Batra V, Kislay B, Devasagayam TPA. Interaction between total body gamma-irradiation and choline deficiency triggers immediate modulation of choline and choline-containing moieties.
Int J Radiat Biol 2011;
87:1196-207. [PMID:
21923302 DOI:
10.3109/09553002.2011.624153]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE
The objective of this study was to examine the effect of 60Co-gamma (γ) radiation on acute phase modulation, if any, of choline and choline-containing moieties in choline-deficient subjects. Corresponding results could provide information that might be useful in the management of adverse effects of γ-radiation.
MATERIALS AND METHODS
Male Swiss mice maintained on a choline-sufficient diet (CSD) and choline-free diet (CFD) based on AIN-93M formula, were subjected to whole body γ-irradiation (2-6 Gy). Liver, serum and brain samples from each group were then tested for: (i) Alterations in choline and choline-containing moieties such as phosphatidylcholine (PC) and sphingomyeline (SM); and (ii) modulation of choline profile modulating enzymes such as phospholipase D (PLD) and total sphingomyelinase (t-SMase). Liver and brain samples were also subjected to histo-pathological examinations.
RESULTS
No significant changes were observed in folate, choline, choline-containing moieties and choline-modulating enzymes in choline-sufficient mice. In contrast, interaction between cytotoxic effects of γ-radiation and choline deficiency modulated choline and choline-containing moieties. Feeding CFD reduced hepatic concentrations of choline, PC and SM whereas PLD and t-SMase activities were significantly raised. The decrease in liver choline and choline-containing moieties was accompanied by an increase in blood choline concentration. Despite choline deficiency, the level of choline and acetylcholine synthesizing enzyme choline acetyltransfease (ChAT) significantly increased in the brain.
CONCLUSIONS
We propose that choline deprivation and γ-radiation interact to modulate choline reserves of hepatic tissue, which might release choline to blood. Our studies also clearly showed that interaction between choline deficiency and γ-radiation might substantially enhance liver adipogenesis.
Collapse