Cousins CM, Holownia P, Hawkes JJ, Limaye MS, Price CP, Keay PJ, Coakley WT. Plasma preparation from whole blood using ultrasound.
ULTRASOUND IN MEDICINE & BIOLOGY 2000;
26:881-888. [PMID:
10942835 DOI:
10.1016/s0301-5629(00)00212-x]
[Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A technique to efficiently separate plasma from human whole blood is described. Essentially, 3-mL samples are held on the axis of a tubular transducer and exposed for 5.7 min to an ultrasonic standing wave. The cells concentrate into clumps at radial separations of half wavelength. The clumps grow in size and sediment under gravity. A distinct plasma/cell interface forms as the cells sediment. The volume of clarified plasma increases with time. The separation efficiencies of transducers of 29-mm and 23-mm internal diameters driven, by test equipment, at radial resonances of 3.4 and 1.5 MHz, respectively, were compared. The average efficiency of separation was 99.6% at 1.5 MHz and 99.4% with the 3.4-MHz system. The cleared plasma constituted 30% of the sample volume at 1.5 MHz and 25% at 3. 4 MHz. There was no measurable release of haemoglobin or potassium into the suspending phase, indicating that there was no mechanical damage to cells at either frequency. A total of 114 samples from volunteers and patients were subsequently clarified in a 1.5-MHz system driven by an integrated generator. The average efficiency of clarification of blood was 99.76% for the latter samples. The clarification achieved is a significant improvement on that previously reported (98.5%) for whole blood exposed to a planar ultrasonic standing wave field (Peterson et al. 1986). We have, therefore, now achieved a six-fold reduction of cells in plasma compared to previous results.
Collapse