1
|
Bhattacharjee A, Kumar A, Ojha PK, Kar S. Artificial intelligence to predict inhibitors of drug-metabolizing enzymes and transporters for safer drug design. Expert Opin Drug Discov 2025; 20:621-641. [PMID: 40241626 DOI: 10.1080/17460441.2025.2491669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
INTRODUCTION Drug-metabolizing enzymes (DMEs) and transporters (DTs) play integral roles in drug metabolism and drug-drug interactions (DDIs) which directly impact drug efficacy and safety. It is well-established that inhibition of DMEs and DTs often leads to adverse drug reactions (ADRs) and therapeutic failure. As such, early prediction of such inhibitors is vital in drug development. In this context, the limitations of the traditional in vitro assays and QSAR models methods have been addressed by harnessing artificial intelligence (AI) techniques. AREAS COVERED This narrative review presents the insights gained from the application of AI for predicting DME and DT inhibitors over the past decade. Several case studies demonstrate successful AI applications in enzyme-transporter interaction prediction, and the authors discuss workflows for integrating these predictions into drug design and regulatory frameworks. EXPERT OPINION The application of AI in predicting DME and DT inhibitors has demonstrated significant potential toward enhancing drug safety and effectiveness. However, critical challenges involve the data quality, biases, and model transparency. The availability of diverse, high-quality datasets alongside the integration of pharmacokinetic and genomic data are essential. Lastly, the collaboration among computational scientists, pharmacologists, and regulatory bodies is pyramidal in tailoring AI tools for personalized medicine and safer drug development.
Collapse
Affiliation(s)
- Arnab Bhattacharjee
- Drug Discovery and Development Laboratory (DDD Lab), Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Ankur Kumar
- Drug Discovery and Development Laboratory (DDD Lab), Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Probir Kumar Ojha
- Drug Discovery and Development Laboratory (DDD Lab), Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Supratik Kar
- Chemometrics and Molecular Modeling Laboratory, Department of Chemistry and Physics, Kean University, Union, NJ, USA
| |
Collapse
|
2
|
Dhureja M, Chaturvedi P, Choudhary A, Kumar P, Munshi A. Molecular Insights of Drug Resistance in Epilepsy: Multi-omics Unveil. Mol Neurobiol 2025; 62:1-17. [PMID: 38753128 DOI: 10.1007/s12035-024-04220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/03/2024] [Indexed: 06/12/2024]
Abstract
Epilepsy is a devastating neurological disorder mainly associated with impaired synchronic discharge that leads to sensory, motor, and psychomotor impairments. Till now, about 30 anti-seizure medications (ASMs) have been approved for the management of epilepsy, yet one-third of individuals still have uncontrollable epilepsy and develop resistance. Drug resistance epilepsy (DRE) is defined as the condition where two ASMs fail to control the seizure in epileptic patients. The leading cause of the resistance was the extended use of ASMs. According to various studies, alterations in some genes and their expressions, along with specific metabolic impairments, are suggested to be associated with ASMs resistance and DRE pathophysiology. Several factors aid in the pathophysiology of DRE, such as alterations in protein-encoding genes such as neurotransmitter receptors, drug transporters, ion channels, and drug targets. Furthermore, the altered metabolite levels of metabolites implicated in neurotransmitter signaling, energetic pathways, oxidative stress, and neuroinflammatory signaling differentiate the epileptic patient from the DRE patient. Various DRE biomarkers can be identified using the "integrated omics approach," which includes the study of genomics, transcriptomics, and metabolomics. The current review has been compiled to understand the pathophysiological mechanisms of DRE by focusing on genomics, transcriptomics, and metabolomics. An effort has also been made to identify the therapeutic targets based on identifying significant markers by a multi-omics approach. This has the potential to develop novel therapeutic interventions in the future.
Collapse
Affiliation(s)
- Maanvi Dhureja
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Pragya Chaturvedi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anita Choudhary
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India.
| |
Collapse
|
3
|
Tagawa K, Maruo Y, Mimura Y, Ikushiro S. Effects of common genetic variants of human uridine diphosphate glucuronosyltransferase subfamilies on irinotecan glucuronidation. Toxicol Mech Methods 2023; 33:197-205. [PMID: 35930428 DOI: 10.1080/15376516.2022.2109229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The adverse effects (diarrhea and neutropenia) of irinotecan (7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin) are associated with genetic variants of uridine diphosphate glucuronosyltransferase 1A subfamilies (UGT1As). UGT1As are enzymes that metabolize the active form of irinotecan, 7-ethyl-10 hydroxycamptothecin (SN-38), by glucuronidation in the liver. They are widely known as predictive factors of severe adverse effects, such as neutropenia and diarrhea. Some studies have suggested that variants of UGT1As affect SN-38 glucuronidation activities, thus exerting severe adverse effects. We aimed to identify UGT1A isoforms that show SN-38 glucuronidation activity and determine the relationship between UGT1A variants and SN-38 glucuronidation in vitro. We found that UGT1A1 and UGT1A6-UGT1A10 displayed SN-38 glucuronidation activity. Among these, UGT1A1 was the most active. Furthermore, the variants of these isoforms showed decreased SN-38 glucuronidation activity. In our study, we compared the different variants of UGT1As, such as UGT1A1.6, UGT1A1.7, UGT1A1.27, UGT1A1.35, UGT1A7.3, UGT1A8.4, UGT1A10M59I, and UGT1A10T202I, to determine the differences in the reduction of glucuronidation. Our study elucidates the relationship between UGT1A variants and the level of glucuronidation associated with each variant. Therefore, testing can be done before the initiation of irinotecan treatment to predict potential toxicities and adverse effects.
Collapse
Affiliation(s)
- Kouji Tagawa
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Yoshihiro Maruo
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Yu Mimura
- Department of Pediatrics, Toyosato Hospital, Shiga, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Toyama Prefectural University, Toyama, Japan
| |
Collapse
|
4
|
Siddique A, Bashir S, Abbas M. Pharmacogenetics of Anticancer Drugs: Clinical Response and Toxicity. Cancer Treat Res 2023; 185:141-175. [PMID: 37306909 DOI: 10.1007/978-3-031-27156-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cancer is the most challenging disease for medical professionals to treat. The factors underlying the complicated situation include anticancer drug-associated toxicity, non-specific response, low therapeutic window, variable treatment outcomes, development of drug resistance, treatment complications, and cancer recurrence. The remarkable advancement in biomedical sciences and genetics, over the past few decades, however, is changing the dire situation. The discovery of gene polymorphism, gene expression, biomarkers, particular molecular targets and pathways, and drug-metabolizing enzymes have paved the way for the development and provision of targeted and individualized anticancer treatment. Pharmacogenetics is the study of genetic factors having the potential to affect clinical responses and pharmacokinetic and pharmacodynamic behaviors of drugs. This chapter emphasizes pharmacogenetics of anticancer drugs and its applications in improving treatment outcomes, selectivity, toxicity of the drugs, and discovering and developing personalized anticancer drugs and genetic methods for prediction of drug response and toxicity.
Collapse
Affiliation(s)
- Ammara Siddique
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Samra Bashir
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan.
| | - Mateen Abbas
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| |
Collapse
|
5
|
Characterization of Clofazimine Metabolism in Human Liver Microsomal Incubation In Vitro. Antimicrob Agents Chemother 2022; 66:e0056522. [PMID: 36190267 PMCID: PMC9578437 DOI: 10.1128/aac.00565-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clofazimine [N,5-bis(4-chlorophenyl)-3-[(propane-2-yl)rimino]-3,5-dihydrophenazin-2-amine] is an antimycobacterial agent used as a second-line antituberculosis (anti-TB) drug. Nonetheless, little information is known about the metabolic routes of clofazimine, and the enzymes involved in metabolism. This study aimed to characterize the metabolic pathways and enzymes responsible for the metabolism of clofazimine in human liver microsomes. Eight metabolites, including four oxidative metabolites, three glucuronide conjugates, and one sulfate conjugate were identified, and their structures were deduced based on tandem mass spectrometry (MS/MS) spectra. Hydroxylated clofazimine and hydrated clofazimine was generated even in the absence of the NADPH generating system presumably via a nonenzymatic pathway. Hydrolytic-dehalogenated clofazimine was catalyzed mainly by CYP1A2 whereas hydrolytic-deaminated clofazimine was formed by CYP3A4/A5. In case of glucuronide conjugates, UGT1A1, UGT1A3, and UGT1A9 showed catalytic activity toward hydroxylated and hydrated clofazimine glucuronide whereas hydrolytic-deaminated clofazimine glucuronide was catalyzed by UGT1A4, UGT1A9, UGT1A3, and UGT2B4. Our results suggested that CYP1A2 and CYP3A are involved in the formation of oxidative metabolites while UGT1A1, 1A3, 1A4, 1A9, and 2B4 are involved in the formation of glucuronide conjugates of oxidative metabolites of clofazimine.
Collapse
|
6
|
Zhuo H, Fan J, Zhang B, Shi Y, Zheng L, Chai Y, Yao L. Association of gallstone and polymorphisms of UGT1A1*27 and UGT1A1*28 in patients with hepatitis B virus-related liver failure. Open Med (Wars) 2022; 17:1455-1465. [PMID: 36128448 PMCID: PMC9449690 DOI: 10.1515/med-2022-0549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Genetic variation in UDP-glucuronosyltransferase 1A1 gene (UGT1A1) is a lithogenic risk factor for gallstone formation. This study aimed to assess genotype and allele frequencies of common UGT1A1 variants in patients with gallstone and hepatitis B virus (HBV)-related hepatic failure. This study enrolled 113 healthy individuals (CTRL), 54 patients with HBV infection (HBV), 134 patients with gallstone-free hepatic failure and HBV infection, and 34 patients with gallstone-related hepatic failure and HBV infection (GRHF). Peripheral venous blood samples were collected for genomic DNA isolation. Polymerase chain reaction amplification was carried out for UGT1A1, followed by direct sequencing. Analysis for genotype and allele frequencies of UGT1A1 variants (UGT1A1*6, UGT1A1*27, UGT1A1*28, and UGT1A1*60) was performed. The allele distributions of the four groups did not deviate from Hardy–Weinberg equilibrium. Allele (A) and genotype (CA) frequency distributions of UGT1A1*27 were significantly different between GRHF and CTRL, or between GRHF and HBV. GRHF and CTRL exhibited significant differences in allele (A) and genotype (CA) frequency distributions of UGT1A1*28. Linkage disequilibrium analysis suggested that haplotype G-G-[TA]7-T may be associated with gallstone in HBV-related hepatic failure. Our data reveal that UGT1A1*27 and UGT1A1*28 variants are significantly observed in patients with GRHF compared to healthy individuals.
Collapse
Affiliation(s)
- Haiyan Zhuo
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University , No. 312 Xihong Road , Fuzhou , Fujian, 350025 , P. R. China
| | - Jinhai Fan
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou , Fujian, 350025 , P. R. China
| | - Bifeng Zhang
- Department of Gastroenterology, Quanzhou First Hospital , Quanzhou , Fujian, 362000 , P. R. China
| | - Yixian Shi
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou , Fujian, 350025 , P. R. China
| | - Liqing Zheng
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou , Fujian, 350025 , P. R. China
| | - Yihong Chai
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou , Fujian, 350025 , P. R. China
| | - Lvfeng Yao
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University , No. 312 Xihong Road , Fuzhou , Fujian, 350025 , P. R. China
| |
Collapse
|
7
|
Kong X, Xu Y, Gao P, Liu Y, Wang X, Zhao M, Jiang Y, Yang H, Cao Y, Ma L. Rapid detection of the irinotecan-related UGT1A1*28 polymorphism by asymmetric PCR melting curve analysis using one fluorescent probe. J Clin Lab Anal 2022; 36:e24578. [PMID: 35766440 PMCID: PMC9396174 DOI: 10.1002/jcla.24578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/09/2022] [Accepted: 06/18/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Determination of UGT1A1 (TA)n polymorphism prior to irinotecan therapy is necessary to avoid severe adverse drug effects. Thus, accurate and reliable genotyping methods for (TA)n polymorphism are highly desired. Here, we present a new method for polymerase chain reaction (PCR) melting curve analysis using one fluorescent probe to discriminate the UGT1A1*1 [(TA)6 ] and *28 [(TA)7 ] genotypes. METHODS After protocol optimization, this technique was applied for genotyping of 64 patients (including 23 with UGT1A1*1/*1, 22 with *1/*28, and 19 with *28/*28) recruited between 2016 and 2021 in China-Japan Friendship Hospital. The accuracy of the method was evaluated by comparing the results with those of direct sequencing and fragment analysis. The intra- and inter-run precision of the melting temperatures (Tm s) were calculated to assess the reliability, and the limit of detection was examined to assess the sensitivity. RESULTS All genotypes were correctly identified with the new method, and its accuracy was higher than that of fragment analysis. The intra- and inter-run coefficients of variation for the Tm s were both ≤0.27%, with standard deviations ≤0.14°C. The limit of detection was 0.2 ng of input genomic DNA. CONCLUSION The developed PCR melting curve analysis using one fluorescent probe can provide accurate, reliable, rapid, simple, and low-cost detection of UGT1A1 (TA)n polymorphism, and its use can be easily generalized in clinical laboratories with a fluorescent PCR platform.
Collapse
Affiliation(s)
- Xiaomu Kong
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Ye Xu
- Engineering Research Centre of Molecular Diagnostics, Ministry of Education, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Peng Gao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Yi Liu
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Xuran Wang
- Engineering Research Centre of Molecular Diagnostics, Ministry of Education, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Meimei Zhao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Yongwei Jiang
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Hui Yang
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Yongtong Cao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Liang Ma
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
8
|
Li Y, Zheng H, Zhang X, Xi Y, Cheng M, Zhao Y, Wang L, Hua B. UGT1A1 Allele Test Not Only Minimizes the Toxicity But Also Maximizes the Therapeutic Effect of Irinotecan in the Treatment of Colorectal Cancer: A Narrative Review. Front Oncol 2022; 12:854478. [PMID: 35356222 PMCID: PMC8959381 DOI: 10.3389/fonc.2022.854478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022] Open
Abstract
Background Irinotecan is a first-line agent in the systematic treatment of colorectal cancer (CRC). Adjusting the dose of irinotecan according to the uridine diphosphate glucuronosyltransferase (UGT) 1A1 genotype reflects the principle of individualized and precision medicine, and may improve the chemotherapy response and survival of CRC. Methods To summarize the feasibility, efficacy and safety of high dose irinotecan in CRC patients with UGT1A1 wild-type or heterozygous alleles, PubMed, EMBASE, MEDLINE and the Cochrane Central Register of Controlled Trials online databases were searched from the date of creation to October 22, 2021. Results A total of 1,186 related literatures were searched, and 14 studies were included for review according to the inclusion criteria. The results indicated that the maximum tolerated dose of irinotecan in CRC patients with UGT1A1 wild-type or heterozygous variant was significantly higher than the conventional recommended dose. Chemotherapy based on high dose irinotecan improved the clinical efficacy in mCRC patients with UGT1A1*28 wild-type and heterozygous variant, and the toxicity was tolerated, as reflected in most studies. Conclusions We are optimistic about the application of high dose irinotecan for mCRC patients with UGT1A1*28 wild-type or heterozygous variant, which will provide a relatively clear direction for future research and certain norms for clinical practice.
Collapse
Affiliation(s)
- Yaoyuan Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiwen Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yupeng Xi
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengqi Cheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuwei Zhao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liya Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Zhao W, Meng H. Effects of genetic polymorphism of drug-metabolizing enzymes on the plasma concentrations of antiepileptic drugs in Chinese population. Bioengineered 2022; 13:7709-7745. [PMID: 35290166 PMCID: PMC9278974 DOI: 10.1080/21655979.2022.2036916] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/02/2022] Open
Abstract
As a chronic brain disease, epilepsy affects ~50 million people worldwide. The traditional antiepileptic drugs (AEDs) are widely applied but showing various problems. Although the new AEDs have partially solved the problems of traditional AEDs, the current clinical application of traditional AEDs are not completely replaced by new drugs, particularly due to the large individual differences in drug plasma concentrations and narrow therapeutic windows among patients. Therefore, it is still clinically important to continue to treat patients using traditional AEDs with individualized therapeutic plans. To date, our understanding of the molecular and genetic mechanisms regulating plasma concentrations of AEDs has advanced rapidly, expanding the knowledge on the effects of genetic polymorphisms of genes encoding drug-metabolizing enzymes on the plasma concentrations of AEDs. It is increasingly imperative to summarize and conceptualize the clinical significance of recent studies on individualized therapeutic regimens. In this review, we extensively summarize the critical effects of genetic polymorphisms of genes encoding drug-metabolizing enzymes on the plasma concentrations of several commonly used AEDs as well as the clinical significance of testing genotypes related to drug metabolism on individualized drug dosage. Our review provides solid experimental evidence and clinical guidance for the therapeutic applications of these AEDs.
Collapse
Affiliation(s)
- Weixuan Zhao
- Department of Neurology, the First Hospital of Jilin University, Jilin University, Changchun, China
| | - Hongmei Meng
- Department of Neurology, the First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
10
|
Wang Z, Wang X, Wang Z, Fan X, Yan M, Jiang L, Xia Y, Cao J, Liu Y. Prediction of Drug-Drug Interaction Between Dabrafenib and Irinotecan via UGT1A1-Mediated Glucuronidation. Eur J Drug Metab Pharmacokinet 2022; 47:353-361. [PMID: 35147853 DOI: 10.1007/s13318-021-00740-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Dabrafenib and irinotecan are two drugs that can be utilized to treat melanoma. A previous in vivo study has shown that dabrafenib enhances the antitumor activity of irinotecan in a xenograft model with unclear mechanism. OBJECTIVES This study aims to investigate the inhibition of dabrafenib on SN-38 (the active metabolite of irinotecan) glucuronidation, trying to elucidate the possible mechanism underlying the synergistic effect and to provide a basis for further development and optimization of this combination in clinical research. METHODS Recombinant human uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) and human liver microsomes (HLMs) were employed to catalyze the glucuronidation of SN-38 in vitro. Inhibition kinetic analysis and quantitative prediction study were combined to predict drug-drug interaction (DDI) potential in vivo. RESULTS Dabrafenib noncompetitively inhibited SN-38 glucuronidation in pooled HLMs and recombinant UGT1A1 with unbound inhibitor constant (Ki,u) values of 12.43 ± 0.28 and 3.89 ± 0.40 μM, respectively. Based on the in vitro Ki,u value and estimation of kinetic parameters, dabrafenib administered at 150 mg twice daily may result in about a 1-2% increase in the area under the curve (AUC) of SN-38 in vivo. However, the ratios of intra-enterocyte concentration of dabrafenib to Ki,u ([I]gut/Ki,u) are 2.73 and 8.72 in HLMs and recombinant UGT1A1, respectively, indicating a high risk of intestinal DDI when dabrafenib was used in combination with irinotecan. CONCLUSION Dabrafenib is a potent noncompetitive inhibitor of UGT1A1 and may bring potential risk of DDI when combined with irinotecan.
Collapse
Affiliation(s)
- Zhe Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, 2 Dagong Road, Liaodongwan New District, Panjin, 124221, China
| | - Xiaoyu Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, 2 Dagong Road, Liaodongwan New District, Panjin, 124221, China
| | - Zhen Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, 2 Dagong Road, Liaodongwan New District, Panjin, 124221, China
| | - Xiaoyu Fan
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, 2 Dagong Road, Liaodongwan New District, Panjin, 124221, China
| | - Mingrui Yan
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, 2 Dagong Road, Liaodongwan New District, Panjin, 124221, China
| | - Lili Jiang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, 2 Dagong Road, Liaodongwan New District, Panjin, 124221, China
| | - Yangliu Xia
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, 2 Dagong Road, Liaodongwan New District, Panjin, 124221, China
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China.
| | - Yong Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, 2 Dagong Road, Liaodongwan New District, Panjin, 124221, China.
| |
Collapse
|
11
|
Franczyk B, Rysz J, Gluba-Brzózka A. Pharmacogenetics of Drugs Used in the Treatment of Cancers. Genes (Basel) 2022; 13:311. [PMID: 35205356 PMCID: PMC8871547 DOI: 10.3390/genes13020311] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Pharmacogenomics is based on the understanding of the individual differences in drug use, the response to drug therapy (efficacy and toxicity), and the mechanisms underlying variable drug responses. The identification of DNA variants which markedly contribute to inter-individual variations in drug responses would improve the efficacy of treatments and decrease the rate of the adverse side effects of drugs. This review focuses only on the impact of polymorphisms within drug-metabolizing enzymes on drug responses. Anticancer drugs usually have a very narrow therapeutic index; therefore, it is very important to use appropriate doses in order to achieve the maximum benefits without putting the patient at risk of life-threatening toxicities. However, the adjustment of the appropriate dose is not so easy, due to the inheritance of specific polymorphisms in the genes encoding the target proteins and drug-metabolizing enzymes. This review presents just a few examples of such polymorphisms and their impact on the response to therapy.
Collapse
Affiliation(s)
| | | | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland; (B.F.); (J.R.)
| |
Collapse
|
12
|
Abstract
There are many factors which are known to cause variability in human in vitro enzyme kinetic data. Factors such as the source of enzyme and how it was prepared, the genetics and background of the donor, how the in vitro studies are designed, and how the data are analyzed contribute to variability in the resulting kinetic parameters. It is important to consider not only the factors which cause variability within an experiment, such as selection of a probe substrate, but also those that cause variability when comparing kinetic data across studies and laboratories. For example, the artificial nature of the microsomal lipid membrane and microenvironment in some recombinantly expressed enzymes, relative to those found in native tissue microsomes, has been shown to influence enzyme activity and thus can be a source of variability when comparing across the two different systems. All of these factors, and several others, are discussed in detail in the chapter below. In addition, approaches which can be used to visualize the uncertainty arising from the use of enzyme kinetic data within the context of predicting human pharmacokinetics are discussed.
Collapse
|
13
|
Reizine N, Vokes EE, Liu P, Truong TM, Nanda R, Fleming GF, Catenacci DV, Pearson AT, Parsad S, Danahey K, van Wijk XMR, Yeo KTJ, Ratain MJ, O’Donnell PH. Implementation of pharmacogenomic testing in oncology care (PhOCus): study protocol of a pragmatic, randomized clinical trial. Ther Adv Med Oncol 2020; 12:1758835920974118. [PMID: 33414846 PMCID: PMC7750903 DOI: 10.1177/1758835920974118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Many cancer patients who receive chemotherapy experience adverse drug effects. Pharmacogenomics (PGx) has promise to personalize chemotherapy drug dosing to maximize efficacy and safety. Fluoropyrimidines and irinotecan have well-known germline PGx associations. At our institution, we have delivered PGx clinical decision support (CDS) based on preemptively obtained genotyping results for a large number of non-oncology medications since 2012, but have not previously evaluated the utility of this strategy for patients initiating anti-cancer regimens. We hypothesize that providing oncologists with preemptive germline PGx information along with CDS will enable individualized dosing decisions and result in improved patient outcomes. METHODS Patients with oncologic malignancies for whom fluoropyrimidine and/or irinotecan-inclusive therapy is being planned will be enrolled and randomly assigned to PGx and control arms. Patients will be genotyped in a clinical laboratory across panels that include actionable variants in UGT1A1 and DPYD. For PGx arm patients, treating providers will be given access to the patient-specific PGx results with CDS prior to treatment initiation. In the control arm, genotyping will be deferred, and dosing will occur as per usual care. Co-primary endpoints are dose intensity deviation rate (the proportion of patients receiving dose modifications during the first treatment cycle), and grade ⩾3 treatment-related toxicities throughout the treatment course. Additional study endpoints will include cumulative drug dose intensity, progression-free survival, dosing of additional PGx supportive medications, and patient-reported quality of life and understanding of PGx. DISCUSSION Providing a platform of integrated germline PGx information may promote personalized chemotherapy dosing decisions and establish a new model of care to optimize oncology treatment planning.
Collapse
Affiliation(s)
- Natalie Reizine
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center and Biological Sciences, Chicago, IL, USA
- Center for Personalized Therapeutics, University of Chicago, Chicago, IL, USA
| | - Everett E. Vokes
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center and Biological Sciences, Chicago, IL, USA
| | - Ping Liu
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Tien M. Truong
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center and Biological Sciences, Chicago, IL, USA
- Center for Personalized Therapeutics, University of Chicago, Chicago, IL, USA
| | - Rita Nanda
- Department of Pharmacy, University of Chicago Medical Center, Chicago, IL, USA
| | - Gini F. Fleming
- Department of Pharmacy, University of Chicago Medical Center, Chicago, IL, USA
| | | | | | - Sandeep Parsad
- Department of Pharmacy, University of Chicago Medical Center, Chicago, IL, USA
| | - Keith Danahey
- Center for Personalized Therapeutics, University of Chicago, Chicago, IL, USA Center for Research Informatics, University of Chicago, Chicago, IL, USA
| | - Xander M. R. van Wijk
- Center for Personalized Therapeutics, University of Chicago, Chicago, IL, USA Department of Pathology, University of Chicago Medical Center and Biological Sciences, Chicago, IL, USA
| | - Kiang-Teck J. Yeo
- Center for Personalized Therapeutics, University of Chicago, Chicago, IL, USA Department of Pathology, University of Chicago Medical Center and Biological Sciences, Chicago, IL, USA
| | - Mark J. Ratain
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center and Biological Sciences, Chicago, IL, USA Center for Personalized Therapeutics, University of Chicago, Chicago, IL, USA
| | - Peter H. O’Donnell
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center and Biological Sciences, Chicago, 5841 S. Maryland Avenue, MC2115, Chicago, IL 60637, USA
- Center for Personalized Therapeutics, University of Chicago, 5841 S. Maryland Avenue, MC2115, Chicago, IL 60637, USA
| |
Collapse
|
14
|
Jannier S, Kemmel V, Sebastia Sancho C, Chammas A, Sabo AN, Pencreach E, Farace F, Chenard MP, Lhermitte B, Geoerger B, Aerts I, Frappaz D, Leblond P, André N, Ducassou S, Corradini N, Bertozzi AI, Guérin E, Vincent F, Velten M, Entz-Werle N. SFCE-RAPIRI Phase I Study of Rapamycin Plus Irinotecan: A New Way to Target Intra-Tumor Hypoxia in Pediatric Refractory Cancers. Cancers (Basel) 2020; 12:cancers12103051. [PMID: 33092063 PMCID: PMC7656302 DOI: 10.3390/cancers12103051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary More and more relapsing or refractory pediatric cancers are described to present hypoxic features linked to a worse outcome. Therefore, the aim of our phase I study RAPIRI was the targeting of the central node mTor/HIF-1α with rapamycin plus irinotecan and determine the appropriated dose of this combination. As expected, the tolerance was optimal across all dose levels and no maximum tolerated dose of both drugs was reached. The pharmacokinetics (PK) helped us to refine the doses to use in the future phase II trial and the importance of PK follow-up in such combination. We also confirmed in almost half of the interpretable patients for tumor response a non-progressive disease. All those observations additionally to the ancillary’s studies provide strong evidence to propose a next trial focusing on brain tumors and sarcomas and using biweekly 125 mg/m2 irinotecan dose with a PK follow-up and a rapamycin dose of 1.5 mg/m2/day, reaching a blood concentration above 10 µg/L. Abstract Hypoxic environment is a prognostic factor linked in pediatric cancers to a worse outcome, favoring tumor progression and resistance to treatments. The activation of mechanistic Target Of Rapamycin (mTor)/hypoxia inducible factor (HIF)-1α pathway can be targeted by rapamycin and irinotecan, respectively. Therefore, we designed a phase I trial associating both drugs in pediatric refractory/relapsing solid tumors. Patients were enrolled according to a 3 + 3 escalation design with ten levels, aiming to determine the MTD (maximum tolerated dose) of rapamycin plus irinotecan. Rapamycin was administered orally once daily in a 28-day cycle (1 to 2.5 mg/m2/day), associating biweekly intravenous irinotecan (125 to 240 mg/m2/dose). Toxicities, pharmacokinetics, efficacy analyses, and pharmacodynamics were evaluated. Forty-two patients, aged from 2 to 18 years, were included. No MTD was reached. Adverse events were mild to moderate. Only rapamycin doses of 1.5 mg/m2/day reached over time clinically active plasma concentrations. Tumor responses and prolonged stable disease were associated with a mean irinotecan area under the curve of more than 400 min.mg/L. Fourteen out of 31 (45.1%) patients had a non-progressive disease at 8 weeks. Most of them were sarcomas and brain tumors. For the phase II trial, we can then propose biweekly 125 mg/m2 irinotecan dose with a pharmacokinetic (PK) follow-up and a rapamycin dose of 1.5 mg/m2/day, reaching a blood concentration above 10 µg/L.
Collapse
Affiliation(s)
- Sarah Jannier
- Pediatric Onco-Hematology Unit, University Hospital of Strasbourg, 67098 Strasbourg, France; (S.J.); (F.V.)
| | - Véronique Kemmel
- Laboratory of Biochemistry, University Hospital of Strasbourg, 67098 Strasbourg, France; (V.K.); (A.-N.S.); (E.G.)
- Laboratory of Pharmacology and Toxicology in Neurocardiology-EA7296, University of Strasbourg, 67000 Strasbourg, France
| | - Consuelo Sebastia Sancho
- Radiology Department, Pediatric Unit, University Hospital of Strasbourg, 67098 Strasbourg, France; (C.S.S.); (A.C.)
| | - Agathe Chammas
- Radiology Department, Pediatric Unit, University Hospital of Strasbourg, 67098 Strasbourg, France; (C.S.S.); (A.C.)
| | - Amelia-Naomie Sabo
- Laboratory of Biochemistry, University Hospital of Strasbourg, 67098 Strasbourg, France; (V.K.); (A.-N.S.); (E.G.)
- Laboratory of Pharmacology and Toxicology in Neurocardiology-EA7296, University of Strasbourg, 67000 Strasbourg, France
| | - Erwan Pencreach
- Oncobiology Platform, Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 67098 Strasbourg, France;
| | - Françoise Farace
- «Circulating Tumor Cells» Translational Platform, Gustave Roussy, University of Paris-Saclay, 94800 Villejuif, France;
| | - Marie Pierre Chenard
- Pathology Department, University Hospital of Strasbourg, 67098 Strasbourg, France; (M.P.C.); (B.L.)
- Centre de Ressources Biologiques, University Hospital of Strasbourg, 67098 Strasbourg, France
| | - Benoit Lhermitte
- Pathology Department, University Hospital of Strasbourg, 67098 Strasbourg, France; (M.P.C.); (B.L.)
| | - Birgit Geoerger
- Gustave Roussy Cancer Center, Department of Pediatric and Adolescent Oncology, Université Paris-Saclay, INSERM U1015, 94800 Villejuif, France;
| | - Isabelle Aerts
- Oncology Center SIREDO, Institut Curie, PSL Research University, 75005 Paris, France;
| | - Didier Frappaz
- Pediatric Oncology Department, Léon Berard Institute, 69373 Lyon, France; (D.F.); (P.L.); (N.C.)
| | - Pierre Leblond
- Pediatric Oncology Department, Léon Berard Institute, 69373 Lyon, France; (D.F.); (P.L.); (N.C.)
- Pediatric Oncology Unit, Oscar Lambret Center, 59020 Lille, France
| | - Nicolas André
- Pediatric Onco-Hematology Unit, CHU La Timone, 13005 Marseille, France;
| | - Stephane Ducassou
- Pediatric Onco-Hematology Department, University Hospital of Bordeaux, 33000 Bordeaux, France;
| | - Nadège Corradini
- Pediatric Oncology Department, Léon Berard Institute, 69373 Lyon, France; (D.F.); (P.L.); (N.C.)
- Pediatric Oncology Unit, University Hospital of Nantes, 44093 Nantes, France
| | - Anne Isabelle Bertozzi
- Pediatric Onco-Hematology Department, University Hospital of Toulouse, 31059 Toulouse, France;
| | - Eric Guérin
- Laboratory of Biochemistry, University Hospital of Strasbourg, 67098 Strasbourg, France; (V.K.); (A.-N.S.); (E.G.)
| | - Florence Vincent
- Pediatric Onco-Hematology Unit, University Hospital of Strasbourg, 67098 Strasbourg, France; (S.J.); (F.V.)
| | - Michel Velten
- Clinical Research Department, ICANS, 67200 Strasbourg, France;
| | - Natacha Entz-Werle
- Pediatric Onco-Hematology Unit, University Hospital of Strasbourg, 67098 Strasbourg, France; (S.J.); (F.V.)
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, 67401 Illkirch, France
- Correspondence: ; Tel.: +33-3-88-12-83-96
| |
Collapse
|
15
|
Russell LE, Schwarz UI. Variant discovery using next-generation sequencing and its future role in pharmacogenetics. Pharmacogenomics 2020; 21:471-486. [DOI: 10.2217/pgs-2019-0190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Next-generation sequencing (NGS) has enabled the discovery of a multitude of novel and mostly rare variants in pharmacogenes that may alter a patient’s therapeutic response to drugs. In addition to single nucleotide variants, structural variation affecting the number of copies of whole genes or parts of genes can be detected. While current guidelines concerning clinical implementation mostly act upon well-documented, common single nucleotide variants to guide dosing or drug selection, in silico and large-scale functional assessment of rare variant effects on protein function are at the forefront of pharmacogenetic research to facilitate their clinical integration. Here, we discuss the role of NGS in variant discovery, paving the way for more comprehensive genotype-guided pharmacotherapy that can translate to improved clinical care.
Collapse
Affiliation(s)
- Laura E Russell
- Department of Physiology & Pharmacology, Western University, Medical Sciences Building, London, ON, N6A 5C1, Canada
| | - Ute I Schwarz
- Department of Physiology & Pharmacology, Western University, Medical Sciences Building, London, ON, N6A 5C1, Canada
- Division of Clinical Pharmacology, Department of Medicine, Western University, London Health Sciences Centre – University Hospital, 339 Windermere Road, London, ON, N6A 5A5, Canada
| |
Collapse
|
16
|
de Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S. Individualization of Irinotecan Treatment: A Review of Pharmacokinetics, Pharmacodynamics, and Pharmacogenetics. Clin Pharmacokinet 2019. [PMID: 29520731 PMCID: PMC6132501 DOI: 10.1007/s40262-018-0644-7] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since its clinical introduction in 1998, the topoisomerase I inhibitor irinotecan has been widely used in the treatment of solid tumors, including colorectal, pancreatic, and lung cancer. Irinotecan therapy is characterized by several dose-limiting toxicities and large interindividual pharmacokinetic variability. Irinotecan has a highly complex metabolism, including hydrolyzation by carboxylesterases to its active metabolite SN-38, which is 100- to 1000-fold more active compared with irinotecan itself. Several phase I and II enzymes, including cytochrome P450 (CYP) 3A4 and uridine diphosphate glucuronosyltransferase (UGT) 1A, are involved in the formation of inactive metabolites, making its metabolism prone to environmental and genetic influences. Genetic variants in the DNA of these enzymes and transporters could predict a part of the drug-related toxicity and efficacy of treatment, which has been shown in retrospective and prospective trials and meta-analyses. Patient characteristics, lifestyle and comedication also influence irinotecan pharmacokinetics. Other factors, including dietary restriction, are currently being studied. Meanwhile, a more tailored approach to prevent excessive toxicity and optimize efficacy is warranted. This review provides an updated overview on today’s literature on irinotecan pharmacokinetics, pharmacodynamics, and pharmacogenetics.
Collapse
Affiliation(s)
- Femke M de Man
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015, Rotterdam, The Netherlands
| | - Andrew K L Goey
- Department of Hospital Pharmacy, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015, Rotterdam, The Netherlands
| | - Sander Bins
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015, Rotterdam, The Netherlands.
| |
Collapse
|
17
|
Chamseddine AN, Ducreux M, Armand JP, Paoletti X, Satar T, Paci A, Mir O. Intestinal bacterial β-glucuronidase as a possible predictive biomarker of irinotecan-induced diarrhea severity. Pharmacol Ther 2019; 199:1-15. [DOI: 10.1016/j.pharmthera.2019.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Sun X, Zhu D, Cai Y, Shi G, Gao M, Zheng M. One-step mechanochemical preparation and prominent antitumor activity of SN-38 self-micelle solid dispersion. Int J Nanomedicine 2019; 14:2115-2126. [PMID: 30988612 PMCID: PMC6440449 DOI: 10.2147/ijn.s193783] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose The purpose of this study was to overcome the clinical defects of 7-ethyl-10-hydroxycamptothecin (SN-38) and explore its characteristics and antitumor effects. Materials and methods An amorphous solid dispersion of SN-38 with disodium glycyrrhizin (Na2GA) was prepared by mechanical ball milling (Na2GA/SN-38-BM). Moreover, an untreated mixture of Na2GA and SN-38 (Na2GA/SN-38-UM), a pure drug SN-38, was prepared for comparison with Na2GA/SN-38-BM. The samples were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), dynamic light scattering, and transmission electron microscopy. Then, further in vitro and in vivo studies were performed including cell uptake, cytotoxicity, antitumor efficacy, tissue distribution, and histopathological evaluation (H&E staining). Results SN-38 loaded in Na2GA was self-formed as nano-micelles in water. The particle size of nano-micelle was 69.41 nm and ζ-potential was -42.01 mV. XRD and SEM analyses showed that the ball milling transformed SN-38 crystals into amorphous form and that solubility increased by 189 times. Compared with SN-38 and Na2GA/SN-38-UM, Na2GA/SN-38-BM has a stronger cytotoxicity to tumor cells and exhibited a significant inhibition of tumor growth. Then, pharmacokinetic studies showed that the bioavailability of Na2GA/SN-38-BM was about four times that of SN-38 suspension. Conclusion Na2GA/SN-38-BM (69 nm, -42 mV) nanoparticles which had excellent phar-macokinetic and distribution properties can dramatically enhance the anticancer efficacy of SN-38 in vitro and in vivo, suggesting a promising formulation for efficient anticancer therapy.
Collapse
Affiliation(s)
- Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310006, China,
| | - Dabu Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310006, China,
| | - Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310006, China,
| | - Guobang Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310006, China,
| | - Mengshi Gao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310006, China,
| | - Minzi Zheng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310006, China,
| |
Collapse
|
19
|
Iihara H, Fujii H, Yoshimi C, Kobayashi R, Matsuhashi N, Takahashi T, Yoshida K, Suzuki A. Prophylactic effect of scopolamine butylbromide, a competitive antagonist of muscarinic acetylcholine receptor, on irinotecan-related cholinergic syndrome. Cancer Chemother Pharmacol 2018; 83:393-398. [PMID: 30564875 PMCID: PMC6394464 DOI: 10.1007/s00280-018-3736-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/25/2018] [Indexed: 11/27/2022]
Abstract
Background/aim Cholinergic syndrome frequently occurs within the first 24 h after irinotecan injection. We evaluated the prophylactic effect of scopolamine butylbromide on irinotecan-related cholinergic syndrome. Patients and methods Fifty-nine patients who received irinotecan-based regimens at our outpatient chemotherapy clinic between April 2013 and May 2014 were enrolled. Patients who developed irinotecan-related cholinergic syndrome were prophylactically administered scopolamine butylbromide at the next scheduled treatment. Risk factors for irinotecan-related cholinergic syndrome were determined using logistic regression analysis. Results Irinotecan-related cholinergic syndrome occurred in 50.8% of patients. Scopolamine butylbromide administration significantly reduced the incidence to 3.4% (P < 0.01). The irinotecan dose (≥ 150 mg/m2) was the only risk factor associated with irinotecan-related cholinergic syndrome. The incidence of cholinergic syndrome in patients with this risk factor was 75%. Conclusion Scopolamine butylbromide was effective in preventing irinotecan-related cholinergic syndrome. It is recommended for patients receiving ≥ 150 mg/m2 irinotecan who may develop cholinergic syndrome at high frequency.
Collapse
Affiliation(s)
- Hirotoshi Iihara
- Department of Pharmacy, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hironori Fujii
- Department of Pharmacy, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Chiaki Yoshimi
- Department of Pharmacy, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Ryo Kobayashi
- Department of Pharmacy, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Nobuhisa Matsuhashi
- Department of Surgical Oncology, Gifu University Graduate School of Medicine, Gifu, 501-1193, Japan
| | - Takao Takahashi
- Department of Surgical Oncology, Gifu University Graduate School of Medicine, Gifu, 501-1193, Japan
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Gifu University Graduate School of Medicine, Gifu, 501-1193, Japan
| | - Akio Suzuki
- Department of Pharmacy, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194, Japan.
| |
Collapse
|
20
|
Lapham K, Lin J, Novak J, Orozco C, Niosi M, Di L, Goosen TC, Ryu S, Riccardi K, Eng H, Cameron KO, Kalgutkar AS. 6-Chloro-5-[4-(1-Hydroxycyclobutyl)Phenyl]-1 H-Indole-3-Carboxylic Acid is a Highly Selective Substrate for Glucuronidation by UGT1A1, Relative to β-Estradiol. Drug Metab Dispos 2018; 46:1836-1846. [PMID: 30194276 DOI: 10.1124/dmd.118.083709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/05/2018] [Indexed: 02/13/2025] Open
Abstract
6-Chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1H-indole-3-carboxylic acid (PF-06409577) is a direct activator of the human β1-containing adenosine monophosphate-activated protein kinase (ΑMPK) isoforms. The clearance mechanism of PF-06409577 in animals and humans involves uridine diphosphoglucuronosyl transferase (UGT)-mediated glucuronidation to an acyl glucuronide metabolite of PF-06409577 [(2S,3S,4S,5R,6S)-6-((6-chloro-5-(4-(1-hydroxycyclobutyl)phenyl)-1H-indole-3-carbonyl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxylic acid (M1)], which retains selective activation of human β1-containing AMPK isoforms. This paper describes a detailed characterization of the human UGT isoform(s) responsible for glucuronidation of PF-06409577 to M1. Studies using a panel of 13 human recombinant UGT (hrUGT) enzymes indicated that PF-06409577 was converted to M1 in a highly selective fashion by UGT1A1, which was further verified in human liver microsomes treated with specific chemical inhibitors, and in different UGT1A1 expressers. Conversion of PF-06409577 to M1 by UGT1A1 occurred in a relatively selective fashion, compared with β-estradiol (ES), a conventional probe substrate of UGT1A1. The Michaelis-Menten constant (K M) and V max values describing the formation of M1 from PF-06409577 in hrUGT1A1 and microsomal preparations from human intestine, liver, and kidney ranged from 131 to 212 μM (K M) and 107-3834 pmol/min per milligram (V max) in the presence of 2% bovine serum albumin. Relative activity factors (RAF) were determined for UGT1A1 using PF-06409577 and ES to enable estimation of intrinsic clearance from various tissues. RAF values from PF-06409577 and ES were generally comparable with the exception of intestinal microsomes, where ES overestimated the RAF of UGT1A1 due to glucuronidation by intestinal UGT1A8 and UGT1A10. Our results suggest the potential utility of PF-06409477 as a selective probe UGT1A1 substrate for UGT reaction phenotyping and inhibition studies in preclinical discovery/development.
Collapse
Affiliation(s)
- Kimberly Lapham
- Medicine Design, Pfizer Inc., Groton, Connecticut (K.L., J.L., J.N., C.O., M.N., L.D., T.C.G., S.R., K.R., H.E.); and Medicine Design, Pfizer Inc., Cambridge, Massachusetts (K.O.C., A.S.K.)
| | - Jian Lin
- Medicine Design, Pfizer Inc., Groton, Connecticut (K.L., J.L., J.N., C.O., M.N., L.D., T.C.G., S.R., K.R., H.E.); and Medicine Design, Pfizer Inc., Cambridge, Massachusetts (K.O.C., A.S.K.)
| | - Jonathan Novak
- Medicine Design, Pfizer Inc., Groton, Connecticut (K.L., J.L., J.N., C.O., M.N., L.D., T.C.G., S.R., K.R., H.E.); and Medicine Design, Pfizer Inc., Cambridge, Massachusetts (K.O.C., A.S.K.)
| | - Christine Orozco
- Medicine Design, Pfizer Inc., Groton, Connecticut (K.L., J.L., J.N., C.O., M.N., L.D., T.C.G., S.R., K.R., H.E.); and Medicine Design, Pfizer Inc., Cambridge, Massachusetts (K.O.C., A.S.K.)
| | - Mark Niosi
- Medicine Design, Pfizer Inc., Groton, Connecticut (K.L., J.L., J.N., C.O., M.N., L.D., T.C.G., S.R., K.R., H.E.); and Medicine Design, Pfizer Inc., Cambridge, Massachusetts (K.O.C., A.S.K.)
| | - Li Di
- Medicine Design, Pfizer Inc., Groton, Connecticut (K.L., J.L., J.N., C.O., M.N., L.D., T.C.G., S.R., K.R., H.E.); and Medicine Design, Pfizer Inc., Cambridge, Massachusetts (K.O.C., A.S.K.)
| | - Theunis C Goosen
- Medicine Design, Pfizer Inc., Groton, Connecticut (K.L., J.L., J.N., C.O., M.N., L.D., T.C.G., S.R., K.R., H.E.); and Medicine Design, Pfizer Inc., Cambridge, Massachusetts (K.O.C., A.S.K.)
| | - Sangwoo Ryu
- Medicine Design, Pfizer Inc., Groton, Connecticut (K.L., J.L., J.N., C.O., M.N., L.D., T.C.G., S.R., K.R., H.E.); and Medicine Design, Pfizer Inc., Cambridge, Massachusetts (K.O.C., A.S.K.)
| | - Keith Riccardi
- Medicine Design, Pfizer Inc., Groton, Connecticut (K.L., J.L., J.N., C.O., M.N., L.D., T.C.G., S.R., K.R., H.E.); and Medicine Design, Pfizer Inc., Cambridge, Massachusetts (K.O.C., A.S.K.)
| | - Heather Eng
- Medicine Design, Pfizer Inc., Groton, Connecticut (K.L., J.L., J.N., C.O., M.N., L.D., T.C.G., S.R., K.R., H.E.); and Medicine Design, Pfizer Inc., Cambridge, Massachusetts (K.O.C., A.S.K.)
| | - Kimberly O Cameron
- Medicine Design, Pfizer Inc., Groton, Connecticut (K.L., J.L., J.N., C.O., M.N., L.D., T.C.G., S.R., K.R., H.E.); and Medicine Design, Pfizer Inc., Cambridge, Massachusetts (K.O.C., A.S.K.)
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Inc., Groton, Connecticut (K.L., J.L., J.N., C.O., M.N., L.D., T.C.G., S.R., K.R., H.E.); and Medicine Design, Pfizer Inc., Cambridge, Massachusetts (K.O.C., A.S.K.)
| |
Collapse
|
21
|
Dose adjustment of irinotecan based on UGT1A1 polymorphisms in patients with colorectal cancer. Cancer Chemother Pharmacol 2018; 83:123-129. [PMID: 30377777 PMCID: PMC6373181 DOI: 10.1007/s00280-018-3711-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/25/2018] [Indexed: 01/28/2023]
Abstract
PURPOSE Irinotecan is effective for metastatic colorectal cancer (mCRC). SN-38 is an active metabolite of irinotecan, which is formed by carboxylesterase and inactivated by UDP-glucuronyltransferase (UGT) 1A1. The UGT enzyme activity is reduced in patients with homozygous mutation in UGT1A1 genes (*6/*6, *28/*28 and *6/*28); thus dose reduction is required for prevention of severe adverse events associated with irinotecan. The present study was designed to investigate the relationship between UGT1A1 polymorphisms and the incidence of adverse events or the therapeutic effect in mCRC patients who received irinotecan. METHODS Sixty-three mCRC patients who received irinotecan during January 2014 and May 2018 were the subjects of this study. The incidence of adverse events, including diarrhea and neutropenia, and the therapeutic effect of irinotecan were compared among homozygous group, heterozygous group and wild-type group. The initial dose of irinotecan was 150 mg/m2 in the heterozygous group and wild-type group, while the dose was reduced by 20% (120 mg/m2) in the homozygous group. RESULTS The UGT1A1 polymorphisms occurred in 15.9%, 33.3%, and 50.8% for homozygous group, heterozygous group, and wild-type group, respectively. The average dose of irinotecan during overall cycles was not significantly different among three groups, despite the reduction of initial dose in homozygous group. There were no significant differences in the incidence rates of adverse events, tumor response, or time to treatment failure among three groups. CONCLUSION The present study demonstrated that dose reduction by 20% ensured safety and efficacy of irinotecan in mCRC patients with homozygous mutation in UGT1A1 genes.
Collapse
|
22
|
Chen P, Zhu KW, Zhang DY, Yan H, Liu H, Liu YL, Cao S, Zhou G, Zeng H, Chen SP, Zhao XL, Yang J, Chen XP. Influence of UGT1A1 polymorphisms on the outcome of acute myeloid leukemia patients treated with cytarabine-base regimens. J Transl Med 2018; 16:197. [PMID: 30016963 PMCID: PMC6050722 DOI: 10.1186/s12967-018-1579-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUNDS UDP-glucuronosyltransferase 1A subfamily (UGT1A) enzymes can inactivate cytarabine (Ara-C) by glucuronidation, and thus serves as candidate genes for interindividual difference in Ara-C response. UGT1A1 is a major UGT1A isoform expressed in human liver. METHODS UGT1A1*6 and *28 polymorphisms resulting in reduced UGT1A1 activity were genotyped in 726 adult acute myeloid leukemia (AML) patients treated with Ara-C based regimens. Influences of both polymorphisms on chemosensitivity and disease prognosis of the patients were evaluated. RESULTS After one or two courses of Ara-C based induction chemotherapy, the complete remission (CR) rate was significantly higher in patients carrying the UGT1A1*6 (77.0%) or the UGT1A1*28 (76.4%) alleles as compared with corresponding wild-type homozygotes (66.9 and 68.5%, respectively). Carriers of the UGT1A1*6 or *28 alleles showed significantly decreased risk of non-CR (OR = 0.528, 95% CI 0.379-0.737, P = 1.7 × 10-4) and better overall survival (HR = 0.787, 95% CI 0.627-0.990, P = 0.040) as compared with homozygotes for both polymorphisms. CONCLUSION Our results suggest that UGT1A1*28 and UGT1A1*6 are associated with improved clinical outcomes in Chinese AML patients treated with Ara-C.
Collapse
Affiliation(s)
- Peng Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Ke-Wei Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Dao-Yu Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Han Yan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Han Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Yan-Ling Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Shan Cao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Gan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Hui Zeng
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Shu-Ping Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xie-Lan Zhao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
23
|
Cecchin E, De Mattia E, Ecca F, Toffoli G. Host genetic profiling to increase drug safety in colorectal cancer from discovery to implementation. Drug Resist Updat 2018; 39:18-40. [PMID: 30075835 DOI: 10.1016/j.drup.2018.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
Abstract
Adverse events affect the pharmacological treatment of approximately 90% of colorectal cancer (CRC) patients at any stage of the disease. Chemotherapy including fluoropyrimidines, irinotecan, and oxaliplatin is the cornerstone of the pharmacological treatment of CRC. The introduction of novel targeted agents, as anti-EGFR (i.e. cetuximab, panitumumab) and antiangiogenic (i.e. bevacizumab, ziv-aflibercept, regorafenib, and ramucirumab) molecules, into the oncologist's toolbox has led to significant improvements in the life expectancy of advanced CRC patients, but with a substantial increase in toxicity burden. In this respect, pharmacogenomics has largely been applied to the personalization of CRC chemotherapy, focusing mainly on the study of inhered polymorphisms in genes encoding phase I and II enzymes, ATP-binding cassette (ABC)/solute carrier (SLC) membrane transporters, proteins involved in DNA repair, folate pathway and immune response. These research efforts have led to the identification of some validated genetic markers of chemotherapy toxicity, for fluoropyrimidines and irinotecan. No validated genetic determinants of oxaliplatin-specific toxicity, as peripheral neuropathy, has thus far been established. The contribution of host genetic markers in predicting the toxicity associated with novel targeted agents' administration is still controversial due to the heterogeneity of published data. Pharmacogenomics guidelines have been published by some international scientific consortia such as the Clinical Pharmacogenomics Implementation Consortium (CPIC) and the Dutch Pharmacogenetics Working Group (DPWG) strongly suggesting a pre-treatment dose adjustment of irinotecan based on UGT1A1*28 genotype and of fluoropyrimidines based on some DPYD genetic variants, to increase treatment safety. However, these recommendations are still poorly applied at the patient's bedside. Several ongoing projects in the U.S. and Europe are currently evaluating how pharmacogenomics can be implemented successfully in daily clinical practice. The majority of drug-related adverse events are still unexplained, and a great deal of ongoing research is aimed at improving knowledge of the role of pharmacogenomics in increasing treatment safety. In this review, the issue of pre-treatment identification of CRC patients at risk of toxicity via the analysis of patients' genetic profiles is addressed. Available pharmacogenomics guidelines with ongoing efforts to implement them in clinical practice and new exploratory markers for clinical validation are described.
Collapse
Affiliation(s)
- Erika Cecchin
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico - National Cancer Institute, 33081 Aviano, Italy
| | - Elena De Mattia
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico - National Cancer Institute, 33081 Aviano, Italy
| | - Fabrizio Ecca
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico - National Cancer Institute, 33081 Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico - National Cancer Institute, 33081 Aviano, Italy.
| |
Collapse
|
24
|
In vitrometabolic mapping of neobavaisoflavone in human cytochromes P450 and UDP-glucuronosyltransferase enzymes by ultra high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. J Pharm Biomed Anal 2018; 158:351-360. [PMID: 29933228 DOI: 10.1016/j.jpba.2018.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/10/2018] [Accepted: 06/15/2018] [Indexed: 12/21/2022]
Abstract
Neobavaisoflavone (NBIF), a phenolic compound isolated from Psoralea corylifolia L., possesses several significant biological properties. However, the pharmacokinetic behaviors of NBIF have been characterized as rapid oral absorption, high clearance, and poor oral bioavailability. We found that NBIF underwent massive glucuronidation and oxidation by human liver microsomes (HLM) in this study with the intrinsic clearance (CLint) values of 12.43, 10.04, 2.01, and 6.99 μL/min/mg for M2, M3, M4, and M5, respectively. Additionally, the CLint values of G1 and G2 by HLM were 271.90 and 651.38 μL/min/mg, respectively, whereas their respective parameters were 59.96 and 949.01 μL/min/mg by human intestine microsomes (HIM). Reaction phenotyping results indicated that CYP1A1, 1A2, 2C8, and 2C19 were the main contributors to M4 (34.96 μL/min/mg), M3 (29.45 μL/min/mg), M3 (13.16 μL/min/mg), and M2 (63.42 μL/min/mg), respectively. UGT1A1, 1A7, 1A8, and 1A9 mainly catalyzed the formation of G1 (250.87 μL/min/mg), G2 (438.15 μL/min/mg), G1 (92.68 μL/min/mg), and G2 (1073.25 μL/min/mg), respectively. Activity correlation analysis assays showed that phenacetin-N-deacetylation was strongly correlated to M3 (r = 0.860, p = 0.003) and M4 (r = 0.775, p = 0.014) in nine individual HLMs, while significant activity correlations were detected between paclitaxel-6-hydroxylation and M2 (r = 0.675, p = 0.046) and M3 (r = 0.829, p = 0.006). There was a strong correlation between β-estradiol-3-O-glucuronide and G1 (r = 0.822, p = 0.007) and G2 (r = 0.689, p = 0.040), as well as between propofol-O-glucuronidation and G1 (r = 0.768, p = 0.016) and G2 (r = 0.860, p = 0.003). Moreover, the phase I metabolism and glucuronidation of NBIF revealed marked species differences, and mice are the best animal model for investigating the metabolism of NBIF in humans. Taken together, characterization of NBIF-related metabolic pathways involving in CYP1A1, 1A2, 2C8, 2C19, and UGT1A1, 1A7, 1A8, 1A9 are helpful for understanding the pharmacokinetic behaviors and conducting in-depth pharmacological studies.
Collapse
|
25
|
Pasternak AL, Ward KM, Luzum JA, Ellingrod VL, Hertz DL. Germline genetic variants with implications for disease risk and therapeutic outcomes. Physiol Genomics 2017; 49:567-581. [PMID: 28887371 PMCID: PMC5668651 DOI: 10.1152/physiolgenomics.00035.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Genetic testing has multiple clinical applications including disease risk assessment, diagnosis, and pharmacogenomics. Pharmacogenomics can be utilized to predict whether a pharmacologic therapy will be effective or to identify patients at risk for treatment-related toxicity. Although genetic tests are typically ordered for a distinct clinical purpose, the genetic variants that are found may have additional implications for either disease or pharmacology. This review will address multiple examples of germline genetic variants that are informative for both disease and pharmacogenomics. The discussed relationships are diverse. Some of the agents are targeted for the disease-causing genetic variant, while others, although not targeted therapies, have implications for the disease they are used to treat. It is also possible that the disease implications of a genetic variant are unrelated to the pharmacogenomic implications. Some of these examples are considered clinically actionable pharmacogenes, with evidence-based, pharmacologic treatment recommendations, while others are still investigative as areas for additional research. It is important that clinicians are aware of both the disease and pharmacogenomic associations of these germline genetic variants to ensure patients are receiving comprehensive personalized care.
Collapse
Affiliation(s)
- Amy L Pasternak
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Kristen M Ward
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Jasmine A Luzum
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Vicki L Ellingrod
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| |
Collapse
|
26
|
Schirripa M, Procaccio L, Lonardi S, Loupakis F. The role of pharmacogenetics in the new ESMO colorectal cancer guidelines. Pharmacogenomics 2017; 18:197-200. [DOI: 10.2217/pgs-2016-0191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Marta Schirripa
- Oncologia Medica 1, Istituto Oncologico Veneto, IRCCS Padova, Italy
| | | | - Sara Lonardi
- Oncologia Medica 1, Istituto Oncologico Veneto, IRCCS Padova, Italy
| | - Fotios Loupakis
- Oncologia Medica 1, Istituto Oncologico Veneto, IRCCS Padova, Italy
| |
Collapse
|
27
|
Fukuda M, Shimada M, Kitazaki T, Nagashima S, Hashiguchi K, Ebi N, Takayama K, Nakanishi Y, Semba H, Harada T, Seto T, Okamoto I, Ichinose Y, Sugio K. Phase I study of irinotecan for previously treated lung cancer patients with the UGT1A1*28 or *6 polymorphism: Results of the Lung Oncology Group in Kyushu (LOGIK1004A). Thorac Cancer 2016; 8:40-45. [PMID: 27883280 PMCID: PMC5217920 DOI: 10.1111/1759-7714.12407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 11/27/2022] Open
Abstract
Background Various polymorphisms have been detected in the UDP‐glucuronosyltransferase 1A (UGT1A) gene, and UGT1A1*28 and UGT1A1*6 have important effects on the pharmacokinetics of irinotecan and the risk of severe toxicities during irinotecan therapy. This study was conducted to determine the maximum tolerated dose (MTD) of irinotecan chemotherapy according to the UGT1A1 genotype in previously treated lung cancer patients with the UGT1A1*28 or UGT1A1*6 polymorphism. Methods The eligibility criteria were as follows: lung cancer patients that had previously been treated with anticancer agents other than irinotecan, possessed the UGT1A1*28 or UGT1A1*6 polymorphism (group A included *28/*28, *6/*6, and *28/*6, and group B included *28/− and *6/−), were aged ≤75 years old, had a performance score of 0–1, and exhibited adequate bone marrow function. The patients were scheduled to receive irinotecan on days 1, 8, 15, 22, 29, and 36. Results Four patients were enrolled in this trial. Two patients were determined to be ineligible. The remaining two patients, who belonged to group B, received an initial irinotecan dose of 60 mg/m2, but did not complete the planned treatment because of diarrhea and leukopenia. Thus, in group B patients, 60 mg/m2 was considered to be the MTD of irinotecan. The study was terminated in group A because of poor case recruitment. Conclusions The MTD of irinotecan for previously treated lung cancer patients that are heterozygous for the UGT1A1*28 or UGT1A1*6 gene polymorphism is 60 mg/m2.
Collapse
Affiliation(s)
- Minoru Fukuda
- Clinical Oncology Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Midori Shimada
- Division of Respiratory Diseases, Department of Internal Medicine, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Takeshi Kitazaki
- Division of Respiratory Diseases, Department of Internal Medicine, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Seiji Nagashima
- Department of Medicine, National Hospital Organization Nagasaki Medical Center, Nagasaki, Japan
| | - Kohji Hashiguchi
- Division of Respiratory Diseases, Department of Internal Medicine, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Noriyuki Ebi
- Department of Respiratory Oncology Medicine, Iizuka Hospital, Fukuoka, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoichi Nakanishi
- Research Institute for Disease of the Chest, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan
| | - Hiroshi Semba
- Department of Respiratory Medicine, Kumamoto Regional Medical Center, Kumamoto, Japan
| | - Taishi Harada
- Research Institute for Disease of the Chest, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan
| | - Takashi Seto
- Department of Thoracic Oncology, National Kyusyu Cancer Center, Fukuoka, Japan
| | - Isamu Okamoto
- Research Institute for Disease of the Chest, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan
| | - Yukito Ichinose
- Clinical Research Institute, National Kyusyu Cancer Center, Fukuoka, Japan
| | - Kenji Sugio
- Department of Thoracic and Breast Surgery, Oita University Faculty of Medicine, Oita, Japan.,Lung Oncology Group in Kyusyu, Fukuoka, Japan
| |
Collapse
|
28
|
Coriat R, Faivre SJ, Mir O, Dreyer C, Ropert S, Bouattour M, Desjardins R, Goldwasser F, Raymond E. Pharmacokinetics and safety of DTS-108, a human oligopeptide bound to SN-38 with an esterase-sensitive cross-linker in patients with advanced malignancies: a Phase I study. Int J Nanomedicine 2016; 11:6207-6216. [PMID: 27920527 PMCID: PMC5123727 DOI: 10.2147/ijn.s110274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND DTS-108 is a hydrosoluble prodrug, where the SN-38 moiety is covalently linked to a 20-amino acid vector peptide by a specific esterase-sensitive cross-linker, releasing 7-ethyl-10-hydroxycampthotecin (SN-38) by esterase bond cleavage. METHODS The pharmacokinetics of DTS-108, adverse events graded according to NCI-CTCv3.1, dose-limiting toxicities at cycle 1, the maximum tolerated dose (MTD), and the recommended Phase II dose (RP2D) of intravenous DTS-108 (1-2 hours) every 2 weeks were evaluated in a first-in-human Phase I study in patients with advanced/metastatic carcinomas, according to an accelerated dose escalation design. SN-38 and SN-38 glucuronide (SN-38G) levels were evaluated with fluorescence high-performance liquid chromatography (HPLC) test, then liquid chromatography-tandem mass spectrometry (LC/MS/MS) methods. RESULTS Forty-two patients received DTS-108 across 14 dosing cohorts (range 3-416 mg/m2). At 416 mg/m2, three out of six patients had grade 4 neutropenia thereby defining the MTD and the RP2D at 313 mg/m2. Fluorescence HPLC was inaccurate to quantify DTS-108 and its metabolites (SN-38 and SN-38G). New processes and analytical LC/MS/MS methods for testing SN-38 were implemented. At a dose of 313 mg/m2, mean DTS-108, SN-38, and SN-38G area under the plasma concentration-time curve to infinity (coefficients of variation %) were 439,293 (24%), 1,992 (34%), and 4,538 (46%) h·ng/mL. Stable disease (according to Response Evaluation Criteria in Solid Tumors) was observed in nine patients. CONCLUSION Assessing SN-38 concentration using fluorescence HPLC is questionable since this method failed to monitor dose escalation of DTS-108, a new topoisomerase I inhibitor, due to ex vivo degradation. LC/MS/MS methods were consistent in evaluating SN-38 exposures allowing drug monitoring. The maximum tolerated dose of DTS-108 was 416 mg/m2. The RP2D for intravenous DTS-108 was 313 mg/m2 every 2 weeks in patients with advanced/metastatic solid tumors.
Collapse
Affiliation(s)
- Romain Coriat
- Gastroenterology and Digestive Oncology Unit, Cochin Teaching Hospital, Université Paris Descartes Sorbonne Paris Cité, Paris
| | - Sandrine J Faivre
- Department of Medical Oncology, Beaujon Teaching Hospital, Université Paris Diderot, Paris 7, Clichy
| | - Olivier Mir
- Department of Medical Oncology, Cochin Teaching Hospital, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Chantal Dreyer
- Department of Medical Oncology, Beaujon Teaching Hospital, Université Paris Diderot, Paris 7, Clichy
| | - Stanislas Ropert
- Department of Medical Oncology, Cochin Teaching Hospital, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Mohammed Bouattour
- Department of Medical Oncology, Beaujon Teaching Hospital, Université Paris Diderot, Paris 7, Clichy
| | | | - François Goldwasser
- Department of Medical Oncology, Cochin Teaching Hospital, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Eric Raymond
- Groupe Hospitalier Paris Saint-Joseph, Paris, France
| |
Collapse
|
29
|
Abstract
Hematology and oncology have been two of the leading areas in pharmacogenomics. The use of genetic information to guide therapy has been practiced for a number of years. The identification of polymorphisms within drug-metabolizing enzymes of anticancer agents such as 6-mercaptopurine and irinotecan has led to subsequent changes in package-insert labeling and tests approved by the US Food and Drug Administration to identify polymorphisms. Many studies within oncology are now conducting pharmacogenomic analyses in drug development to identify predictors of response and/or toxicity. For clinical pharmacists, knowledge in the area of pharmacogenomics and drug metabolism is important to understand and integrate pharmacogenomics into clinical practice. This article will review a number of different agents used in the realm of oncology and will identify how pharmacogenomics has or will potentially affect treatment decisions in the future with the goal of improving patient care and outcomes.
Collapse
|
30
|
Yu QQ, Qiu H, Zhang MS, Hu GY, Liu B, Huang L, Liao X, Li QX, Li ZH, Yuan XL. Predictive effects of bilirubin on response of colorectal cancer to irinotecan-based chemotherapy. World J Gastroenterol 2016; 22:4250-4258. [PMID: 27122675 PMCID: PMC4837442 DOI: 10.3748/wjg.v22.i16.4250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/01/2016] [Accepted: 03/14/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the predictive effects of baseline serum bilirubin levels and UDP-glucuronosyltransferase (UGT) 1A1*28 polymorphism on response of colorectal cancer to irinotecan-based chemotherapy.
METHODS: The present study was based on a prospective multicenter longitudinal trial of Chinese metastatic colorectal cancer (mCRC) patients treated with irinotecan-based chemotherapy (NCT01282658). Baseline serum bilirubin levels, including total bilirubin (TBil) and unconjugated bilirubin (UBil), were measured, and genotyping of UGT1A1*28 polymorphism was performed. Receiver operating characteristic curve (ROC) analysis was used to determine cutoff values of TBil and UBil. The TBil values were categorized into > 13.0 or ≤ 13.0 groups; the UBil values were categorized into > 4.1 or ≤ 4.1 groups. Combining the cutoff values of TBil and UBil, which was recorded as CoBil, patients were classified into three groups. The classifier’s performance of UGT1A1*28 and CoBil for predicting treatment response was evaluated by ROC analysis. Associations between response and CoBil or UGT1A1*28 polymorphism were estimated using simple and multiple logistic regression models.
RESULTS: Among the 120 mCRC patients, the serum bilirubin level was significantly different between the UGT1A1*28 wild-type and mutant genotypes. Patients with the mutant genotype had an increased likelihood of a higher TBil (P = 0.018) and a higher UBil (P = 0.014) level compared with the wild-type genotype. Patients were stratified into three groups based on CoBil. Group 1 was patients with TBil > 13.0 and UBil > 4.1; Group 2 was patients with TBil ≤ 13.0 and UBil > 4.1; and Group 3 was patients with TBil ≤ 13.0 and UBil ≤ 4.1. Patients in Group 3 had more than a 10-fold higher likelihood of having a response in the simple (OR = 11.250; 95%CI: 2.286-55.367; P = 0.003) and multiple (OR = 16.001; 95%CI: 2.802 -91.371; P = 0.002) analyses compared with the Group 1 individuals. Patients carrying the UGT1A1*28 (TA)7 allele were 4-fold less likely to present with a response compared with the individuals harboring a homozygous (TA)6 genotype in the simple (OR = 0.267; 95%CI: 0.100-0.709; P = 0.008) and multiple (OR = 0.244; 95%CI: 0.088-0.678; P = 0.007) analyses. Classifier’s performance of CoBil and UGT1A1*28 were comparable.
CONCLUSION: CoBil and UGT1A1*28 are both independent biomarkers for predicting the treatment response of mCRC patients to irinotecan-based chemotherapy. After validation, CoBil, an easily determinable index in the clinic, might be helpful in facilitating stratification of mCRC patients for individualized treatment options.
Collapse
|
31
|
Shimazawa R, Ikeda M. Overcoming regulatory challenges in the development of companion diagnostics for monitoring and safety. Per Med 2016; 13:155-167. [DOI: 10.2217/pme.15.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Concurrent development and co-approval of a companion diagnostic (CDx) with a corresponding drug is ideal, but often unfeasible. Because of limited exposure to a drug in clinical trials, crucial information on safety is sometimes revealed only after approval. Therefore, a CDx for monitoring/safety is often developed after approval of a corresponding drug. However, regulatory guidance is insufficient if contemporaneous development is not possible, thereby leaving plenty of opportunities for improvement with respect to pharmacovigilance and retrospective validation of the CDx. Furthermore, global harmonization of guidance on how to incorporate new scientific information from retrospective analyses of biomarkers should lead to the establishment of more evidence for the development of CDx for approved drugs.
Collapse
Affiliation(s)
- Rumiko Shimazawa
- Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Masayuki Ikeda
- Department of Medical Informatics, Kagawa University Hospital, Miki-cho Ikenobe, Kagawa 761-0793, Japan
| |
Collapse
|
32
|
Manfredi S, Bouché O, Rougier P, Dahan L, Loriot MA, Aparicio T, Etienne PL, Lafargue JP, Lécaille C, Legoux JL, Le Malicot K, Maillard E, Lecomte T, Khemissa F, Breysacher G, Michel P, Mitry E, Bedenne L. High-Dose FOLFIRI plus Bevacizumab in the Treatment of Metastatic Colorectal Cancer Patients with Two Different UGT1A1 Genotypes: FFCD 0504 Study. Mol Cancer Ther 2015; 14:2782-8. [PMID: 26494856 DOI: 10.1158/1535-7163.mct-15-0293] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/21/2015] [Indexed: 11/16/2022]
Abstract
High-dose FOLFIRI has an acceptable safety profile and promising efficacy. UDP-glucuronosyltransferase: (UGT1A1) polymorphism may be predictive of toxicity and efficacy of irinotecan. This phase II study aimed to evaluate the combination of high-dose FOLFIRI plus bevacizumab in patients with previously untreated metastatic colorectal cancer (MCRC) based on their UGT1A1 genotype. Patients with the UGT1A1 *1/*1 (group 1) or *1/*28 (group 2) genotype received bevacizumab plus high-dose FOLFIRI every 2 weeks. Using the Bryant and Day design with objective response rate and toxicity as the primary endpoints, 54 patients in each group were required with a planned interim analysis after inclusion of 17 patients per group. We planned to stop the trial at the interim analysis if ≤ 7 patients exhibited an objective response (OR) and/or ≥ 3 patients exhibited severe toxicity. At the interim analysis, ORs were higher than the number expected: 52.9% (group 1) and 58.8% (group 2). More than three toxic events occurred in both groups and, according to the interim analysis rule, the trial was closed due to unacceptable toxicity. Recruitment was stopped when 86 patients were included and an analysis on overall population was done for overall survival (OS) and progression-free survival (PFS). The median PFS was 10.7 months (group 1) and 10.4 months (group 2). The median OS was 25.5 months (group 1) and 23.9 months (group 2). This trial does not support the use of the intensive treatment with HD-FOLFIRI plus bevacizumab combination for MCRC in patients with the UGTA1*1/UGT1A1*1 or UGT1A1*1/UGT1A1*28 genotype.
Collapse
Affiliation(s)
- Sylvain Manfredi
- Hepato-Gastroenterology and Digestive Oncology Department, University Hospital Dijon, INSERM U 866, Digestive Cancer Registry of Burgundy, Dijon, France. Fédération Francophone de Cancérologie Digestive, INSERM U866, Dijon, France.
| | - Olivier Bouché
- Department of Gastroenterology, CHU Robert Debré, Reims, France
| | - Philippe Rougier
- Assistance Publique Hôpitaux de Paris, Hôpital Européen G Pompidou and Université Paris Descartes, Paris, France
| | - Laetitia Dahan
- Department of Gastroenterology, Assistance Publique - Hôpitaux de Marseille, Hôpital la Timone, et Aix-Marseille Université, Marseille, France
| | - Marie Anne Loriot
- Assistance Publique Hôpitaux de Paris, Hôpital Européen G Pompidou and Université Paris Descartes, Paris, France
| | - Thomas Aparicio
- Department of Gastroenterology and Digestive Oncology, Avicenne Hospital, HUPSSD, APHP and University Paris 13, Bobigny, France
| | - Pierre Luc Etienne
- Department of Medical Oncology, Clinique Armoricaine de Radiologie, St-Brieuc, France
| | | | - Cedric Lécaille
- Department of Gastroenterology, Polyclinique Bordeaux Nord Aquitaine, Bordeaux, France
| | - Jean Louis Legoux
- Department of Gastroenterology, Centre Hospitalier Régional, Orléans, France
| | - Karine Le Malicot
- Fédération Francophone de Cancérologie Digestive, INSERM U866, Dijon, France
| | - Emilie Maillard
- Fédération Francophone de Cancérologie Digestive, INSERM U866, Dijon, France
| | - Thierry Lecomte
- Department of Gastroenterology, CHU de Tours and Université François Rabelais, Chambray les Tours, France
| | - Faiza Khemissa
- Department of Gastroenterology, Centre Hospitalier, Perpignan, France
| | | | - Pierre Michel
- Department of Gastroenterology, Rouen University Hospital and University of Rouen, Rouen, France
| | - Emmanuel Mitry
- Department of Medical Oncology, Institut Curie, Paris - St. Cloud and Université Versailles St. Quentin, UFR des Sciences de la Santé, Saint Cloud, France
| | - Laurent Bedenne
- Hepato-Gastroenterology and Digestive Oncology Department, University Hospital Dijon, INSERM U 866, Digestive Cancer Registry of Burgundy, Dijon, France. Fédération Francophone de Cancérologie Digestive, INSERM U866, Dijon, France
| |
Collapse
|
33
|
Ramírez J, Mirkov S, House LK, Ratain MJ. Glucuronidation of OTS167 in Humans Is Catalyzed by UDP-Glucuronosyltransferases UGT1A1, UGT1A3, UGT1A8, and UGT1A10. Drug Metab Dispos 2015; 43:928-35. [PMID: 25870101 PMCID: PMC4468433 DOI: 10.1124/dmd.115.063271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/13/2015] [Indexed: 01/18/2023] Open
Abstract
OTS167 is a potent maternal embryonic leucine zipper kinase inhibitor undergoing clinical testing as antineoplastic agent. We aimed to identify the UDP-glucuronosyltransferases (UGTs) involved in OTS167 metabolism, study the relationship between UGT genetic polymorphisms and hepatic OTS167 glucuronidation, and investigate the inhibitory potential of OTS167 on UGTs. Formation of a single OTS167-glucuronide (OTS167-G) was observed in pooled human liver (HLM) (Km = 3.4 ± 0.2 µM), intestinal microsomes (HIM) (Km = 1.7 ± 0.1 µM), and UGTs. UGT1A1 (64 µl/min/mg) and UGT1A8 (72 µl/min/mg) exhibited the highest intrinsic clearances (CLint) for OTS167, followed by UGT1A3 (51 µl/min/mg) and UGT1A10 (47 µl/min/mg); UGT1A9 was a minor contributor. OTS167 glucuronidation in HLM was highly correlated with thyroxine glucuronidation (r = 0.91, P < 0.0001), SN-38 glucuronidation (r = 0.79, P < 0.0001), and UGT1A1 mRNA (r = 0.72, P < 0.0001). Nilotinib (UGT1A1 inhibitor) and emodin (UGT1A8 and UGT1A10 inhibitor) exhibited the highest inhibitory effects on OTS167-G formation in HLM (68%) and HIM (47%). We hypothesize that OTS167-G is an N-glucuronide according to mass spectrometry. A significant association was found between rs6706232 and reduced OTS167-G formation (P = 0.03). No or weak UGT inhibition (range: 0-21%) was observed using clinically relevant OTS167 concentrations (0.4-2 µM). We conclude that UGT1A1 and UGT1A3 are the main UGTs responsible for hepatic formation of OTS167-G. Intestinal UGT1A1, UGT1A8, and UGT1A10 may contribute to first-pass OTS167 metabolism after oral administration.
Collapse
Affiliation(s)
| | - Snezana Mirkov
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Larry K House
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Mark J Ratain
- Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
34
|
Wood JP, Smith AJO, Bowman KJ, Thomas AL, Jones GDD. Comet assay measures of DNA damage as biomarkers of irinotecan response in colorectal cancer in vitro and in vivo. Cancer Med 2015; 4:1309-21. [PMID: 26108357 PMCID: PMC4567016 DOI: 10.1002/cam4.477] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/17/2015] [Accepted: 04/22/2015] [Indexed: 01/28/2023] Open
Abstract
The use of irinotecan to treat metastatic colorectal cancer (CRC) is limited by unpredictable response and variable toxicity; however, no reliable clinical biomarkers are available. Here, we report a study to ascertain whether irinotecan-induced DNA damage measures are suitable/superior biomarkers of irinotecan effect. CRC-cell lines (HCT-116 and HT-29) were treated in vitro with irinotecan and peripheral blood lymphocytes (PBL) were isolated from patients before and after receiving irinotecan-based chemotherapy. Levels of in vitro-, in vivo-, and ex vivo-induced DNA damage were measured using the Comet assay; correlations between damage levels with in vitro cell survival and follow-up clinical data were investigated. Irinotecan-induced DNA damage was detectable in both CRC cell-lines in vitro, with higher levels of immediate and residual damage noted for the more sensitive HT-29 cells. DNA damage was not detected in vivo, but was measurable in PBLs upon mitogenic stimulation prior to ex vivo SN-38 treatment. Results showed that, following corrections for experimental error, those patients whose PBLs demonstrated higher levels of DNA damage following 10 h of SN-38 exposure ex vivo had significantly longer times to progression than those with lower damage levels (median 291 vs. 173 days, P = 0.014). To conclude, higher levels of irinotecan-induced initial and residual damage correlated with greater cell kill in vitro and a better clinical response. Consequently, DNA damage measures may represent superior biomarkers of irinotecan effect compared to the more often-studied genetic assays for differential drug metabolism.
Collapse
Affiliation(s)
- Joanna P Wood
- Department of Cancer Studies & Molecular Medicine, University of Leicester, Leicester, United Kingdom
| | - Andrew J O Smith
- Department of Cancer Studies & Molecular Medicine, University of Leicester, Leicester, United Kingdom
| | - Karen J Bowman
- Department of Cancer Studies & Molecular Medicine, University of Leicester, Leicester, United Kingdom
| | - Anne L Thomas
- Department of Cancer Studies & Molecular Medicine, University of Leicester, Leicester, United Kingdom
| | - George D D Jones
- Department of Cancer Studies & Molecular Medicine, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
35
|
Li L, Deng G, Tang Y, Mao Q. Spectrum of UGT1A1 Variations in Chinese Patients with Crigler-Najjar Syndrome Type II. PLoS One 2015; 10:e0126263. [PMID: 25993113 PMCID: PMC4439166 DOI: 10.1371/journal.pone.0126263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 03/23/2015] [Indexed: 01/24/2023] Open
Abstract
Crigler–Najjar Syndrome type II (CNS-II) is an autosomal recessive hereditary condition of unconjugated hyperbilirubinemia without hemolysis, with bilirubin levels ranging from 102.6 μmol/L to 342 μmol/L. CNS-II is caused by a deficiency of UDP-glucuronyl transferase (UGT), which is encoded by the UDP-glucuronyl transferase 1A1 gene (UGT1A1). In East Asian populations, the compound homozygous UGT1A1 G71R and Y486D variants are frequently observed in cases with bilirubin levels exceeding 200 μmol/L. In this study, we investigated the spectrum of UGT1A1 variations in Chinese CNS-II patients. We sequenced the enhancer, promoter, and coding regions of UGT1A1 in 11 unrelated Chinese CNS-II patients and 80 healthy controls. Nine of these patients carried variations that are here reported for the first time in CNS-II patients, although they have been previously reported for other types of hereditary unconjugated hyperbilirubinemia. These individual variations have less influence on UGT activity than do the compound homozygous variation (combination of homozygous G71R variant and Y486D variant). Therefore, we propose that the spectrum of UGT1A1 variations in CNS-II differs according to the bilirubin levels.
Collapse
Affiliation(s)
- Lufeng Li
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Guohong Deng
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
- The Chongqing Key Laboratory for Research of Infectious Diseases, Chongqing, China
| | - Yi Tang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qing Mao
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
- The Chongqing Key Laboratory for Research of Infectious Diseases, Chongqing, China
- * E-mail:
| |
Collapse
|
36
|
Inhibition of SN-38 glucuronidation by gefitinib and its metabolite. Cancer Chemother Pharmacol 2015; 75:1253-60. [DOI: 10.1007/s00280-015-2753-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/20/2015] [Indexed: 12/01/2022]
|
37
|
Tlemsani C, Huillard O, Arrondeau J, Boudou-Rouquette P, Cessot A, Blanchet B, Thomas-Schoemann A, Coriat R, Durand JP, Giroux J, Alexandre J, Goldwasser F. Effect of glucuronidation on transport and tissue accumulation of tyrosine kinase inhibitors: consequences for the clinical management of sorafenib and regorafenib. Expert Opin Drug Metab Toxicol 2015; 11:785-94. [PMID: 25809423 DOI: 10.1517/17425255.2015.1030392] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION UDP-glucuronosyltransferases (UGTs) are a multigenic family of enzymes responsible for the glucuronidation reaction. Many therapeutic classes of drugs used in solid tumors are UGT substrates, including cancer therapies. AREAS COVERED This article describes the tyrosine kinase inhibitors (TKIs) undergoing hepatic glucuronidation; its effect on transport and tissue accumulation and the clinical consequences of this particular metabolism. A PubMed search concerning the pharmacokinetics of the TKIs was performed. All are extensively metabolized by CYP450. Two TKIs, sorafenib and regorafenib, also have a major UGT-mediated metabolism and were therefore studied. EXPERT OPINION The prescription of the same dose of sorafenib and regorafenib for all patients may be inappropriate since at each enzymatic step of this multistep metabolism inter-individual fluctuations exist. Having a non-exclusive CYP-mediated route of metabolism may reduce the risk of variability in drug exposure when CYP3A4 substrates are concomitantly given. Several clinical consequences derive from this pharmacokinetic particularity of sorafenib and regorafenib. Since no clear difference distinguishes TKIs in efficacy in large randomized trials, the differences for the clinical management of their toxicity is a critical aspect.
Collapse
Affiliation(s)
- Camille Tlemsani
- Paris Descartes University, Cochin Hospital, AP-HP, Medical Oncology Department, Angiogenesis Inhibitors Multidisciplinary Study Group (CERIA) , Paris , France 33 1 58 41 17 46 ; 33 1 58 41 17 45 ;
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Porro F, Bockor L, De Caneva A, Bortolussi G, Muro AF. Generation of Ugt1-deficient murine liver cell lines using TALEN technology. PLoS One 2014; 9:e104816. [PMID: 25118822 PMCID: PMC4132024 DOI: 10.1371/journal.pone.0104816] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/17/2014] [Indexed: 12/22/2022] Open
Abstract
The Crigler-Najjar Syndrome Type I (CNSI) is a rare genetic disorder caused by mutations in the Ugt1a1 gene. It is characterized by unconjugated hyperbilirubinemia that may result in severe neurologic damage and death if untreated. To date, liver transplantation is the only curative treatment. With the aim of generating mutant cell lines of the Ugt1 gene, we utilized the TALEN technology to introduce site-specific mutations in Ugt1 exon 4. We report a fast and efficient method to perform gene knockout in tissue culture cells, based on the use of TALEN pairs targeting restriction enzyme (RE) sites in the region of interest. This strategy overcame the presence of allele-specific single nucleotide polymorphisms (SNPs) and pseudogenes, conditions that limit INDELs' detection by Surveyor. We obtained liver-derived murine N-Muli cell clones having INDELs with efficiency close to 40%, depending on the TALEN pair and RE target site. Sequencing of the target locus and WB analysis of the isolated cell clones showed a high proportion of biallelic mutations in cells treated with the most efficient TALEN pair. Ugt glucuronidation activity was reduced basal levels in the biallelic mutant clones. These mutant liver-derived cell lines could be a very useful tool to study biochemical aspects of Ugt1 enzyme activity in a more natural context, such as substrate specificity, requirement of specific co-factors, the study of inhibitors and other pharmacological aspects, and to correlate enzyme activity to the presence of specific mutations in the gene, by adding back to the mutant cell clones specific variants of the Ugt1 gene. In addition, since genome editing has recently emerged as a potential therapeutic approach to cure genetic diseases, the definition of the most efficient TALEN pair could be an important step towards setting up a platform to perform genome editing in CNSI.
Collapse
Affiliation(s)
- Fabiola Porro
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, TS, Italy
| | - Luka Bockor
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, TS, Italy
| | - Alessia De Caneva
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, TS, Italy
| | - Giulia Bortolussi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, TS, Italy
| | - Andrés F. Muro
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, TS, Italy
| |
Collapse
|
39
|
Panczyk M. Pharmacogenetics research on chemotherapy resistance in colorectal cancer over the last 20 years. World J Gastroenterol 2014; 20:9775-827. [PMID: 25110414 PMCID: PMC4123365 DOI: 10.3748/wjg.v20.i29.9775] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 01/17/2014] [Accepted: 04/21/2014] [Indexed: 02/07/2023] Open
Abstract
During the past two decades the first sequencing of the human genome was performed showing its high degree of inter-individual differentiation, as a result of large international research projects (Human Genome Project, the 1000 Genomes Project International HapMap Project, and Programs for Genomic Applications NHLBI-PGA). This period was also a time of intensive development of molecular biology techniques and enormous knowledge growth in the biology of cancer. For clinical use in the treatment of patients with colorectal cancer (CRC), in addition to fluoropyrimidines, another two new cytostatic drugs were allowed: irinotecan and oxaliplatin. Intensive research into new treatment regimens and a new generation of drugs used in targeted therapy has also been conducted. The last 20 years was a time of numerous in vitro and in vivo studies on the molecular basis of drug resistance. One of the most important factors limiting the effectiveness of chemotherapy is the primary and secondary resistance of cancer cells. Understanding the genetic factors and mechanisms that contribute to the lack of or low sensitivity of tumour tissue to cytostatics is a key element in the currently developing trend of personalized medicine. Scientists hope to increase the percentage of positive treatment response in CRC patients due to practical applications of pharmacogenetics/pharmacogenomics. Over the past 20 years the clinical usability of different predictive markers has been tested among which only a few have been confirmed to have high application potential. This review is a synthetic presentation of drug resistance in the context of CRC patient chemotherapy. The multifactorial nature and volume of the issues involved do not allow the author to present a comprehensive study on this subject in one review.
Collapse
|
40
|
Innocenti F, Schilsky RL, Ramírez J, Janisch L, Undevia S, House LK, Das S, Wu K, Turcich M, Marsh R, Karrison T, Maitland ML, Salgia R, Ratain MJ. Dose-finding and pharmacokinetic study to optimize the dosing of irinotecan according to the UGT1A1 genotype of patients with cancer. J Clin Oncol 2014; 32:2328-34. [PMID: 24958824 DOI: 10.1200/jco.2014.55.2307] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The risk of severe neutropenia from treatment with irinotecan is related in part to UGT1A1*28, a variant that reduces the elimination of SN-38, the active metabolite of irinotecan. We aimed to identify the maximum-tolerated dose (MTD) and dose-limiting toxicity (DLT) of irinotecan in patients with advanced solid tumors stratified by the *1/*1, *1/*28, and *28/*28 genotypes. PATIENTS AND METHODS Sixty-eight patients received an intravenous flat dose of irinotecan every 3 weeks. Forty-six percent of the patients had the *1/*1 genotype, 41% had the *1/*28 genotype, and 13% had the *28/*28 genotype. The starting dose of irinotecan was 700 mg in patients with the *1/*1 and *1/*28 genotypes and 500 mg in patients with the *28/*28 genotype. Pharmacokinetic evaluation was performed at cycle 1. RESULTS In patients with the *1/*1 genotype, the MTD was 850 mg (four DLTs per 16 patients), and 1,000 mg was not tolerated (two DLTs per six patients). In patients with the *1/*28 genotype, the MTD was 700 mg (five DLTs per 22 patients), and 850 mg was not tolerated (four DLTs per six patients). In patients with the *28/*28 genotype, the MTD was 400 mg (one DLT per six patients), and 500 mg was not tolerated (three DLTs per three patients). The DLTs were mainly myelosuppression and diarrhea. Irinotecan clearance followed linear kinetics. At the MTD for each genotype, dosing by genotype resulted in similar SN-38 areas under the curve (AUCs; r(2) = 0.0003; P = .97), but the irinotecan AUC was correlated with the actual dose (r(2) = 0.39; P < .001). Four of 48 patients with disease known to be responsive to irinotecan achieved partial response. CONCLUSION The UGT1A1*28 genotype can be used to individualize dosing of irinotecan. Additional studies should evaluate the effect of genotype-guided dosing on efficacy in patients receiving irinotecan.
Collapse
Affiliation(s)
- Federico Innocenti
- Federico Innocenti, Richard L. Schilsky, Jacqueline Ramírez, Linda Janisch, Samir Undevia, Larry K. House, Soma Das, Kehua Wu, Michelle Turcich, Theodore Karrison, Michael L. Maitland, Ravi Salgia, and Mark J. Ratain, University of Chicago, Chicago; and Robert Marsh, NorthShore University Health System, Evanston, IL.
| | - Richard L Schilsky
- Federico Innocenti, Richard L. Schilsky, Jacqueline Ramírez, Linda Janisch, Samir Undevia, Larry K. House, Soma Das, Kehua Wu, Michelle Turcich, Theodore Karrison, Michael L. Maitland, Ravi Salgia, and Mark J. Ratain, University of Chicago, Chicago; and Robert Marsh, NorthShore University Health System, Evanston, IL
| | - Jacqueline Ramírez
- Federico Innocenti, Richard L. Schilsky, Jacqueline Ramírez, Linda Janisch, Samir Undevia, Larry K. House, Soma Das, Kehua Wu, Michelle Turcich, Theodore Karrison, Michael L. Maitland, Ravi Salgia, and Mark J. Ratain, University of Chicago, Chicago; and Robert Marsh, NorthShore University Health System, Evanston, IL
| | - Linda Janisch
- Federico Innocenti, Richard L. Schilsky, Jacqueline Ramírez, Linda Janisch, Samir Undevia, Larry K. House, Soma Das, Kehua Wu, Michelle Turcich, Theodore Karrison, Michael L. Maitland, Ravi Salgia, and Mark J. Ratain, University of Chicago, Chicago; and Robert Marsh, NorthShore University Health System, Evanston, IL
| | - Samir Undevia
- Federico Innocenti, Richard L. Schilsky, Jacqueline Ramírez, Linda Janisch, Samir Undevia, Larry K. House, Soma Das, Kehua Wu, Michelle Turcich, Theodore Karrison, Michael L. Maitland, Ravi Salgia, and Mark J. Ratain, University of Chicago, Chicago; and Robert Marsh, NorthShore University Health System, Evanston, IL
| | - Larry K House
- Federico Innocenti, Richard L. Schilsky, Jacqueline Ramírez, Linda Janisch, Samir Undevia, Larry K. House, Soma Das, Kehua Wu, Michelle Turcich, Theodore Karrison, Michael L. Maitland, Ravi Salgia, and Mark J. Ratain, University of Chicago, Chicago; and Robert Marsh, NorthShore University Health System, Evanston, IL
| | - Soma Das
- Federico Innocenti, Richard L. Schilsky, Jacqueline Ramírez, Linda Janisch, Samir Undevia, Larry K. House, Soma Das, Kehua Wu, Michelle Turcich, Theodore Karrison, Michael L. Maitland, Ravi Salgia, and Mark J. Ratain, University of Chicago, Chicago; and Robert Marsh, NorthShore University Health System, Evanston, IL
| | - Kehua Wu
- Federico Innocenti, Richard L. Schilsky, Jacqueline Ramírez, Linda Janisch, Samir Undevia, Larry K. House, Soma Das, Kehua Wu, Michelle Turcich, Theodore Karrison, Michael L. Maitland, Ravi Salgia, and Mark J. Ratain, University of Chicago, Chicago; and Robert Marsh, NorthShore University Health System, Evanston, IL
| | - Michelle Turcich
- Federico Innocenti, Richard L. Schilsky, Jacqueline Ramírez, Linda Janisch, Samir Undevia, Larry K. House, Soma Das, Kehua Wu, Michelle Turcich, Theodore Karrison, Michael L. Maitland, Ravi Salgia, and Mark J. Ratain, University of Chicago, Chicago; and Robert Marsh, NorthShore University Health System, Evanston, IL
| | - Robert Marsh
- Federico Innocenti, Richard L. Schilsky, Jacqueline Ramírez, Linda Janisch, Samir Undevia, Larry K. House, Soma Das, Kehua Wu, Michelle Turcich, Theodore Karrison, Michael L. Maitland, Ravi Salgia, and Mark J. Ratain, University of Chicago, Chicago; and Robert Marsh, NorthShore University Health System, Evanston, IL
| | - Theodore Karrison
- Federico Innocenti, Richard L. Schilsky, Jacqueline Ramírez, Linda Janisch, Samir Undevia, Larry K. House, Soma Das, Kehua Wu, Michelle Turcich, Theodore Karrison, Michael L. Maitland, Ravi Salgia, and Mark J. Ratain, University of Chicago, Chicago; and Robert Marsh, NorthShore University Health System, Evanston, IL
| | - Michael L Maitland
- Federico Innocenti, Richard L. Schilsky, Jacqueline Ramírez, Linda Janisch, Samir Undevia, Larry K. House, Soma Das, Kehua Wu, Michelle Turcich, Theodore Karrison, Michael L. Maitland, Ravi Salgia, and Mark J. Ratain, University of Chicago, Chicago; and Robert Marsh, NorthShore University Health System, Evanston, IL
| | - Ravi Salgia
- Federico Innocenti, Richard L. Schilsky, Jacqueline Ramírez, Linda Janisch, Samir Undevia, Larry K. House, Soma Das, Kehua Wu, Michelle Turcich, Theodore Karrison, Michael L. Maitland, Ravi Salgia, and Mark J. Ratain, University of Chicago, Chicago; and Robert Marsh, NorthShore University Health System, Evanston, IL
| | - Mark J Ratain
- Federico Innocenti, Richard L. Schilsky, Jacqueline Ramírez, Linda Janisch, Samir Undevia, Larry K. House, Soma Das, Kehua Wu, Michelle Turcich, Theodore Karrison, Michael L. Maitland, Ravi Salgia, and Mark J. Ratain, University of Chicago, Chicago; and Robert Marsh, NorthShore University Health System, Evanston, IL
| |
Collapse
|
41
|
Wang H, Bian T, Jin T, Chen Y, Lin A, Chen C. Association analysis of UGT1A genotype and haplotype with SN-38 glucuronidation in human livers. Pharmacogenomics 2014; 15:785-98. [PMID: 24897286 DOI: 10.2217/pgs.14.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM 7-ethyl-10-hydroxycamptothecin (SN-38), the active metabolite of irinotecan, is mainly eliminated hepatically through glucuronidation by UGT1A1 and UGT1A9 enzymes. This study comprehensively investigates the effects of UGT1A1 and UGT1A9 genetic polymorphism on SN-38 glucuronidation activity. MATERIALS & METHODS Genetic polymorphisms and combinational haplotypes of UGT1A1 and UGT1A9, SN-38 glucuronidation activities, and protein levels of UGT1A1 and UGT1A9 were determined using a set of over 45 Chinese livers. RESULTS UGT1A1 reduced function variants UGT1A1*6, *28, *60 and *1B exhibited additive effect. The number of UGT1A1 reduced function alleles was associated with decreased SN-38G formation rates and UGT1A protein levels. UGT1A9 I399C>T and UGT1A9*1b, which were highly linked, were associated with increased SN-38 glucuronidation activity and UGT1A protein levels. However, further analysis based on UGT1A9-1A1 haplotypes confirmed that their increased effect was partly due to their close linkage with UGT1A1 reduced function alleles. CONCLUSION UGT1A1 genetic polymorphisms have a more important function in human liver SN-38 glucuronidation activity than UGT1A9. Original submitted 7 November 2013; Revision submitted 30 January 2014.
Collapse
Affiliation(s)
- Huijuan Wang
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an 710069, China.
| | | | | | | | | | | |
Collapse
|
42
|
Liu W, Ramírez J, Gamazon ER, Mirkov S, Chen P, Wu K, Sun C, Cox NJ, Cook E, Das S, Ratain MJ. Genetic factors affecting gene transcription and catalytic activity of UDP-glucuronosyltransferases in human liver. Hum Mol Genet 2014; 23:5558-69. [PMID: 24879639 DOI: 10.1093/hmg/ddu268] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The aim of this study was to discover cis- and trans-acting factors significantly affecting mRNA expression and catalytic activity of human hepatic UDP-glucuronosyltransferases (UGTs). Transcription levels of five major hepatic UGT1A (UGT1A1, UGT1A3, UGT1A4, UGT1A6 and UGT1A9) and five UGT2B (UGT2B4, UGT2B7, UGT2B10, UGT2B15 and UGT2B17) genes were quantified in human liver tissue samples (n = 125) using real-time PCR. Glucuronidation activities of 14 substrates were measured in 47 livers. We genotyped 167 tagSNPs (single-nucleotide polymorphisms) in UGT1A (n = 43) and UGT2B (n = 124), as well as the known functional UGT1A1*28 and UGT2B17 CNV (copy number variation) polymorphisms. Transcription levels of 15 transcription factors (TFs) known to regulate these UGTs were quantified. We found that UGT expression and activity were highly variable among the livers (median and range of coefficient of variations: 135%, 74-217% and 52%, 39-105%, respectively). CAR, PXR and ESR1 were found to be the most important trans-regulators of UGT transcription (median and range of correlation coefficients: 46%, 6-58%; 47%, 9-58%; and 52%, 24-75%, respectively). Hepatic UGT activities were mainly determined by UGT gene transcription levels. Twenty-one polymorphisms were significantly (FDR-adjusted P < 0.05) associated with mRNA expression and/or activities of UGT1A1, UGT1A3 and UGT2B17. We found novel SNPs in the UGT2B17 CNV region accounting for variability in UGT2B17 gene transcription and testosterone glucuronidation rate, in addition to that attributable to the UGT2B17 CNV. Our study discovered novel pharmacogenetic markers and provided detailed insight into the genetic network regulating hepatic UGTs.
Collapse
Affiliation(s)
- Wanqing Liu
- Department of Medicine and Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA and
| | | | | | | | | | | | - Chang Sun
- Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Nancy J Cox
- Department of Medicine and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Edwin Cook
- Department of Psychiatry, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Soma Das
- Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
43
|
Bank PC, Swen JJ, Guchelaar HJ. Pharmacogenetic biomarkers for predicting drug response. Expert Rev Mol Diagn 2014; 14:723-35. [PMID: 24857685 DOI: 10.1586/14737159.2014.923759] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Drug response shows significant interpatient variability and evidence that genetics influences outcome of drug therapy has been known for more than five decades. However, the translation of this knowledge to clinical practice remains slow. Using examples from clinical practice six considerations about the implementation of pharmacogenetics (PGx) into routine care are discussed: the need for PGx biomarkers; the sources of genetic variability in drug response; the amount of variability explained by PGx; whether PGx test results are actionable; the level of evidence needed for implementation of PGx and the sources of information regarding interpretation of PGx data.
Collapse
Affiliation(s)
- Paul Christiaan Bank
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|
44
|
Gillis NK, Patel JN, Innocenti F. Clinical implementation of germ line cancer pharmacogenetic variants during the next-generation sequencing era. Clin Pharmacol Ther 2014; 95:269-80. [PMID: 24136381 PMCID: PMC4128332 DOI: 10.1038/clpt.2013.214] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/12/2013] [Indexed: 01/13/2023]
Abstract
More than 100 medications approved by the US Food and Drug Administration include pharmacogenetic biomarkers in the drug label, many with cancer indications referencing germ line DNA variations. With the advent of next-generation sequencing (NGS) and its rapidly increasing uptake into cancer research and clinical practice, an enormous amount of data to inform documented gene-drug associations will be collected that must be exploited to optimize patient benefit. This review focuses on the implementation of germ line cancer pharmacogenetics in clinical practice. Specifically, it discusses the importance of germ line variation in cancer and the role of NGS in pharmacogenetic discovery and implementation. In the context of a scenario in which massive amounts of NGS-based genetic information will be increasingly available to health stakeholders, this review explores the ongoing debate regarding the threshold of evidence necessary for implementation, provides an overview of recommendations in cancer by professional organizations and regulatory bodies, and discusses limitations of current guidelines and strategies to improve third-party coverage.
Collapse
Affiliation(s)
- Nancy K. Gillis
- Eshelman School of Pharmacy, Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC
| | - Jai N. Patel
- Eshelman School of Pharmacy, Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC
- Levine Cancer Institute, Carolinas HealthCare System, Charlotte, NC
| | - Federico Innocenti
- Eshelman School of Pharmacy, Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
45
|
Impact du génotype sur la tolérance à l’irinotécan et au cisplatine. ONCOLOGIE 2014. [DOI: 10.1007/s10269-014-2374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Wang YH, Gibson CR. Variability in human in vitro enzyme kinetics. Methods Mol Biol 2014; 1113:337-362. [PMID: 24523120 DOI: 10.1007/978-1-62703-758-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
There are many factors which are known to cause variability in human in vitro enzyme kinetic data. Factors such as the source of enzyme and how it was prepared, the genetics and background of the donor, how the in vitro studies are designed, and how the data are analyzed contribute to variability in the resulting kinetic parameters. It is important to consider not only the factors which cause variability within an experiment, such as selection of a probe substrate, but also those that cause variability when comparing kinetic data across studies and laboratories. For example, the artificial nature of the microsomal lipid membrane and microenvironment in some recombinantly expressed enzymes, relative to those found in native tissue microsomes, has been shown to influence enzyme activity and thus can be a source of variability when comparing across the two different systems. All of these factors, and several others, are discussed in detail in the chapter below.
Collapse
Affiliation(s)
- Ying-Hong Wang
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, West Point, PA, USA
| | | |
Collapse
|
47
|
Intestinal glucuronidation protects against chemotherapy-induced toxicity by irinotecan (CPT-11). Proc Natl Acad Sci U S A 2013; 110:19143-8. [PMID: 24191041 DOI: 10.1073/pnas.1319123110] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Camptothecin (CPT)-11 (irinotecan) has been used widely for cancer treatment, particularly metastatic colorectal cancer. However, up to 40% of treated patients suffer from severe late diarrhea, which prevents CPT-11 dose intensification and efficacy. CPT-11 is a prodrug that is hydrolyzed by hepatic and intestinal carboxylesterase to form SN-38, which in turn is detoxified primarily through UDP-glucuronosyltransferase 1A1 (UGT1A1)-catalyzed glucuronidation. To better understand the mechanism associated with toxicity, we generated tissue-specific Ugt1 locus conditional knockout mouse models and examined the role of glucuronidation in protecting against irinotecan-induced toxicity. We targeted the deletion of the Ugt1 locus and the Ugt1a1 gene specifically in the liver (Ugt1(ΔHep)) and the intestine (Ugt1(ΔGI)). Control (Ugt1(F/F)), Ugt1(ΔHep), and Ugt1(ΔGI) adult male mice were treated with different concentrations of CPT-11 daily for four consecutive days. Toxicities were evaluated with regard to tissue glucuronidation potential. CPT-11-treated Ugt1(ΔHep) mice showed a similar lethality rate to the CPT-11-treated Ugt1(F/F) mice. However, Ugt1(ΔGI) mice were highly susceptible to CPT-11-induced diarrhea, developing severe and lethal mucositis at much lower CPT-11 doses, a result of the proliferative cell loss and inflammation in the intestinal tract. Comparative expression levels of UGT1A1 in intestinal tumors and normal surrounding tissue are dramatically different, providing for the opportunity to improve therapy by differential gene regulation. Intestinal expression of the UGT1A proteins is critical toward the detoxification of SN-38, whereas induction of the UGT1A1 gene may serve to limit toxicity and improve the efficacy associated with CPT-11 treatment.
Collapse
|
48
|
UGT1A1 genotype-guided phase I study of irinotecan, oxaliplatin, and capecitabine. Invest New Drugs 2013; 31:1559-67. [PMID: 24114122 DOI: 10.1007/s10637-013-0034-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/24/2013] [Indexed: 12/16/2022]
Abstract
PURPOSE We performed a UGT1A1 genotype-guided study to determine the maximum tolerated dose (MTD) and evaluate the toxicities and pharmacokinetics of the combination of capecitabine (CAP), oxaliplatin (OX), and irinotecan (IRIN). EXPERIMENTAL DESIGN Patients were screened for UGT1A1 *28 genotype prior to treatment. The starting dose (mg/m(2)) was IRIN (150), OX (85) and CAP (400), days 2-15. Doses were escalated or de-escalated within each genotype group (*28/*28, *1/*28 and *1/*1). IRIN pharmacokinetics was performed at the MTD. RESULTS 50 patients were evaluable for toxicity [11 (*28/*28); 18 (*1/*28); 21 (*1/*1)]. UGT1A1 *28/*28 patients experienced hematologic dose limiting toxicity (DLT), requiring dose-de-escalation. The UGT1A1 *28/*28 recommended phase 2 dose (RP2D) was IRIN (75), OX (85), and CAP (400). In contrast, both UGT1A1 *1/*28 and *1/*1 tolerated higher doses of IRIN and non-hematologic toxicity was dose limiting for UGT1A1 *1/*1. The RP2D was IRIN (150), OX (85), and CAP (400) for UGT1A1*1/*28 and IRIN (150), OX (100), and CAP (1600) for UGT1A1 *1/*1. UGT1A1 *1/*28 and *1/*1 patients treated with IRIN (150) had similar AUCs for the active irinotecan metabolite, SN38 (366 +/- 278 and 350 +/- 159 ng/ml*hr, respectively). UGT1A1 *28/*28 patients (n = 3) treated with a lower IRIN dose (100) had non-significantly higher mean SN38 exposures (604 +/- 289 ng/ml*hr, p = 0.14). Antitumor activity was observed in all genotype groups. CONCLUSIONS UGT1A1 genotype affects the dose and pharmacokinetics of the CAPIRINOX regimen and UGT1A1 genotype-guided dosing of CAPIRINOX is ongoing in a phase II study of small bowel cancer (NCT00433550).
Collapse
|
49
|
Skierka JM, Kotzer KE, Lagerstedt SA, O'Kane DJ, Baudhuin LM. UGT1A1 genetic analysis as a diagnostic aid for individuals with unconjugated hyperbilirubinemia. J Pediatr 2013; 162:1146-52, 1152.e1-2. [PMID: 23290513 DOI: 10.1016/j.jpeds.2012.11.042] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 10/01/2012] [Accepted: 11/14/2012] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess the clinical utility of UGT1A1 genetic testing and describe the spectrum and prevalence of UGT1A1 variations identified in pediatric unconjugated hyperbilirubinemia (UCH), and to characterize specific genotype-phenotype relationships in suspected Gilbert and Crigler-Najjar syndromes. STUDY DESIGN A retrospective study was conducted to review clinical information and UGT1A1 genotyping data from 181 pediatric patients referred for UCH. In silico analyses were performed to aid in the assessment of novel UGT1A1 variants. RESULTS Overall, 146/181 pediatric patients had at least one heterozygous UGT1A1 functional variant. Identified UGT1A1 variants included 17 novel variants, 7 rare star alleles, and 1 rare variant. There were 129 individuals who possessed the TA7 (*28) promoter repeat and 15 individuals who possessed the *6 (c.211G > A) variation. Out of the 104 individuals with accompanying bilirubin levels, 41 individuals did not have identifiable UGT1A1 variants that explained their UCH, although glucose-6-phosphate dehydrogenase deficiency and other causes of UCH could not be ruled out. CONCLUSION Much of the observed UCH could be attributed to variation at the UGT1A1 locus, and UGT1A1 testing helped to substantiate a genetic diagnosis, thereby aiding in individual and family disease management. Although UGT1A1 variation plays a large role in UCH, genetic assessment of UGT1A1 alone may not be comprehensive. Assessment of additional genes may also be useful to evaluate genetic causes for UCH.
Collapse
Affiliation(s)
- Jennifer M Skierka
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
50
|
Yasar U, Greenblatt DJ, Guillemette C, Court MH. Evidence for regulation of UDP-glucuronosyltransferase (UGT) 1A1 protein expression and activity via DNA methylation in healthy human livers. J Pharm Pharmacol 2013; 65:874-83. [PMID: 23647681 PMCID: PMC6195312 DOI: 10.1111/jphp.12053] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/11/2013] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Interindividual variability in glucuronidation of bilirubin and drugs by UDP-glucuronosyltransferase 1A1 (UGT1A1) is considerable and only partially explained by genetic polymorphisms and enzyme inducers. Here we determined whether a well-known epigenetic modification, cytosine methylation, explains a proportion of this variability in human liver. METHODS UGT1A1 phenotypes, including UGT1A1 protein and bilirubin glucuronidation, and UGT1A1*28 genotype were determined using a human liver bank (n = 46). Methylation levels were quantified at 5 CpG sites associated with known transcription factor response elements in the UGT1A1 promoter and distal enhancer, as well as a CpG-rich island 1.5 kb further upstream. KEY FINDINGS Individual CpG sites showed considerable methylation variability between livers, ranging from 10- to 29-fold variation with average methylation levels from 25 to 41%. Multivariate regression analysis identified *28/*28 genotype, -4 CpG site methylation and alcohol history as significant predictors of UGT1A1 protein content. Exclusion of livers with *28/*28 genotype or alcohol history revealed positive correlations of -4 CpG methylation with bilirubin glucuronidation (R = 0.73, P < 0.00001) and UGT1A1 protein content (R = 0.54, P = 0.008). CONCLUSION These results suggest that differential methylation of the -4 CpG site located within a known USF response element may explain a proportion of interindividual variability in hepatic glucuronidation by UGT1A1.
Collapse
Affiliation(s)
- Umit Yasar
- Comparative and Molecular Pharmacogenomics Laboratory, Tufts University School of Medicine, Boston, MA, USA.
| | | | | | | |
Collapse
|