate/glutamine, and nicotinate/niacinamide metabolism were involved in the pathogenesis of NP-C1 disease-associated liver dysfunction/damage. 1H NMR-linked metabolomics analysis provides valuable biomarker information regarding hepatic dysfunction or damage in NP-C1 disease.
Collapse
Affiliation(s)
- Victor Ruiz-Rodado
- Leicester School of Pharmacy, De Montfort University , The Gateway, Leicester LE1 9BH, United Kingdom
| | - Elena-Raluca Nicoli
- Department of Pharmacology, University of Oxford , Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Fay Probert
- Leicester School of Pharmacy, De Montfort University , The Gateway, Leicester LE1 9BH, United Kingdom
| | - David A Smith
- Department of Pharmacology, University of Oxford , Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Lauren Morris
- Department of Pharmacology, University of Oxford , Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Christopher A Wassif
- Department of Pharmacology, University of Oxford , Mansfield Road, Oxford OX1 3QT, United Kingdom.,Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH , Bethesda, Maryland 20892, United States
| | - Frances M Platt
- Department of Pharmacology, University of Oxford , Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Martin Grootveld
- Leicester School of Pharmacy, De Montfort University , The Gateway, Leicester LE1 9BH, United Kingdom
| |
Collapse
|
6
|
Profiling thiol metabolites and quantification of cellular glutathione using FT-ICR-MS spectrometry. Anal Bioanal Chem 2014; 406:4371-9. [PMID: 24858467 DOI: 10.1007/s00216-014-7810-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/31/2014] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
Abstract
We describe preparation and use of the quaternary ammonium-based α-iodoacetamide QDE and its isotopologue *QDE as reagents for chemoselective derivatization of cellular thiols. Direct addition of the reagents to live cells followed by adduct extraction into n-butanol and analysis by FT-ICR-MS provided a registry of matched isotope peaks from which molecular formulae of thiol metabolites were derived. Acidification to pH 4 during cell lysis and adduct formation further improves the chemoselectivity for thiol derivatization. Examination of A549 human lung adenocarcinoma cells using this approach revealed cysteine, cysteinylglycine, glutathione, and homocysteine as principal thiol metabolites as well as the sulfinic acid hypotaurine. The method is also readily applied to quantify the thiol metabolites, as demonstrated here by the quantification of both glutathione and glutathione disulfide in A549 cells at concentrations of 34.4 ± 11.5 and 10.1 ± 4.0 nmol/mg protein, respectively.
Collapse
|
7
|
Otzen C, Bardl B, Jacobsen ID, Nett M, Brock M. Candida albicans utilizes a modified β-oxidation pathway for the degradation of toxic propionyl-CoA. J Biol Chem 2014; 289:8151-69. [PMID: 24497638 DOI: 10.1074/jbc.m113.517672] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Propionyl-CoA arises as a metabolic intermediate from the degradation of propionate, odd-chain fatty acids, and some amino acids. Thus, pathways for catabolism of this intermediate have evolved in all kingdoms of life, preventing the accumulation of toxic propionyl-CoA concentrations. Previous studies have shown that fungi generally use the methyl citrate cycle for propionyl-CoA degradation. Here, we show that this is not the case for the pathogenic fungus Candida albicans despite its ability to use propionate and valerate as carbon sources. Comparative proteome analyses suggested the presence of a modified β-oxidation pathway with the key intermediate 3-hydroxypropionate. Gene deletion analyses confirmed that the enoyl-CoA hydratase/dehydrogenase Fox2p, the putative 3-hydroxypropionyl-CoA hydrolase Ehd3p, the 3-hydroxypropionate dehydrogenase Hpd1p, and the putative malonate semialdehyde dehydrogenase Ald6p essentially contribute to propionyl-CoA degradation and its conversion to acetyl-CoA. The function of Hpd1p was further supported by the detection of accumulating 3-hydroxypropionate in the hpd1 mutant on propionyl-CoA-generating nutrients. Substrate specificity of Hpd1p was determined from recombinant purified enzyme, which revealed a preference for 3-hydroxypropionate, although serine and 3-hydroxyisobutyrate could also serve as substrates. Finally, virulence studies in a murine sepsis model revealed attenuated virulence of the hpd1 mutant, which indicates generation of propionyl-CoA from host-provided nutrients during infection.
Collapse
|
8
|
Varga A, Zaharia V, Nógrádi M, Poppe L. Chemoenzymatic synthesis of both enantiomers of 3-hydroxy- and 3-amino-3-phenylpropanoic acid. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.tetasy.2013.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Klemcke HG, DeKroon RM, Mocanu M, Robinette JB, Alzate O. Cardiac mitochondrial proteomic expression in inbred rat strains divergent in survival time after hemorrhage. Physiol Genomics 2013; 45:243-55. [PMID: 23386204 DOI: 10.1152/physiolgenomics.00118.2012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have previously identified inbred rat strains differing in survival time to a severe controlled hemorrhage (StaH). In efforts to identify cellular mechanisms and ultimately genes that are important contributors to enhanced STaH, we conducted a study to characterize potential differences in cardiac mitochondrial proteins in these rats. Inbred rats from three strains [Brown Norway/Medical College of Wisconsin (BN); Dark Agouti (DA), and Fawn Hooded Hypertensive (FHH)] with different StaH (DA = FHH > BN) were assigned to one of three treatment groups (n = 4/strain): nonoperated controls, surgically catheterized rats, or rats surgically catheterized and hemorrhaged 24 h postsurgery. Rats were euthanized 30 min after handling or 30 min after initiation of a 26 min hemorrhage. After euthanasia, hearts were removed and mitochondria isolated. Differential protein expression was determined using 2D DIGE-based Quantitative Intact Proteomics and proteins identified by MALDI/TOF mass spectrometry. Hundreds of proteins (791) differed among inbred rat strains (P ≤ 0.038), and of these 81 were identified. Thirty-eight were unique proteins and 43 were apparent isoforms. For DA rats (longest STaH), 36 proteins increased and 30 decreased compared with BN (shortest STaH). These 81 proteins were associated with lipid (e.g., acyl CoA dehydrogenase) and carbohydrate (e.g., fumarase) metabolism, oxidative phosphorylation (e.g., ubiquinol-cytochrome C reductase), ATP synthesis (F1 ATPase), and H2S synthesis (3-mercaptopyruvate sulfurtransferase). Although we cannot make associations between these identified mitochondrial proteins and StaH, our data do provide evidence for future candidate proteins with which to consider such associations.
Collapse
Affiliation(s)
- Harold G Klemcke
- U.S. Army Institute of Surgical Research, Fort Sam Houston, Texas 78234, USA.
| | | | | | | | | |
Collapse
|
10
|
Differentiating hepatocellular carcinoma from hepatitis C using metabolite profiling. Metabolites 2012; 2:701-16. [PMID: 24957758 PMCID: PMC3901236 DOI: 10.3390/metabo2040701] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/12/2012] [Accepted: 09/25/2012] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for most liver cancer cases worldwide. Contraction of the hepatitis C virus (HCV) is considered a major risk factor for liver cancer. In order to identify the risk of cancer, metabolic profiling of serum samples from patients with HCC (n=40) and HCV (n=22) was performed by 1H nuclear magnetic resonance spectroscopy. Multivariate statistical analysis showed a distinct separation of the two patient cohorts, indicating a distinct metabolic difference between HCC and HCV patient groups based on signals from lipids and other individual metabolites. Univariate analysis showed that three metabolites (choline, valine and creatinine) were significantly altered in HCC. A PLS-DA model based on these three metabolites showed a sensitivity of 80%, specificity of 71% and an area under the receiver operating curve of 0.83, outperforming the clinical marker alpha-fetoprotein (AFP). The robustness of the model was tested using Monte-Carlo cross validation (MCCV). This study showed that metabolite profiling could provide an alternative approach for HCC screening in HCV patients, many of whom have high risk for developing liver cancer.
Collapse
|
11
|
|
12
|
Ethanol-induced changes in the expression of proteins related to neurotransmission and metabolism in different regions of the rat brain. Pharmacol Biochem Behav 2011; 99:428-36. [PMID: 21397625 DOI: 10.1016/j.pbb.2011.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 03/01/2011] [Accepted: 03/04/2011] [Indexed: 01/06/2023]
Abstract
Despite extensive description of the damaging effects of chronic alcohol exposure on brain structure, mechanistic explanations for the observed changes are just emerging. To investigate regional brain changes in protein expression levels following chronic ethanol treatment, one rat per sibling pair of male Wistar rats was exposed to intermittent (14 h/day) vaporized ethanol, the other to air for 26 weeks. At the end of 24 weeks of vapor exposure, the ethanol group had blood ethanol levels averaging 450 mg%, had not experienced a protracted (> 16 h) withdrawal from ethanol, and revealed only mild evidence of hepatic steatosis. Extracted brains were micro-dissected to isolate the prefrontal cortex (PFC), dorsal striatum (STR), corpus callosum genu (CCg), CC body (CCb), anterior vermis (AV), and anterior dorsal lateral cerebellum (ADLC) for protein analysis with two-dimensional gel electrophoresis. Expression levels for 54 protein spots were significantly different between the ethanol- and air-treated groups. Of these 54 proteins, tandem mass spectroscopy successfully identified 39 unique proteins, the levels of which were modified by ethanol treatment: 13 in the PFC, 7 in the STR, 2 in the CCg, 7 in the CCb, 7 in the AV, and 5 in the ADLC. The functions of the proteins altered by chronic ethanol exposure were predominantly associated with neurotransmitter systems in the PFC and cell metabolism in the STR. Stress response proteins were elevated only in the PFC, AV, and ADLC perhaps supporting a role for frontocerebellar circuitry disruption in alcoholism. Of the remaining proteins, some had functions associated with cytoskeletal physiology (e.g., in the CCb) and others with transcription/translation (e.g., in the ADLC). Considered collectively, all but 4 of the 39 proteins identified in the present study have been previously identified in ethanol gene- and/or protein-expression studies lending support for their role in ethanol-related brain alterations.
Collapse
|
13
|
Metabolomic investigation of gastric cancer tissue using gas chromatography/mass spectrometry. Anal Bioanal Chem 2009; 396:1385-95. [PMID: 20012946 DOI: 10.1007/s00216-009-3317-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 11/12/2009] [Accepted: 11/15/2009] [Indexed: 12/14/2022]
Abstract
Gastric cancer screening or diagnosis is mainly based on endoscopy and biopsy. The aim of this study was to identify the difference of metabolomic profile between normal and malignant gastric tissue, and to further explore tumor biomarkers. Chemical derivatization together with gas chromatography/mass spectrometry (GC/MS) was utilized to obtain the metabolomic information of the malignant and non-malignant tissues of gastric mucosae in 18 gastric cancer patients. Acquired metabolomic data was analyzed using the Wilcoxon rank sum test to find the tissue metabolic biomarkers for gastric cancer. A diagnostic model for gastric cancer was constructed using principal component analysis (PCA), and was assessed with receiver-operating characteristic (ROC) curves. Results showed that 18 metabolites were detected differently between the malignant tissues and the adjacent non-malignant tissues of gastric mucosa. Five metabolites were also detected differently between the non-invasive tumors and the invasive tumors. The diagnostic model could discriminate tumors from normal mucosae with an area under the curve (AUC) value of 0.9629, and another diagnostic model constructed for clinical staging was assessed with an AUC value of 0.969. We conclude that the metabolomic profile of malignant gastric tissue was different from normal, and that the selected tissue metabolites could probably be applied for clinical diagnosis or staging for gastric cancer.
Collapse
|
14
|
Metabolomic study for diagnostic model of oesophageal cancer using gas chromatography/mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:3111-7. [PMID: 19716777 DOI: 10.1016/j.jchromb.2009.07.039] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/27/2009] [Accepted: 07/29/2009] [Indexed: 01/25/2023]
Abstract
The prognosis for oesophageal cancer is poor. Attempts have been made for the identification of biomarkers for early diagnosis. Metabolomic panel has been evaluated as potential candidate biomarkers. With gas chromatography/mass spectrometry (GC/MS) as a sensitive modality for metabolomics, various tissue metabolites can be detected and identified. We hypothesized that tissue metabolomic biomarkers may be identifiable and diagnostically useful for oesophageal cancer. We present a metabolomic method of chemical derivatization followed by GC/MS to analyze the metabolic difference in biopsied specimens between oesophageal cancer and corresponding normal mucosae obtained from 20 oesophageal cancer patients. The GC/MS data was analyzed using a two sample t-test to explore the potential metabolic biomarkers for oesophageal cancer. A diagnostic model was constructed to discriminate normal from malignant samples, using principal component analysis (PCA) and receiver-operating characteristic (ROC) curves. t-Test showed a total of 20 marker metabolites detected were found to be different with statistical significance (P<0.05). The multivariate logistic analysis yielded a complete distinction between the two groups. The diagnostic model could discriminate tumors from normal mucosae with an area under the curve (AUC) value of 1. Our findings suggest that this assay may potentially provide a new metabolomic biomarker for oesophageal cancer.
Collapse
|
15
|
Milagre CD, Milagre HM, Moran PJ, Rodrigues JAR. Screening and reaction engineering for the bioreduction of ethyl benzoylacetate and its analogues. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2008.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Xue R, Lin Z, Deng C, Dong L, Liu T, Wang J, Shen X. A serum metabolomic investigation on hepatocellular carcinoma patients by chemical derivatization followed by gas chromatography/mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:3061-3068. [PMID: 18767022 DOI: 10.1002/rcm.3708] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The purpose of this study was to investigate the serum metabolic difference between hepatocellular carcinoma (HCC, n = 20) male patients and normal male subjects (n = 20). Serum metabolome was detected through chemical derivatization followed by gas chromatography/mass spectrometry (GC/MS). The acquired GC/MS data was analyzed by stepwise discriminant analysis (SDA) and support vector machine (SVM). The metabolites including butanoic acid, ethanimidic acid, glycerol, L-isoleucine, L-valine, aminomalonic acid, D-erythrose, hexadecanoic acid, octadecanoic acid, and 9,12-octadecadienoic acid in combination with each other gave the strongest segregation between the two groups. By applying these variables, our method provided a diagnostic model that could well discriminate between HCC patients and normal subjects. More importantly, the error count estimate for each group was 0%. The total classifying accuracy of the discriminant function tested by SVM 20-fold cross validation was 75%. This technique is different from traditional ones and appears to be a useful tool in the area of HCC diagnosis.
Collapse
Affiliation(s)
- Ruyi Xue
- Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Padhi SK, Titu D, Pandian NG, Chadha A. Deracemisation of β-hydroxy esters using immobilised whole cells of Candida parapsilosis ATCC 7330: substrate specificity and mechanistic investigation. Tetrahedron 2006. [DOI: 10.1016/j.tet.2006.03.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Shimomura Y, Honda T, Goto H, Nonami T, Kurokawa T, Nagasaki M, Murakami T. Effects of liver failure on the enzymes in the branched-chain amino acid catabolic pathway. Biochem Biophys Res Commun 2004; 313:381-5. [PMID: 14684172 DOI: 10.1016/j.bbrc.2003.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Branched-chain alpha-keto acid dehydrogenase (BCKDH) complex catalyzes the committed step of the catabolism of branched-chain amino acids (BCAA). The liver cirrhosis chemically induced in rats raised the activity of hepatic BCKDH complex and decreased plasma BCAA and branched-chain alpha-keto acid concentrations, suggesting that the BCAA requirement is increased in liver cirrhosis. Since the effects of liver cirrhosis on the BCKDH complex in human liver are different from those in rat liver, further studies are needed to clarify the differences between rats and humans. In the valine catabolic pathway, crotonase and beta-hydroxyisobutyryl-CoA hydrolase are very important to regulate the toxic concentration of mitochondrial methacrylyl-CoA, which occurs in the middle part of valine pathway and highly reacts with free thiol compounds. Both enzyme activities in human and rat livers are very high compared to that of BCKDH complex. It has been found that both enzyme activities in human livers were significantly reduced by liver cirrhosis and hepatocellular carcinoma, suggesting a decrease in the capability to dispose methacrylyl-CoA. The findings described here suggest that alterations in hepatic enzyme activities in the BCAA catabolism are associated with liver failure.
Collapse
Affiliation(s)
- Yoshiharu Shimomura
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya, Japan.
| | | | | | | | | | | | | |
Collapse
|