1
|
Guzel S, Cai CL, Aranda JV, Beharry KD. Dose Response of Bumetanide on Aquaporins and Angiogenesis Biomarkers in Human Retinal Endothelial Cells Exposed to Intermittent Hypoxia. Pharmaceuticals (Basel) 2021; 14:ph14100967. [PMID: 34681190 PMCID: PMC8538009 DOI: 10.3390/ph14100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Aquaporins (AQPs) are important for regulating cellular water, solute transport, and balance. Recently, AQPs have also been recognized as playing a key role in cell migration and angiogenesis. In the retina, hypoxia induces vascular endothelial growth factor (VEGF), a potent angiogenic and vascular permeability factor, resulting in retinal edema, which is facilitated by AQPs. Bumetanide is a diuretic agent and AQP 1–4 blocker. We tested the hypothesis that bumetanide suppression of AQPs ameliorates intermittent hypoxia (IH)-induced angiogenesis and oxidative stress in human microvascular retinal endothelial cells (HMRECs). HMRECs were treated with a low-dose (0.05 µg/mL) or high-dose (0.2 µg/mL) of bumetanide and were exposed to normoxia (Nx), hyperoxia (50% O2), or IH (50% O2 with brief hypoxia 5% O2) for 24, 48, and 72 h. Angiogenesis and oxidative stress biomarkers were determined in the culture media, and the cells were assessed for tube formation capacity and AQP-1 and -4 expression. Both doses of bumetanide significantly decreased oxidative stress and angiogenesis biomarkers. This response was reflected by reductions in tube formation capacity and AQP expression. These findings confirm the role of AQPs in retinal angiogenesis. Therapeutic targeting of AQPs with bumetanide may be advantageous for IH-induced aberrant retinal development.
Collapse
Affiliation(s)
- Sibel Guzel
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA; (S.G.); (C.L.C.); (J.V.A.)
| | - Charles L. Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA; (S.G.); (C.L.C.); (J.V.A.)
| | - Jacob V. Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA; (S.G.); (C.L.C.); (J.V.A.)
- Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
- State University of New York Eye Institute, Brooklyn, NY 11203, USA
| | - Kay D. Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA; (S.G.); (C.L.C.); (J.V.A.)
- Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
- State University of New York Eye Institute, Brooklyn, NY 11203, USA
- Correspondence: ; Tel.: +1-(718)-270-1475
| |
Collapse
|
2
|
Soul JS, Bergin AM, Stopp C, Hayes B, Singh A, Fortuno CR, O'Reilly D, Krishnamoorthy K, Jensen FE, Rofeberg V, Dong M, Vinks AA, Wypij D, Staley KJ. A Pilot Randomized, Controlled, Double-Blind Trial of Bumetanide to Treat Neonatal Seizures. Ann Neurol 2021; 89:327-340. [PMID: 33201535 PMCID: PMC8122513 DOI: 10.1002/ana.25959] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 01/19/2023]
Abstract
OBJECTIVE In the absence of controlled trials, treatment of neonatal seizures has changed minimally despite poor drug efficacy. We tested bumetanide added to phenobarbital to treat neonatal seizures in the first trial to include a standard-therapy control group. METHODS A randomized, double-blind, dose-escalation design was employed. Neonates with postmenstrual age 33 to 44 weeks at risk of or with seizures were eligible. Subjects with electroencephalography (EEG)-confirmed seizures after ≥20 and <40mg/kg phenobarbital were randomized to receive additional phenobarbital with either placebo (control) or 0.1, 0.2, or 0.3mg/kg bumetanide (treatment). Continuous EEG monitoring data from ≥2 hours before to ≥48 hours after study drug administration (SDA) were analyzed for seizures. RESULTS Subjects were randomized to treatment (n = 27) and control (n = 16) groups. Pharmacokinetics were highly variable among subjects and altered by hypothermia. The only statistically significant adverse event was diuresis in treated subjects (48% vs 13%, p = 0.02). One treated (4%) and 3 control subjects died (19%, p = 0.14). Among survivors, 2 of 26 treated subjects (8%) and 0 of 13 control subjects had hearing impairment, as did 1 nonrandomized subject. Total seizure burden varied widely, with much higher seizure burden in treatment versus control groups (median = 3.1 vs 1.2 min/h, p = 0.006). There was significantly greater reduction in seizure burden 0 to 4 hours and 2 to 4 hours post-SDA (both p < 0.01) compared with 2-hour baseline in treatment versus control groups with adjustment for seizure burden. INTERPRETATION Although definitive proof of efficacy awaits an appropriately powered phase 3 trial, this randomized, controlled, multicenter trial demonstrated an additional reduction in seizure burden attributable to bumetanide over phenobarbital without increased serious adverse effects. Future trials of bumetanide and other drugs should include a control group and balance seizure severity. ANN NEUROL 2021;89:327-340.
Collapse
Affiliation(s)
- Janet S Soul
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ann M Bergin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian Stopp
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Breda Hayes
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Avantika Singh
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carmen R Fortuno
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Deirdre O'Reilly
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kalpathy Krishnamoorthy
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Frances E Jensen
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Valerie Rofeberg
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Min Dong
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alexander A Vinks
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David Wypij
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kevin J Staley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Sutiman N, Koh JC, Watt K, Hornik C, Murphy B, Chan YH, Lee JH. Pharmacokinetics Alterations in Critically Ill Pediatric Patients on Extracorporeal Membrane Oxygenation: A Systematic Review. Front Pediatr 2020; 8:260. [PMID: 32670992 PMCID: PMC7332755 DOI: 10.3389/fped.2020.00260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives: This study aimed to identify alterations in pharmacokinetics in children on extracorporeal membrane oxygenation (ECMO), identify knowledge gaps, and inform future pharmacology studies. Data Sources: We systematically searched the databases MEDLINE, CINAHL, and Embase from earliest publication until November 2018 using a controlled vocabulary and keywords related to "ECMO" and "pharmacokinetics," "pharmacology," "drug disposition," "dosing," and "pediatrics." Study Selection: Inclusion criteria were as follows: study population aged <18 years, supported on ECMO for any indications, received any medications while on ECMO, and reported pharmacokinetic data. Data Extraction: Clearance and/or volume of distribution values were extracted from included studies. Data Synthesis: Forty-one studies (total patients = 574) evaluating 23 drugs met the inclusion criteria. The most common drugs studied were antimicrobials (n = 13) and anticonvulsants (n = 3). Twenty-eight studies (68%) were conducted in children <1 year of age. Thirty-three studies (80%) were conducted without intra-study comparisons to non-ECMO controls. Increase in volume of distribution attributable to ECMO was demonstrated for nine (56%) drugs: cefotaxime, gentamicin, piperacillin/tazobactam, fluconazole, micafungin, levetiracetam, clonidine, midazolam, and sildenafil (range: 23-345% increase relative to non-ECMO controls), which may suggest the need for higher initial dosing. Decreased volume of distribution was reported for two drugs: acyclovir and ribavirin (50 and 69%, respectively). Decreased clearance was reported for gentamicin, ticarcillin/clavulanate, bumetanide, and ranitidine (range: 26-95% decrease relative to non-ECMO controls). Increased clearance was reported for caspofungin, micafungin, clonidine, midazolam, morphine, and sildenafil (range: 25-455% increase relative to non-ECMO controls). Conclusions: There were substantial pharmacokinetic alterations in 70% of drugs studied in children on ECMO. However, studies evaluating pharmacokinetic changes of many drug classes and those that allow direct comparisons between ECMO and non-ECMO patients are still lacking. Systematic evaluations of pharmacokinetic alterations of drugs on ECMO that incorporate multidrug opportunistic trials, physiologically based pharmacokinetic modeling, and other methods are necessary for definitive dose recommendations. Trial Registration Prospero Identifier: CRD42019114881.
Collapse
Affiliation(s)
| | - Janine Cynthia Koh
- Children's Intensive Care Unit, Department of Pediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Kevin Watt
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
- Duke Clinical Research Institute, Durham, NC, United States
| | - Christoph Hornik
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
- Duke Clinical Research Institute, Durham, NC, United States
| | - Beverly Murphy
- Duke University Medical Center Library and Archives, Durham, NC, United States
| | - Yoke Hwee Chan
- Duke-NUS Medical School, Singapore, Singapore
- Children's Intensive Care Unit, Department of Pediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Jan Hau Lee
- Duke-NUS Medical School, Singapore, Singapore
- Children's Intensive Care Unit, Department of Pediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
4
|
Abstract
Abstract
Purpose
The changes in physiological functions as children grow and organ systems mature result in pharmacokinetic alterations throughout childhood. These alterations in children result in absorption, distribution, metabolism, and excretion of drugs that are different from those seen in the typical adult diseased population.
Summary
Changes in gastrointestinal motility and gastric pH in neonates and infants affect the absorption rate and bioavailability of drugs. Skin absorption rate and extent can be altered by different skin structures and perfusion in young children. Intramuscular and rectal absorption become less predictable in children due to erratic absorption site perfusion and other factors. Children’s body compositions also differ greatly from that in adults. Water-soluble drugs distribute more extensively in newborns due to larger water content than in older children and adults. Drug elimination and excretion are also affected in pediatric population due to differences in liver and renal function. Immature enzyme development and renal function result in reduced clearance of drugs in young children. There are limited pharmacokinetic data available for many drugs used in children.
Conclusion
Considering the changes in pharmacokinetics in children can help pharmacists optimize the dosing and monitoring of drugs and do the best they can to help this vulnerable population.
Collapse
|
5
|
Yozawitz E, Stacey A, Pressler RM. Pharmacotherapy for Seizures in Neonates with Hypoxic Ischemic Encephalopathy. Paediatr Drugs 2017; 19:553-567. [PMID: 28770451 DOI: 10.1007/s40272-017-0250-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Seizures are common in neonates with moderate and severe hypoxic ischemic encephalopathy (HIE) and are associated with worse outcomes, independent of HIE severity. In contrast to adults and older children, no new drugs have been licensed for treatment of neonatal seizures over the last 50 years, because of a lack of controlled clinical trials. Hence, many antiseizure medications licensed in older children and adults are used off-label for neonatal seizure, which is associated with potential risks of adverse effects during a period when the brain is particularly vulnerable. Phenobarbital is worldwide the first-line drug and is considered standard of care, although there is a limited evidence base for its efficacy. Second-line agents include phenytoin, benzodiazepines, levetiracetam, and lidocaine. These drugs are discussed in more detail along with two emerging drugs (bumetanide and topiramate). More safety, pharmacokinetic, and efficacy data are needed from well-designed clinical trials to develop safe and effective antiseizure regimes for the treatment of neonatal seizures in HIE.
Collapse
Affiliation(s)
- Elissa Yozawitz
- Department of Neurology and Pediatrics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Arthur Stacey
- UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Ronit M Pressler
- Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, Great Ormond Street, London, WC1N 3JH, UK. .,Clinical Neurosciences, UCL- Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
6
|
Jullien V, Pressler RM, Boylan G, Blennow M, Marlow N, Chiron C, Pons G. Pilot evaluation of the population pharmacokinetics of bumetanide in term newborn infants with seizures. J Clin Pharmacol 2015; 56:284-90. [PMID: 26189501 DOI: 10.1002/jcph.596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/14/2015] [Indexed: 12/31/2022]
Abstract
Recent experimental data suggest bumetanide as a possible therapeutic option in newborn infants with seizures after birth asphyxia. Because pharmacokinetic (PK) data are lacking in this population, who very often benefit from therapeutic cooling, which can modify the PK behavior of a drug, a PK study was conducted in term infants with seizures caused by hypoxic-ischemic encephalopathy. Fourteen infants were included, 13 of them being cooled. Forty-nine blood samples were available for the determination of the plasma concentration of bumetanide. Concentration-time data were analyzed by the use of a population approach performed with Monolix Software. Bumetanide was found to follow a 2-compartment model. The mean values were 0.063 L/h for clearance, 0.28 and 0.44 L for the central and peripheral distribution volumes, respectively, and 0.59 L/h for the distribution clearance. Birth body weight explained the interindividual variability of bumetanide clearance via an allometric model. No relationship was found between bumetanide exposure and its efficacy (reduction in seizure burden) or its toxicity (hearing loss). This study describes the first PK model of bumetanide in hypothermia-treated infants with seizures.
Collapse
Affiliation(s)
- Vincent Jullien
- INSERM U1129 "Infantile Epilepsies and Brain Plasticity," Paris, France; Paris Descartes University; CEA, Gif sur Yvette, France.,Service de Pharmacologie, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Ronit M Pressler
- Neuroscience Unit (ICH) and Neonatal Unit (IWH), University College London, London, UK
| | - Geraldine Boylan
- INFANT Research Centre & Neonatal Intensive Care Unit, University College Cork, Cork, Ireland
| | - Mats Blennow
- Neonatology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Neil Marlow
- Neuroscience Unit (ICH) and Neonatal Unit (IWH), University College London, London, UK
| | - Catherine Chiron
- INSERM U1129 "Infantile Epilepsies and Brain Plasticity," Paris, France; Paris Descartes University; CEA, Gif sur Yvette, France
| | - Gerard Pons
- INSERM U1129 "Infantile Epilepsies and Brain Plasticity," Paris, France; Paris Descartes University; CEA, Gif sur Yvette, France
| | | |
Collapse
|
7
|
Jantzie LL, Hu MY, Park HK, Jackson MC, Yu J, Maxwell JR, Jensen FE. Chloride cotransporter NKCC1 inhibitor bumetanide protects against white matter injury in a rodent model of periventricular leukomalacia. Pediatr Res 2015; 77:554-62. [PMID: 25585037 DOI: 10.1038/pr.2015.9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/25/2014] [Indexed: 01/19/2023]
Abstract
BACKGROUND Periventricular leukomalacia (PVL) is a major form of preterm brain injury. Na(+)-K(+)-Cl(-) 1 cotransporter (NKCC1) expression on neurons and astrocytes is developmentally regulated and mediates Cl(-) reversal potential. We hypothesized that NKCC1 is highly expressed on oligodendrocytes (OLs) and increases vulnerability to hypoxia-ischemia (HI) mediated white matter injury, and that the NKCC1 inhibitor bumetanide would be protective in a rodent PVL model. METHODS Immunohistochemistry in Long-Evans rats and PLP-EGFP transgenic mice was used to establish cell-specific expression of NKCC1 in the immature rodent brain. HI was induced on postnatal day 6 (P6) in rats and the protective efficacy of bumetanide (0.3 mg/kg/i.p. q12h × 60 h) established. RESULTS NKCC1 was expressed on OLs and subplate neurons through the first 2 postnatal weeks, peaking in white matter and the subplate between P3-7. Following HI, NKCC1 is expressed on OLs and neurons. Bumetanide treatment significantly attenuates myelin basic protein loss and neuronal degeneration 7 d post-HI. CONCLUSION Presence and relative overexpression of NKCC1 in rodent cerebral cortex coincides with a period of developmental vulnerability to HI white matter injury in the immature prenatal brain. The protective efficacy of bumetanide in this model of preterm brain injury suggests that Cl(-) transport is a factor in PVL and that its inhibition may have clinical application in premature human infants.
Collapse
Affiliation(s)
- Lauren L Jantzie
- 1] Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts [2] Department of Pediatrics, University of New Mexico, Albuquerque, New Mexico
| | - Melody Y Hu
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hyun-Kyung Park
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michele C Jackson
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jenny Yu
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jessie R Maxwell
- Department of Pediatrics, University of New Mexico, Albuquerque, New Mexico
| | - Frances E Jensen
- 1] Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts [2] Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS. Progress report on new antiepileptic drugs: A summary of the Twelfth Eilat Conference (EILAT XII). Epilepsy Res 2015; 111:85-141. [PMID: 25769377 DOI: 10.1016/j.eplepsyres.2015.01.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/09/2015] [Indexed: 10/24/2022]
|
9
|
Abstract
OBJECTIVE Limited data exist for the use of bumetanide continuous infusions in children. The purpose of this study was to evaluate the use of bumetanide continuous infusions in critically ill pediatric patients. DESIGN This study was an institutional review board approved, single-center, retrospective chart review of 95 patients. Dosing practices were described by rate (μg/kg/hr), duration (days), and previous diuretic use. Efficacy, determined by ability to achieve negative fluid balance and time to reach negative fluid balance, was assessed at 12, 24, and 48 hours. Safety was evaluated based on prevalence of adverse drug reactions. Adverse drug reactions were predefined as serum potassium concentration less than 3 mEq/L, serum chloride concentration less than 90 mEq/L, serum carbon dioxide concentration greater than 35 mEq/L, and serum creatinine increased greater than 1.5 times baseline and above patient-specific normal range. SETTING Le Bonheur Children's Hospital, Memphis, TN. PATIENTS Critically ill patients who are 18 years old or younger and received bumetanide continuous infusions. A total of 95 patients were included. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS The mean dose of bumetanide was 5.7 ± 2.2 μg/kg/hr (1-10 μg/kg/hr) with a median duration of 3.3 days (0.3-18.5). The total percentage of patients achieving negative fluid balance by 48 hours was 76% with 54% of patients reaching negative fluid balance within 12 hours. CONCLUSIONS This study showed that a bumetanide dose of 5.7 μg/kg/hr was effective in achieving negative fluid balance in the majority of critically ill pediatric patients. Additionally, bumetanide appears to be a safe loop diuretic for use as a continuous infusion at the doses described in critically ill pediatric patients.
Collapse
|
10
|
Puskarjov M, Kahle KT, Ruusuvuori E, Kaila K. Pharmacotherapeutic targeting of cation-chloride cotransporters in neonatal seizures. Epilepsia 2014; 55:806-18. [PMID: 24802699 PMCID: PMC4284054 DOI: 10.1111/epi.12620] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2014] [Indexed: 12/15/2022]
Abstract
Seizures are a common manifestation of acute neurologic insults in neonates and are often resistant to the standard antiepileptic drugs that are efficacious in children and adults. The paucity of evidence-based treatment guidelines, coupled with a rudimentary understanding of disease pathogenesis, has made the current treatment of neonatal seizures empiric and often ineffective, highlighting the need for novel therapies. Key developmental differences in γ-aminobutyric acid (GABA)ergic neurotransmission between the immature and mature brain, and trauma-induced alterations in the function of the cation-chloride cotransporters (CCCs) NKCC1 and KCC2, probably contribute to the poor efficacy of standard antiepileptic drugs used in the treatment of neonatal seizures. Although CCCs are attractive drug targets, bumetanide and other existing CCC inhibitors are suboptimal because of pharmacokinetic constraints and lack of target specificity. Newer approaches including isoform-specific NKCC1 inhibitors with increased central nervous system penetration, and direct and indirect strategies to enhance KCC2-mediated neuronal chloride extrusion, might allow therapeutic modulation of the GABAergic system for neonatal seizure treatment. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here.
Collapse
Affiliation(s)
- Martin Puskarjov
- Department of Biosciences and Neuroscience Center, University of HelsinkiHelsinki, Finland
| | - Kristopher T Kahle
- Department of Neurosurgery, Harvard Medical School, Massachusetts General HospitalBoston, Massachusetts, U.S.A
| | - Eva Ruusuvuori
- Department of Biosciences and Neuroscience Center, University of HelsinkiHelsinki, Finland
| | - Kai Kaila
- Department of Biosciences and Neuroscience Center, University of HelsinkiHelsinki, Finland
| |
Collapse
|
11
|
Abstract
The treatment of neonatal seizures has not changed significantly over the last 50 years despite advances in antiepileptic drug (AED) development for older children and adults. Recently new drugs have emerged some of which address age-specific challenges or mechanisms and will be discussed in this review. The loop diuretic bumetanide blocks the neuronal NKCC1 co-transporter and is thought specifically to supress seizures in the immature brain. Levetiracetam has been used in children and infants with good efficacy, an excellent safety profile, and near-ideal pharmacokinetic characteristics. Randomised controlled trials are now underway to test the efficacy of some newer AEDs for neonatal seizures. Topiramate has been shown to have neuroprotective properties in addition to its antiepileptic action and trials in babies with hypoxic-ischaemic encephalopathy are now planned. There is an urgent need to develop age-specific AEDs for preterm and term babies. These drugs must be evaluated with multicentre, collaborative trials using innovative methods and high ethical standards to overcome age-specific challenges with the ultimate aim of improving the outcome for neonates with seizures.
Collapse
|
12
|
Cleary RT, Sun H, Huynh T, Manning SM, Li Y, Rotenberg A, Talos DM, Kahle KT, Jackson M, Rakhade SN, Berry G, Jensen FE. Bumetanide enhances phenobarbital efficacy in a rat model of hypoxic neonatal seizures. PLoS One 2013; 8:e57148. [PMID: 23536761 PMCID: PMC3594228 DOI: 10.1371/journal.pone.0057148] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/17/2013] [Indexed: 01/30/2023] Open
Abstract
Neonatal seizures can be refractory to conventional anticonvulsants, and this may in part be due to a developmental increase in expression of the neuronal Na(+)-K(+)-2 Cl(-) cotransporter, NKCC1, and consequent paradoxical excitatory actions of GABAA receptors in the perinatal period. The most common cause of neonatal seizures is hypoxic encephalopathy, and here we show in an established model of neonatal hypoxia-induced seizures that the NKCC1 inhibitor, bumetanide, in combination with phenobarbital is significantly more effective than phenobarbital alone. A sensitive mass spectrometry assay revealed that bumetanide concentrations in serum and brain were dose-dependent, and the expression of NKCC1 protein transiently increased in cortex and hippocampus after hypoxic seizures. Importantly, the low doses of phenobarbital and bumetanide used in the study did not increase constitutive apoptosis, alone or in combination. Perforated patch clamp recordings from ex vivo hippocampal slices removed following seizures revealed that phenobarbital and bumetanide largely reversed seizure-induced changes in EGABA. Taken together, these data provide preclinical support for clinical trials of bumetanide in human neonates at risk for hypoxic encephalopathy and seizures.
Collapse
Affiliation(s)
- Ryan T. Cleary
- Department of Neurology, Children’s Hospital Boston, Boston, Massachusetts, United States of America
| | - Hongyu Sun
- Department of Neurology, Children’s Hospital Boston, Boston, Massachusetts, United States of America
| | - Thanhthao Huynh
- Department of Neurology, Children’s Hospital Boston, Boston, Massachusetts, United States of America
| | - Simon M. Manning
- Department of Neurology, Children’s Hospital Boston, Boston, Massachusetts, United States of America
- Division of Newborn Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Yijun Li
- Division of Genetics and Metabolism, Children’s Hospital Boston, Boston, Massachusetts, United States of America
| | - Alexander Rotenberg
- Department of Neurology, Children’s Hospital Boston, Boston, Massachusetts, United States of America
| | - Delia M. Talos
- Department of Neurology, Children’s Hospital Boston, Boston, Massachusetts, United States of America
| | - Kristopher T. Kahle
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michele Jackson
- Department of Neurology, Children’s Hospital Boston, Boston, Massachusetts, United States of America
| | - Sanjay N. Rakhade
- Department of Neurology, Children’s Hospital Boston, Boston, Massachusetts, United States of America
| | - Gerard Berry
- Division of Genetics and Metabolism, Children’s Hospital Boston, Boston, Massachusetts, United States of America
| | - Frances E. Jensen
- Department of Neurology, Children’s Hospital Boston, Boston, Massachusetts, United States of America
- Program in Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
13
|
Koyama R. The use of organotypic slice cultures for the study of epileptogenesis. Neuropathology 2013; 33:475-9. [PMID: 23384238 DOI: 10.1111/neup.12019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 12/27/2012] [Indexed: 11/30/2022]
Abstract
Epilepsy is a nervous system disorder characterized by recurrent seizures. Among several types of epilepsy, which accounts for a significant portion of the disease worldwide, temporal lobe epilepsy (TLE) is one of the most common types of intractable epilepsy in adulthood. It has been suggested that complex febrile seizures in early life are associated with the development of TLE later in life; however, cellular and molecular links between febrile seizures and TLE remain unclear because of the lack of an appropriate in vitro system. Using rat hippocampal slice cultures, in which many features of native organotypic organization are retained, we found that the dentate granule cells exhibit aberrant migration in the dentate hilus via enhanced excitatory GABAA receptor (GABAA -R) signaling, which results in granule cell ectopia that persists into adulthood. We further found that the granule cell ectopia is associated with spontaneous limbic seizures in adulthood. Importantly, both of these phenomena were prevented by inhibiting Na(+) K(+) 2Cl(-) co-transporter (NKCC1) which mediates the excitatory action of GABA.
Collapse
Affiliation(s)
- Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
14
|
Eftekhari S, Mehvari Habibabadi J, Najafi Ziarani M, Hashemi Fesharaki SS, Gharakhani M, Mostafavi H, Joghataei MT, Beladimoghadam N, Rahimian E, Hadjighassem MR. Bumetanide reduces seizure frequency in patients with temporal lobe epilepsy. Epilepsia 2012; 54:e9-12. [DOI: 10.1111/j.1528-1167.2012.03654.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Bulkley CF, Johnson PN, Henry E, Harrison D, Lewis TV, Miller JL. Bumetanide continuous-infusion dosing in critically ill pediatric patients. Am J Health Syst Pharm 2012; 69:1458, 1460-1. [DOI: 10.2146/ajhp120056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Christina F. Bulkley
- Office of Experiential Education Department of Pharmacy College of Pharmacy University of Oklahoma Oklahoma City, OK
| | - Peter N. Johnson
- Department of Pharmacy, Clinical and Administrative Sciences College of Pharmacy University of Oklahoma
| | - Emilie Henry
- Section of Critical Care Department of Pediatrics College of Medicine University of Oklahoma
| | - Donald Harrison
- Department of Pharmacy, Clinical and Administrative Sciences College of Pharmacy University of Oklahoma
| | - Teresa V. Lewis
- Department of Pharmacy, Clinical and Administrative Sciences College of Pharmacy University of Oklahoma
| | - Jamie L. Miller
- Department of Pharmacy, Clinical and Administrative Sciences College of Pharmacy University of Oklahoma P.O. Box 26901 Oklahoma City, OK 73117
| |
Collapse
|
16
|
Abstract
There has been considerable interest in using bumetanide, a diuretic chloride importer NKCC1 antagonist, to reduce intracellular chloride ([Cl(-)](i)) in epileptic neurons, thereby shifting the polarity of GABA from excitatory to inhibitory and ameliorating the actions of GABA-acting antiepileptic drugs. However, a recent study raises the important issue of potential deleterious actions of bumetanide on immature neurons, because reduction of (Cl(-))(i) also alleviates a major source of excitation in developing neurons, upon which GABA exerts a trophic action. This review considers the importance of separating intrauterine from postnatal effects of bumetanide in normal versus pathologic neurons.
Collapse
|
17
|
Abstract
The loop diuretics furosemide and bumetanide are used widely for the management of fluid overload in both acute and chronic disease states. To date, most pharmacokinetic studies in neonates have been conducted with furosemide and little is known about bumetanide. The aim of this article was to review the published data on the pharmacology of furosemide and bumetanide in neonates and infants in order to provide a critical analysis of the literature, and a useful tool for physicians. The bibliographic search was performed electronically using PubMed and EMBASE databases as search engines and March 2011 was the cutoff point. The half-life (t(½)) of both furosemide and bumetanide is considerably longer in neonates than in adults and consequently the clearance (CL) of these drugs is reduced at birth. In healthy volunteers, plasma t(½) of furosemide ranges from 33 to 100 minutes, whereas in neonates it ranges from 8 to 27 hours. The volume of distribution (V(d)) of furosemide undergoes little variation during neonate maturation. The dose of furosemide, administered by intermittent intravenous infusion, is 1 mg/kg and may increase to a maximum of 2 mg/kg every 24 hours in premature infants and every 12 hours in full-term infants. Comparison of continuous infusion versus intermittent infusion of furosemide showed that the diuresis is more controlled with fewer hemodynamic and electrolytic variations during continuous infusion. The appropriate infusion rate of furosemide ranges from 0.1 to 0.2 mg/kg/h and when the diuresis is <1 mL/kg/h the infusion rate may be increased to 0.4 mg/kg/h. Treatment with theophylline before administration of furosemide results in a significant increase of urine flow rate. Bumetanide is more potent than furosemide and its dose after intermittent intravenous infusion ranges from 0.005 to 0.1 mg/kg every 24 hours. The t(½) of bumetanide in neonates ranges from 1.74 to 7.0 hours. Up to now, no data are available on the continuous infusion of bumetanide. Extracorporeal membrane oxygenation (ECMO) is used for a variety of indications including sepsis, persistent pulmonary hypertension, meconium aspiration syndrome, cardiac defects and congenital diaphragmatic hernia. There are two studies of furosemide in neonates undergoing ECMO and only one on the pharmacokinetics of bumetanide under ECMO. When ECMO was conducted for 72 hours, the total amount of furosemide administered was 7.0 mg/kg, and the urine production in the 3 days of treatment was about 6 mL/kg/h, which is the target value. The t(½) of bumetanide in neonates during ECMO was extremely variable. CL, t(½), and V(d) were 0.63 mL/min/kg, 13.2 hours, and 0.45 L/kg, respectively. Furosemide may be administered by inhalation and inhibits the bronco-constrictive effect of exercise, cold air ventilation and antigen challenge. However, inhaled furosemide is not active in infants with viral bronchiolitis and its effect on broncho-pulmonary dysplasia is still uncertain. Furosemide does not significantly increase the risk of failure of patent ductus arteriosus closure when indomethacin or ibuprofen have been co-administered. Infants with low birth weight treated long-term with furosemide are at risk for the development of intra-renal calcification. Furosemide therapy above 10 mg/kg bodyweight cumulative dose had a 48-fold increased risk of nephrocalcinosis. The use of furosemide in combination with indomethacin increased the incidence of acute renal failure. The maturation of the kidney governs the pharmacokinetics of furosemide and bumetanide in the infant. CL and t(½) are influenced by development, and this must be taken into consideration when planning a dosage regimen with these drugs.
Collapse
|
18
|
GABAergic excitation after febrile seizures induces ectopic granule cells and adult epilepsy. Nat Med 2012; 18:1271-8. [DOI: 10.1038/nm.2850] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 05/31/2012] [Indexed: 11/08/2022]
|
19
|
Pediatric cardiovascular drug dosing in critically ill children and extracorporeal membrane oxygenation. J Cardiovasc Pharmacol 2011; 58:126-32. [PMID: 21346597 DOI: 10.1097/fjc.0b013e318213aac2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cardiovascular disease in children is common and results in significant morbidity and mortality. The sickest children with cardiovascular disease may require support with extracorporeal membrane oxygenation (ECMO), which provides life-saving assistance for children with refractory cardiorespiratory failure. Many classes of cardiovascular drugs are used in children, but very few of these agents have been well studied in children. The knowledge gap is even more pronounced in children supported by ECMO. Pharmacokinetic (PK) data collected to date (primarily from antibiotics and sedatives) suggest that the ECMO circuit has the potential to significantly alter the PK of drugs including changes in clearance and volume of distribution. Of all cardiovascular drugs administered to children supported by ECMO, only 11 have been partially studied and reported in the medical literature. Esmolol, amiodarone, nesiritide, bumetanide, sildenafil, and prostaglandin E1 seem to require dosing modifications in children supported by ECMO, whereas it seems that hydralazine, nicardipine, furosemide, epinephrine, and dopamine can be dosed similarly to children not supported by ECMO. However, trials evaluating the PK of these drugs in patients supported by ECMO are extremely limited (ie, case reports), and therefore, definitive dosing recommendations are not plausible. Research efforts should focus on evaluating the PK of drugs in patients on ECMO to avoid therapeutic failures or unnecessary toxicities.
Collapse
|
20
|
Abstract
OBJECTIVE To determine the effects of bumetanide in preterm infants with oliguric acute renal failure (OARF). STUDY DESIGN Retrospective data review and multivariate analysis of urine output and serum creatinine, blood urea nitrogen, Na, K, Cl, and Ca levels before, during, and after bumetanide therapy in preterm infants with OARF whose conditions did not respond to furosemide therapy. RESULTS A total of 35 infants received bumetanide for OARF after an initial trial of furosemide. Their birth weight, gestational age at birth, and postconceptional age at OARF were 811 ± 326 g, 26 ± 2.75 wks, and 29.2 ± 2.7 wks, respectively. Twenty-nine of the 35 infants (83%) responded to bumetanide. Seventeen of the 35 infants subsequently died in the hospital due to multiorgan dysfunction. For the survivors (n = 18) and 11 of 17 of nonsurvivors, urine output increased from 0.6 ± 0.6 mL/kg/hr to 3.0 ± 2.1 mL/kg/hr during bumetanide therapy (p < .0005). Serum creatinine levels increased from 2.13 ± 0.83 mg/dL to 2.3 ± 0.92 mg/dL (p = .04) during bumetanide treatment, whereas blood urea nitrogen levels decreased after bumetanide therapy from 38 ± 19 mg/dL to 31.67 ± 21.6 mg/dL (p = .049). No significant changes were noted in serum sodium, chloride, or calcium concentration. CONCLUSIONS Bumetanide therapy significantly increased urine output within 24-48 hrs, but its use was associated with a transient increase in serum creatinine level. Bumetanide can be used in preterm infants to reverse oliguria when therapy with furosemide fails. Prospective, randomized, controlled trials with long-term follow-up in preterm infants are necessary to establish the usefulness of bumetanide for OARF.
Collapse
|
21
|
Lemonnier E, Ben-Ari Y. The diuretic bumetanide decreases autistic behaviour in five infants treated during 3 months with no side effects. Acta Paediatr 2010; 99:1885-8. [PMID: 20608900 DOI: 10.1111/j.1651-2227.2010.01933.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
UNLABELLED The inhibitory transmitter GABA has been suggested to play an important role in infantile autistic syndrome (IAS), and extensive investigations suggest that excitatory actions of GABA in neurological disorders are because of a persistent increase of [Cl(-) ](I) . AIMS To test the effects of the chloride co-transporter NKCC1 diuretic compound Bumetanide that reduces [Cl(-) ](I) on IAS. METHODS Bumetanide was administered daily (1mg daily) during a 3-month period and clinical and biological tests made. We used 5 standard IAS severity tests - Childhood Autism Rating Scale, Aberrant Behaviour Checklist, Clinical Global Impressions; Repetitive and Restrictive Behaviour and the Regulation Disorder Evaluation Grid. RESULTS We report a significant improvement in IAS with no side effects. CONCLUSION Bumetanide decreases autistic behaviour with no side effects suggesting that diuretic agents may exert beneficial effects on IAS and that alterations of the actions of GABA may be efficient in IAS treatment calling for large scale randomized trials.
Collapse
Affiliation(s)
- Eric Lemonnier
- Centre de Resssources autisme de Bretagne, CHRU Brest Hopital Bohars, Bohars, France.
| | | |
Collapse
|
22
|
Staley KJ. Wrong-way chloride transport: is it a treatable cause of some intractable seizures? Epilepsy Curr 2010; 6:124-7. [PMID: 17260033 PMCID: PMC1783434 DOI: 10.1111/j.1535-7511.2006.00119.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Despite decades of research and a half dozen new anticonvulsant agents, some types of seizures are as untreatable now as they were in the days of bromides. These treatment-resistant seizures suggest that some of the assumptions about anticonvulsant mechanisms may need revision. This review will focus on one of the bedrock assumptions of epileptology that the neurotransmitter GABA inhibits neuronal activity, and therefore, agents that increase GABA activity should increase inhibition and consequently decrease the abnormal neuronal activity that occurs during a seizure.
Collapse
Affiliation(s)
- Kevin J Staley
- Pediatrics and Neurology, The Children's Hospital, University of Colorado, USA
| |
Collapse
|
23
|
Glykys J, Dzhala VI, Kuchibhotla KV, Feng G, Kuner T, Augustine G, Bacskai BJ, Staley KJ. Differences in cortical versus subcortical GABAergic signaling: a candidate mechanism of electroclinical uncoupling of neonatal seizures. Neuron 2009; 63:657-72. [PMID: 19755108 DOI: 10.1016/j.neuron.2009.08.022] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 08/19/2009] [Accepted: 08/19/2009] [Indexed: 01/24/2023]
Abstract
Electroclinical uncoupling of neonatal seizures refers to electrographic seizure activity that is not clinically manifest. Uncoupling increases after treatment with Phenobarbital, which enhances the GABA(A) receptor (GABA(A)R) conductance. The effects of GABA(A)R activation depend on the intracellular Cl(-) concentration ([Cl(-)](i)) that is determined by the inward Cl(-) transporter NKCC1 and the outward Cl(-) transporter KCC2. Differential maturation of Cl(-) transport observed in cortical versus subcortical regions should alter the efficacy of GABA-mediated inhibition. In perinatal rat pups, most thalamic neurons maintained low [Cl(-)](i) and were inhibited by GABA. Phenobarbital suppressed thalamic seizure activity. Most neocortical neurons maintained higher [Cl(-)](i), and were excited by GABA(A)R activation. Phenobarbital had insignificant anticonvulsant responses in the neocortex until NKCC1 was blocked. Regional differences in the ontogeny of Cl(-) transport may thus explain why seizure activity in the cortex is not suppressed by anticonvulsants that block the transmission of seizure activity through subcortical networks.
Collapse
Affiliation(s)
- Joseph Glykys
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kahle KT, Barnett SM, Sassower KC, Staley KJ. Decreased seizure activity in a human neonate treated with bumetanide, an inhibitor of the Na(+)-K(+)-2Cl(-) cotransporter NKCC1. J Child Neurol 2009; 24:572-6. [PMID: 19406757 DOI: 10.1177/0883073809333526] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neonatal seizures have devastating consequences for brain development and are inadequately treated by available antiepileptics. In neonates, gamma-aminobutyric acid (GABA) is an excitatory neurotransmitter due to elevated levels of intraneuronal chloride achieved by robust activity of the Na(+)-K(+)-2Cl( -) cotransporter (NKCC1). This depolarizing action of GABA likely contributes to the lowered seizure threshold, increased seizure propensity, and poor efficacy of GABAergic anticonvulsants among infants. The diuretic bumetanide inhibits NKCC1 and silences seizure activity in rodent models of neonatal seizures, but its effect on seizures in human neonates is unknown. Continuous electroencephalography (EEG) monitoring was used to quantify the number, duration, and frequency of seizures 2 hours before and after the administration of bumetanide in a neonate with intractable multifocal seizures. Significant reductions in mean seizure duration and frequency were noted following treatment, with no associated clinical side effects or metabolic imbalances. These results suggest bumetanide may exert antiepileptic effects in human neonates.
Collapse
Affiliation(s)
- Kristopher T Kahle
- Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
25
|
Kahle KT, Staley KJ. The bumetanide-sensitive Na-K-2Cl cotransporter NKCC1 as a potential target of a novel mechanism-based treatment strategy for neonatal seizures. Neurosurg Focus 2009; 25:E22. [PMID: 18759624 DOI: 10.3171/foc/2008/25/9/e22] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Seizures that occur during the neonatal period do so with a greater frequency than at any other age, have profound consequences for cognitive and motor development, and are difficult to treat with the existing series of antiepileptic drugs. During development, gamma-aminobutyric acid (GABA)ergic neurotransmission undergoes a switch from excitatory to inhibitory due to a reversal of neuronal chloride (Cl()) gradients. The intracellular level of chloride ([Cl()](i)) in immature neonatal neurons, compared with mature adult neurons, is about 20-40 mM higher due to robust activity of the chloride-importing Na-K-2Cl cotransporter NKCC1, such that the binding of GABA to ligand-gated GABA(A) receptor-associated Cl() channels triggers Cl() efflux and depolarizing excitation. In adults, NKCC1 expression decreases and the expression of the genetically related chloride-extruding K-Cl cotransporter KCC2 increases, lowering [Cl()](i) to a level such that activation of GABA(A) receptors triggers Cl() influx and inhibitory hyperpolarization. The excitatory action of GABA in neonates, while playing an important role in neuronal development and synaptogenesis, accounts for the decreased seizure threshold, increased seizure propensity, and poor efficacy of GABAergic anticonvulsants in this age group. Bumetanide, a furosemide-related diuretic already used to treat volume overload in neonates, is a specific inhibitor of NKCC1 at low doses, can switch the GABA equilibrium potential of immature neurons from depolarizing to hyperpolarizing, and has recently been shown to inhibit epileptic activity in vitro and in vivo in animal models of neonatal seizures. The fundamental role of NKCC1 in establishing excitatory GABAergic neurotransmission in the neonate makes it a tempting target of a novel mechanism-based anticonvulsant strategy that could utilize the well-known pharmacology of bumetanide to help treat neonatal seizures.
Collapse
Affiliation(s)
- Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
26
|
Kahle KT, Staley KJ, Nahed BV, Gamba G, Hebert SC, Lifton RP, Mount DB. Roles of the cation-chloride cotransporters in neurological disease. NATURE CLINICAL PRACTICE. NEUROLOGY 2008; 4:490-503. [PMID: 18769373 DOI: 10.1038/ncpneuro0883] [Citation(s) in RCA: 289] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 07/08/2008] [Indexed: 02/02/2023]
Abstract
In the nervous system, the intracellular chloride concentration ([Cl(-)](i)) determines the strength and polarity of gamma-aminobutyric acid (GABA)-mediated neurotransmission. [Cl(-)](i) is determined, in part, by the activities of the SLC12 cation-chloride cotransporters (CCCs). These transporters include the Na-K-2Cl cotransporter NKCC1, which mediates chloride influx, and various K-Cl cotransporters--such as KCC2 and KCC3-that extrude chloride. A precise balance between NKCC1 and KCC2 activity is necessary for inhibitory GABAergic signaling in the adult CNS, and for excitatory GABAergic signaling in the developing CNS and the adult PNS. Altered chloride homeostasis, resulting from mutation or dysfunction of NKCC1 and/or KCC2, causes neuronal hypoexcitability or hyperexcitability; such derangements have been implicated in the pathogenesis of seizures and neuropathic pain. [Cl(-)](i) is also regulated to maintain normal cell volume. Dysfunction of NKCC1 or of swelling-activated K-Cl cotransporters has been implicated in the damaging secondary effects of cerebral edema after ischemic and traumatic brain injury, as well as in swelling-related neurodegeneration. CCCs represent attractive therapeutic targets in neurological disorders the pathogenesis of which involves deranged cellular chloride homoestasis.
Collapse
Affiliation(s)
- Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Dzhala VI, Brumback AC, Staley KJ. Bumetanide enhances phenobarbital efficacy in a neonatal seizure model. Ann Neurol 2008; 63:222-35. [DOI: 10.1002/ana.21229] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
van der Vorst MMJ, Kist JE, van der Heijden AJ, Burggraaf J. Diuretics in pediatrics : current knowledge and future prospects. Paediatr Drugs 2006; 8:245-64. [PMID: 16898855 DOI: 10.2165/00148581-200608040-00004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
This review summarizes current knowledge on the pharmacology, pharmacokinetics, pharmacodynamics, and clinical application of the most commonly used diuretics in children. Diuretics are frequently prescribed drugs in children. Their main indication is to reduce fluid overload in acute and chronic disease states such as congestive heart failure and renal failure. As with most drugs used in children, optimal dosing schedules are largely unknown and empirical. This is undesirable as it can potentially result in either under- or over-treatment with the possibility of unwanted effects. The pharmacokinetics of diuretics vary in the different pediatric age groups as well as in different disease states. To exert their action, all diuretics, except spironolactone, have to reach the tubular lumen by glomerular filtration and/or proximal tubular secretion. Therefore, renal maturation and function influence drug delivery and consequently pharmacodynamics. Currently advised doses for diuretics are largely based on adult pharmacokinetic and pharmacodynamic studies. Therefore, additional pharmacokinetic and pharmacodynamic studies for the different pediatric age groups are necessary to develop dosing regimens based on pharmacokinetic and pharmacodynamic models for all routes of administration.
Collapse
|
29
|
Dzhala VI, Talos DM, Sdrulla DA, Brumback AC, Mathews GC, Benke TA, Delpire E, Jensen FE, Staley KJ. NKCC1 transporter facilitates seizures in the developing brain. Nat Med 2005; 11:1205-13. [PMID: 16227993 DOI: 10.1038/nm1301] [Citation(s) in RCA: 694] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 08/24/2005] [Indexed: 12/21/2022]
Abstract
During development, activation of Cl(-)-permeable GABA(A) receptors (GABA(A)-R) excites neurons as a result of elevated intracellular Cl(-) levels and a depolarized Cl(-) equilibrium potential (E(Cl)). GABA becomes inhibitory as net outward neuronal transport of Cl(-) develops in a caudal-rostral progression. In line with this caudal-rostral developmental pattern, GABAergic anticonvulsant compounds inhibit motor manifestations of neonatal seizures but not cortical seizure activity. The Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) facilitates the accumulation of Cl(-) in neurons. The NKCC1 blocker bumetanide shifted E(Cl) negative in immature neurons, suppressed epileptiform activity in hippocampal slices in vitro and attenuated electrographic seizures in neonatal rats in vivo. Bumetanide had no effect in the presence of the GABA(A)-R antagonist bicuculline, nor in brain slices from NKCC1-knockout mice. NKCC1 expression level versus expression of the Cl(-)-extruding transporter (KCC2) in human and rat cortex showed that Cl(-) transport in perinatal human cortex is as immature as in the rat. Our results provide evidence that NKCC1 facilitates seizures in the developing brain and indicate that bumetanide should be useful in the treatment of neonatal seizures.
Collapse
Affiliation(s)
- Volodymyr I Dzhala
- Department of Neurology, School of Medicine, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, Colorado 80262, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nava-Ocampo AA, Velázquez-Armenta EY, Reyes-Pérez H, Ramirez-Lopez E, Ponce-Monter H. Simplified method to quantify furosemide in urine by high-performance liquid chromatography and ultraviolet detection. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1999; 730:49-54. [PMID: 10437671 DOI: 10.1016/s0378-4347(99)00176-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Simplified reversed-phase high-performance liquid chromatographic method with ultraviolet detection at 280 nm without extraction procedure is described to quantify furosemide in rabbit and human urine. An internal standard was not used. The lower limit of quantitation was 0.750 microg/ml using 50 microl urine samples (100 microl of total injection volume), and linear response was tested from 0.750 to 250 microg/ml in both humans and rabbits. Within and between-day accuracy and precision were always below 10% at all analyzed concentrations. Validation data showed that this method is linear, sensitive, selective, specific, accurate and reproducible.
Collapse
Affiliation(s)
- A A Nava-Ocampo
- Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | | | | | | |
Collapse
|
31
|
Marshall JD, Wells TG, Letzig L, Kearns GL. Pharmacokinetics and pharmacodynamics of bumetanide in critically ill pediatric patients. J Clin Pharmacol 1998; 38:994-1002. [PMID: 9824779 DOI: 10.1177/009127009803801102] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This prospective, open-label, clinical trial was conducted to describe the pharmacology of bumetanide in pediatric patients with edema. Nine infants, children, and young adults with edema who were selected for diuretic therapy were studied. After a brief baseline period, each patient received parenteral bumetanide 0.2 mg/kg divided into two equal doses and administered every 12 hours. Urine excretion rate, fractional and total excretion of Na+, Cl-, and K+, creatinine clearance, and plasma and urine concentrations of bumetanide were measured at multiple intervals after drug administration. Bumetanide caused significant increases in the excretion rate of urine and each measured electrolyte. Unexpectedly, creatinine clearance increased dramatically after each dose. Adverse effects, including hypokalemia and hypochloremic metabolic alkalosis, were evident by the end of the treatment period. The plasma pharmacokinetics of bumetanide revealed mean +/- standard deviation values for total clearance and apparent volume of distribution of 3.9 +/- 2.4 mL/min/kg and 0.74 +/- 0.54 L/kg, respectively. Patients excreted an average of 34% of each dose unchanged in the urine over 12 hours. Plasma concentrations of bumetanide accurately predicted several renal effects using a link model with similar pharmacodynamic parameters in each case. Parenteral bumetanide 0.1 mg/kg administered every 12 hours produced significant beneficial and adverse effects in these critically ill pediatric patients with edema. Pharmacokinetic parameters are similar to those previously reported for infants. Plasma concentrations of bumetanide can predict effect-compartment pharmacodynamics.
Collapse
Affiliation(s)
- J D Marshall
- Department of Pediatrics, University of Missouri-Kansas City, USA
| | | | | | | |
Collapse
|
32
|
Sullivan JE, Witte MK, Yamashita TS, Myers CM, Blumer JL. Dose-ranging evaluation of bumetanide pharmacodynamics in critically ill infants. Clin Pharmacol Ther 1996; 60:424-34. [PMID: 8873690 DOI: 10.1016/s0009-9236(96)90199-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Determine the diuretic effects of single intravenous doses of bumetanide in volume-overloaded critically ill infants. METHODS A prospective, open-label study was carried out in 56 infants aged 0 to 6 months who required diuretic therapy. Each patient received a single intravenous dose of bumetanide. Doses selected in sequential order ranged from 0.005 to 0.10 mg/kg. Determinations of urine volume, electrolytes, creatinine levels, and osmolality were performed before (collected from -2 to -4 hours to time 0) and at 1, 2, 3, 4, 6, and 12 hours after bumetanide dosing. Serum samples collected at time 0 and at 5, 15, 30, 60, 120, 180, 240, 360, and 480 minutes and urine aliquots collected at time 0, 0 to 1, 1 to 2, 2 to 3, 3 to 4, 4 to 6, and 6 to 12 hours were analyzed for bumetanide concentration. Individual changes in urine flow rate and electrolyte excretion were plotted against corresponding bumetanide excretion rates, taken as the effective dose of the drug. RESULTS Peak bumetanide excretion rates increased linearly with increasing doses of drug. Time course patterns for urine flow rate and electrolyte excretion were similar for all dosage groups. Urine flow rate and electrolyte excretion increased linearly up to a bumetanide excretion rate of approximately 7 micrograms/kg/hr and either plateaued (urine flow rate) or declined at a bumetanide excretion rate of > 10 micrograms/kg/hr. Diuretic efficiency of bumetanide was maximal at doses of 0.005 to 0.010 mg/kg but decreased at higher doses. CONCLUSIONS Maximal diuretic responses occurred at a bumetanide excretion rate of about 7 micrograms/kg/hr, corresponding to doses of 0.035 to 0.040 mg/kg. Higher doses produced a proportionately higher bumetanide excretion rate but no increased diuretic effect. Lower doses of bumetanide had the greatest diuretic efficiency, suggesting that continuous infusion of low doses of bumetanide or intermittent low-dose boluses may produce optimal diuretic responses in critically ill infants.
Collapse
Affiliation(s)
- J E Sullivan
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|
33
|
Sullivan JE, Witte MK, Yamashita TS, Myers CM, Blumer JL. Analysis of the variability in the pharmacokinetics and pharmacodynamics of bumetanide in critically ill infants. Clin Pharmacol Ther 1996; 60:414-23. [PMID: 8873689 DOI: 10.1016/s0009-9236(96)90198-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Account for the interindividual variability in the pharmacokinetics and pharmacodynamics of bumetanide after intravenous administration of single doses to critically ill infants. METHODS This prospective open-label study was carried out in the pediatric intensive care unit of a university-based children's hospital. Fifty-three volume-overloaded critically ill infants (age range, 4 days to 6 months) were divided into two groups: those with heart disease (31 infants) and those with lung disease (22 infants). Each patient received a single intravenous bolus dose of bumetanide. Doses, selected in sequential order, ranged from 0.005 to 0.100 mg/kg. Age was used as a continuous variable to determine its effects on the variability in the pharmacokinetics and pharmacodynamics of bumetanide. Hierarchical multiple regression analyses were used to assess the effects of age, disease, and other drugs on the variability in the effects of bumetanide. RESULTS Total clearance, renal clearance, and nonrenal clearance of bumetanide all increased with age (p < 0.05), but the ratio of renal clearance to total clearance remained constant at about 0.4. Half-life and mean residence time decreased markedly in the first month of life (p < 0.05). Bumetanide excretion rate normalized for dose also increased with increasing age. Patients with lung disease exhibited a significantly greater clearance and shorter half-life (p < 0.05) than those with heart disease, whereas volume of distribution was similar in both groups. The primary determinant of bumetanide excretion rate was the administered dose (73%). Dose-response curves for urine flow rate and electrolyte excretion were similar between disease groups. The time course of the effect of bumetanide excretion rate on pharmacodynamics responses was similar between disease groups, as was the duration of the diuretic effect. CONCLUSIONS The pharmacokinetics of bumetanide were influenced significantly by age and disease. Differences in pharmacokinetics between patients with lung and heart disease were primarily due to differences in total clearance. The administered dose of bumetanide and age were positive determinants of bumetanide excretion rate and pharmacodynamic responses. Pharmacodynamic responses as a function of bumetanide excretion rate were not significantly different between disease groups.
Collapse
Affiliation(s)
- J E Sullivan
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|