1
|
Karafoulidi-Retsou C, Lorent C, Katz S, Rippers Y, Matsuura H, Higuchi Y, Zebger I, Horch M. Light-Induced Electron Transfer in a [NiFe] Hydrogenase Opens a Photochemical Shortcut for Catalytic Dihydrogen Cleavage. Angew Chem Int Ed Engl 2024; 63:e202409065. [PMID: 39054251 DOI: 10.1002/anie.202409065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
[NiFe] hydrogenases catalyze the reversible cleavage of molecular hydrogen into protons and electrons. Here, we have studied the impact of temperature and illumination on an oxygen-tolerant and thermostable [NiFe] hydrogenase by IR and EPR spectroscopy. Equilibrium mixtures of two catalytic [NiFe] states, Nia-C and Nia-SR'', were found to drastically change with temperature, indicating a thermal exchange of electrons between the [NiFe] active site and iron-sulfur clusters of the enzyme. In addition, IR and EPR experiments performed under illumination revealed an unusual photochemical response of the enzyme. Nia-SR'', a fully reduced hydride intermediate of the catalytic cycle, was found to be reversibly photoconverted into another catalytic state, Nia-L. In contrast to the well-known photolysis of the more oxidized hydride intermediate Nia-C, photoconversion of Nia-SR'' into Nia-L is an active-site redox reaction that involves light-driven electron transfer towards the enzyme's iron-sulfur clusters. Omitting the ground-state intermediate Nia-C, this direct interconversion of these two states represents a potential photochemical shortcut of the catalytic cycle that integrates multiple redox sites of the enzyme. In total, our findings reveal the non-local redistribution of electrons via thermal and photochemical reaction channels and the potential of accelerating or controlling [NiFe] hydrogenases by light.
Collapse
Affiliation(s)
- Chara Karafoulidi-Retsou
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Christian Lorent
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Sagie Katz
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Yvonne Rippers
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, D-14195, Berlin, Germany
| | - Hiroaki Matsuura
- Life Science Research Infrastructure Group, RIKEN/SPring-8 Center, 1.1.1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Yoshiki Higuchi
- Graduate School of Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
| | - Ingo Zebger
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Marius Horch
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, D-14195, Berlin, Germany
| |
Collapse
|
2
|
Bernitzky CCM, Caserta G, Frielingsdorf S, Schoknecht J, Schmidt A, Scheerer P, Lenz O, Hildebrandt P, Lorent C, Zebger I, Horch M. Expanding the scope of resonance Raman spectroscopy in hydrogenase research: New observable states and reporter vibrations. J Inorg Biochem 2024; 262:112741. [PMID: 39326301 DOI: 10.1016/j.jinorgbio.2024.112741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Oxygen-tolerant [NiFe] hydrogenases are valuable blueprints for the activation and evolution of molecular hydrogen under application-relevant conditions. Vibrational spectroscopic techniques play a key role in the investigation of these metalloenzymes. For instance, resonance Raman spectroscopy has been introduced as a site-selective approach for probing metal-ligand coordinates of the [NiFe] active site and FeS clusters. Despite its success, this approach is still challenged by a limited number of detectable active-site states - due to missing resonance enhancement or intrinsic light sensitivity - and difficulties in their assignment. Utilizing two oxygen-tolerant [NiFe] hydrogenases as model systems, we illustrate how these challenges can be met by extending excitation and detection wavelength regimes in resonance Raman spectroscopic studies. Specifically, we observe that this technique does not only probe low-frequency metal-ligand vibrations but also high-frequency intra-ligand modes of the diatomic CO/CN- ligands at the active site of [NiFe] hydrogenases. These reporter vibrations are routinely probed by infrared absorption spectroscopy, so that direct comparison of spectra from both techniques allows an unambiguous assignment of states detected by resonance Raman spectroscopy. Moreover, we find that a previously undetected state featuring a bridging hydroxo ligand between Ni and Fe can be probed using higher excitation wavelengths, as photoconversion occurring at lower wavelengths is avoided. In summary, this study expands the applicability of resonance Raman spectroscopy to hydrogenases and other complex metalloenzymes by introducing new strategies for probing and assigning redox-structural states of the active site.
Collapse
Affiliation(s)
- Cornelius C M Bernitzky
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, D-14195 Berlin, Germany; Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Giorgio Caserta
- Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Stefan Frielingsdorf
- Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Janna Schoknecht
- Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Andrea Schmidt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany
| | - Oliver Lenz
- Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Christian Lorent
- Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Ingo Zebger
- Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Marius Horch
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, D-14195 Berlin, Germany.
| |
Collapse
|
3
|
Trevino RE, Fuller JT, Reid DJ, Laureanti JA, Ginovska B, Linehan JC, Shaw WJ. Understanding the role of negative charge in the scaffold of an artificial enzyme for CO 2 hydrogenation on catalysis. J Biol Inorg Chem 2024; 29:625-638. [PMID: 39207604 DOI: 10.1007/s00775-024-02070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
We have approached the construction of an artificial enzyme by employing a robust protein scaffold, lactococcal multidrug resistance regulator, LmrR, providing a structured secondary and outer coordination spheres around a molecular rhodium complex, [RhI(PEt2NglyPEt2)2]-. Previously, we demonstrated a 2-3 fold increase in activity for one Rh-LmrR construct by introducing positive charge in the secondary coordination sphere. In this study, a series of variants was made through site-directed mutagenesis where the negative charge is located in the secondary sphere or outer coordination sphere, with additional variants made with increasingly negative charge in the outer coordination sphere while keeping a positive charge in the secondary sphere. Placing a negative charge in the secondary or outer coordination sphere demonstrates decreased activity by a factor of two compared to the wild-type Rh-LmrR. Interestingly, addition of positive charge in the secondary sphere, with the negatively charged outer coordination sphere restores activity. Vibrational and NMR spectroscopy suggest minimal changes to the electronic density at the rhodium center, regardless of inclusion of a negative or positive charge in the secondary sphere, suggesting another mechanism is impacting catalytic activity, explored in the discussion.
Collapse
Affiliation(s)
- Regina E Trevino
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, MSIN J7-10, PO Box 999, Richland, WA, 99352, USA
| | - Jack T Fuller
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, MSIN J7-10, PO Box 999, Richland, WA, 99352, USA
| | - Deseree J Reid
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, MSIN J7-10, PO Box 999, Richland, WA, 99352, USA
| | - Joseph A Laureanti
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, MSIN J7-10, PO Box 999, Richland, WA, 99352, USA
- Admiral Instruments, Tempe, AZ, 85281, USA
| | - Bojana Ginovska
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, MSIN J7-10, PO Box 999, Richland, WA, 99352, USA
| | - John C Linehan
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, MSIN J7-10, PO Box 999, Richland, WA, 99352, USA
| | - Wendy J Shaw
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, MSIN J7-10, PO Box 999, Richland, WA, 99352, USA.
| |
Collapse
|
4
|
Procacci B, Wrathall SLD, Farmer AL, Shaw DJ, Greetham GM, Parker AW, Rippers Y, Horch M, Lynam JM, Hunt NT. Understanding the [NiFe] Hydrogenase Active Site Environment through Ultrafast Infrared and 2D-IR Spectroscopy of the Subsite Analogue K[CpFe(CO)(CN) 2] in Polar and Protic Solvents. J Phys Chem B 2024; 128:1461-1472. [PMID: 38301127 PMCID: PMC10875664 DOI: 10.1021/acs.jpcb.3c07965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
The [CpFe(CO)(CN)2]- unit is an excellent structural model for the Fe(CO)(CN)2 moiety of the active site found in [NiFe] hydrogenases. Ultrafast infrared (IR) pump-probe and 2D-IR spectroscopy have been used to study K[CpFe(CO)(CN)2] (M1) in a range of protic and polar solvents and as a dry film. Measurements of anharmonicity, intermode vibrational coupling strength, vibrational relaxation time, and solvation dynamics of the CO and CN stretching modes of M1 in H2O, D2O, methanol, dimethyl sulfoxide, and acetonitrile reveal that H-bonding to the CN ligands plays an important role in defining the spectroscopic characteristics and relaxation dynamics of the Fe(CO)(CN)2 unit. Comparisons of the spectroscopic and dynamic data obtained for M1 in solution and in a dry film with those obtained for the enzyme led to the conclusion that the protein backbone forms an important part of the bimetallic active site environment via secondary coordination sphere interactions.
Collapse
Affiliation(s)
- Barbara Procacci
- Department
of Chemistry, York Biomedical Research Institute,
University of York, York YO10 5DD, U.K.
| | - Solomon L. D. Wrathall
- Department
of Chemistry, York Biomedical Research Institute,
University of York, York YO10 5DD, U.K.
| | - Amy L. Farmer
- Department
of Chemistry, York Biomedical Research Institute,
University of York, York YO10 5DD, U.K.
| | - Daniel J. Shaw
- Department
of Chemistry, York Biomedical Research Institute,
University of York, York YO10 5DD, U.K.
| | - Gregory M. Greetham
- STFC
Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K.
| | - Anthony W. Parker
- STFC
Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K.
| | - Yvonne Rippers
- Department
of Physics, Ultrafast Dynamics in Catalysis, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Marius Horch
- Department
of Physics, Ultrafast Dynamics in Catalysis, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Jason M. Lynam
- Department
of Chemistry, York Biomedical Research Institute,
University of York, York YO10 5DD, U.K.
| | - Neil T. Hunt
- Department
of Chemistry, York Biomedical Research Institute,
University of York, York YO10 5DD, U.K.
| |
Collapse
|
5
|
Hernández-Toledo HC, Flores-Alamo M, Castillo I. Bis(benzimidazole)amino thio- and selenoether Iron(II) complexes as proton reduction electrocatalysts. J Inorg Biochem 2023; 241:112128. [PMID: 36701986 DOI: 10.1016/j.jinorgbio.2023.112128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Two novel Iron (II) complexes featuring tetrapodal bis(benzimidazole)amino thio- and selenoether ligands (LS and LSe) were synthesized, characterized, and tested as electrocatalysts for the hydrogen evolution reaction. The bromide complexes [Fe(LS,LSe)Br2] (1-2) are highly insoluble, but their DMSO solvates were characterized by single crystal X-ray diffraction, revealing an octahedral coordination environment that does not feature coordination of the chalcogen atoms. The corresponding triflate derivatives [Fe(LS,LSe)(MeCN)3]OTf2 (1c-2c) were employed for electrocatalytic proton reduction, with 1c exhibiting higher activity, thus suggesting that the thioether may participate as a more competent pendant ligand for proton transfer.
Collapse
Affiliation(s)
- Hugo C Hernández-Toledo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, CU 04510, Mexico
| | - Marcos Flores-Alamo
- Facultad de Química, División de Estudios de Posgrado, Universidad Nacional Autónoma de México, Circuito Exterior, CU 04510, Mexico
| | - Ivan Castillo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, CU 04510, Mexico.
| |
Collapse
|
6
|
Understanding 2D-IR Spectra of Hydrogenases: A Descriptive and Predictive Computational Study. Catalysts 2022. [DOI: 10.3390/catal12090988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
[NiFe] hydrogenases are metalloenzymes that catalyze the reversible cleavage of dihydrogen (), a clean future fuel. Understanding the mechanism of these biocatalysts requires spectroscopic techniques that yield insights into the structure and dynamics of the [NiFe] active site. Due to the presence of CO and ligands at this cofactor, infrared (IR) spectroscopy represents an ideal technique for studying these aspects, but molecular information from linear IR absorption experiments is limited. More detailed insights can be obtained from ultrafast nonlinear IR techniques like IRpump−IRprobe and two-dimensional (2D-)IR spectroscopy. However, fully exploiting these advanced techniques requires an in-depth understanding of experimental observables and the encoded molecular information. To address this challenge, we present a descriptive and predictive computational approach for the simulation and analysis of static 2D-IR spectra of [NiFe] hydrogenases and similar organometallic systems. Accurate reproduction of experimental spectra from a first-coordination-sphere model suggests a decisive role of the [NiFe] core in shaping the enzymatic potential energy surface. We also reveal spectrally encoded molecular information that is not accessible by experiments, thereby helping to understand the catalytic role of the diatomic ligands, structural differences between [NiFe] intermediates, and possible energy transfer mechanisms. Our studies demonstrate the feasibility and benefits of computational spectroscopy in the 2D-IR investigation of hydrogenases, thereby further strengthening the potential of this nonlinear IR technique as a powerful research tool for the investigation of complex bioinorganic molecules.
Collapse
|
7
|
2-Mercaptobenzimidazole ligand-based models of the [FeFe] hydrogenase: synthesis, characterization and electrochemical studies. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Barrozo A, Orio M. From Ligand- to Metal-centered Reactivity: Metal Substitution Effect in Thiosemicarbazone-based Complexes for H2 Production. Chemphyschem 2022; 23:e202200056. [PMID: 35213068 DOI: 10.1002/cphc.202200056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Indexed: 11/10/2022]
Abstract
The quest to develop and optimize catalysts for H 2 production requires a thorough understanding in the possible catalytic mechanisms involved. Transition metals are very often the centers of reactivity in the catalysis, although this can change in the presence of a redox-active ligand. Investigating the differences in catalysis when considering ligand- and metal-centered reactivity is important to find the most optimal mechanisms for hydrogen evolution reaction. Here, we investigated this change of reactivity in two versions of a thiosemicarbazone-based complex, using Co and Ni metal centers. While the Ni version has a ligand-centered reactivity, Co switches it toward a metal-centered one. Comparison between the mechanisms show differences in rate-limiting steps, and shows the importance of identifying those steps in order to optimize the system for hydrogen production.
Collapse
Affiliation(s)
- Alexandre Barrozo
- University of Southern California, Department of Chemistry, SSC 404, University of Southern California, 90089-0482, Los Angeles, UNITED STATES
| | - Maylis Orio
- iSm2: Institut des Sciences Moleculaires de Marseille, Biosciences, 52 Avenue Escadrille Normandie Niemen, 13013, Marseille, FRANCE
| |
Collapse
|
9
|
|
10
|
Lü S, Tian W, Xu T, Yang J, Li Q, Li Y. Investigations on the PNP‐chelated diiron dithiolato complexes Fe
2
(μ‐edt)(CO)
4
{κ
2
‐(Ph
2
P)
2
NC
6
H
4
R} related to the [FeFe]‐hydrogenase active site. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shuang Lü
- School of Pharmaceutical Sciences Liaocheng University Liaocheng 252059 P.R. China
| | - Wen‐Jing Tian
- College of Chemistry and Environmental Engineering Sichuan University of Science & Engineering Zigong 643000 P.R. China
| | - Ting‐Ting Xu
- College of Chemistry and Environmental Engineering Sichuan University of Science & Engineering Zigong 643000 P.R. China
| | - Jun Yang
- College of Chemistry and Environmental Engineering Sichuan University of Science & Engineering Zigong 643000 P.R. China
| | - Qian‐Li Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering Liaocheng University Liaocheng 252059 P. R. China
| | - Yu‐Long Li
- College of Chemistry and Environmental Engineering Sichuan University of Science & Engineering Zigong 643000 P.R. China
| |
Collapse
|
11
|
Barrozo A, Orio M. Unraveling the catalytic mechanisms of H 2 production with thiosemicarbazone nickel complexes. RSC Adv 2021; 11:5232-5238. [PMID: 35424428 PMCID: PMC8694661 DOI: 10.1039/d0ra10212a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/21/2021] [Indexed: 11/21/2022] Open
Abstract
Thiosemicarbazone-based complexes have been explored as a new class of redox-active catalysts H2 production due to their flexibility for extensive optimization. To rationalize the process, we need to understand how these complexes function. In this work, we used DFT calculations to investigate the various mechanisms that could take place for three previously characterized Ni complexes. We found that two possible mechanisms are compatible with previously published experimental data, involving protonation of two adjacent N atoms close to the metal center. The first step likely involves a proton-coupled electron transfer process from a proton source to one of the distal N atoms in the ligand. From here, a second proton can be transferred either to the coordinating N atom situated in between the first protonated atom and the Ni atom, or to the second distal N atom. The former case then has the protons in close distance for H2 production. However, the latter will require a third protonation event to occur, which would fall in one of the N atoms adjacent to the Ni center, resulting in a similar mechanism. Finally, we show that the H-H bond formation is the rate-limiting step, and suggest additional strategies that can be taken into account to further optimize these complexes.
Collapse
Affiliation(s)
| | - Maylis Orio
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| |
Collapse
|
12
|
Orio M, Pantazis DA. Successes, challenges, and opportunities for quantum chemistry in understanding metalloenzymes for solar fuels research. Chem Commun (Camb) 2021; 57:3952-3974. [DOI: 10.1039/d1cc00705j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Overview of the rich and diverse contributions of quantum chemistry to understanding the structure and function of the biological archetypes for solar fuel research, photosystem II and hydrogenases.
Collapse
Affiliation(s)
- Maylis Orio
- Aix-Marseille Université
- CNRS
- iSm2
- Marseille
- France
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung
- Kaiser-Wilhelm-Platz 1
- 45470 Mülheim an der Ruhr
- Germany
| |
Collapse
|
13
|
Amanullah S, Saha P, Nayek A, Ahmed ME, Dey A. Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2nd sphere interactions in catalysis. Chem Soc Rev 2021; 50:3755-3823. [DOI: 10.1039/d0cs01405b] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reduction of oxides and oxoanions of carbon and nitrogen are of great contemporary importance as they are crucial for a sustainable environment.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Paramita Saha
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhijit Nayek
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Md Estak Ahmed
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhishek Dey
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
14
|
Lü S, Gong S, Qin CR, Li QL. PNP bridged diiron carbonyls containing Fe/E (E = S and Se) cluster core related to the active site of [FeFe]-H2ases. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Vansuch GE, Wu CH, Haja DK, Blair SA, Chica B, Johnson MK, Adams MWW, Dyer RB. Metal-ligand cooperativity in the soluble hydrogenase-1 from Pyrococcus furiosus. Chem Sci 2020; 11:8572-8581. [PMID: 34123117 PMCID: PMC8163435 DOI: 10.1039/d0sc00628a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Metal–ligand cooperativity is an essential feature of bioinorganic catalysis. The design principles of such cooperativity in metalloenzymes are underexplored, but are critical to understand for developing efficient catalysts designed with earth abundant metals for small molecule activation. The simple substrate requirements of reversible proton reduction by the [NiFe]-hydrogenases make them a model bioinorganic system. A highly conserved arginine residue (R355) directly above the exogenous ligand binding position of the [NiFe]-catalytic core is known to be essential for optimal function because mutation to a lysine results in lower catalytic rates. To expand on our studies of soluble hydrogenase-1 from Pyrococcus furiosus (Pf SH1), we investigated the role of R355 by site-directed-mutagenesis to a lysine (R355K) using infrared and electron paramagnetic resonance spectroscopic probes sensitive to active site redox and protonation events. It was found the mutation resulted in an altered ligand binding environment at the [NiFe] centre. A key observation was destabilization of the Nia3+–C state, which contains a bridging hydride. Instead, the tautomeric Nia+–L states were observed. Overall, the results provided insight into complex metal–ligand cooperativity between the active site and protein scaffold that modulates the bridging hydride stability and the proton inventory, which should prove valuable to design principles for efficient bioinspired catalysts. Metal–ligand cooperativity is an essential feature of bioinorganic catalysis.![]()
Collapse
Affiliation(s)
| | - Chang-Hao Wu
- Department of Biochemistry & Molecular Biology, University of Georgia Athens Georgia 30602 USA.,AskGene Pharma Inc. Camarillo CA 93012 USA
| | - Dominik K Haja
- Department of Biochemistry & Molecular Biology, University of Georgia Athens Georgia 30602 USA
| | - Soshawn A Blair
- Department of Chemistry, University of Georgia Athens Georgia 30602 USA
| | - Bryant Chica
- Department of Chemistry, Emory University Atlanta Georgia 30222 USA .,Biosciences Center, National Renewable Energy Laboratory Golden Colorado 80401 USA
| | - Michael K Johnson
- Department of Chemistry, University of Georgia Athens Georgia 30602 USA
| | - Michael W W Adams
- Department of Biochemistry & Molecular Biology, University of Georgia Athens Georgia 30602 USA.,Department of Chemistry, University of Georgia Athens Georgia 30602 USA
| | - R Brian Dyer
- Department of Chemistry, Emory University Atlanta Georgia 30222 USA
| |
Collapse
|
16
|
Wang C, Li J, Yang D, Tong P, Sun P, Wang B, Qu J. Synthesis, Isomerization and Electrocatalytic Properties of Thiolate‐Bridged Dicobalt Hydride Complexes with Different Substituents. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Chunlong Wang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 116024 Dalian P. R. China
| | - Jianzhe Li
- State Key Laboratory of Fine Chemicals Dalian University of Technology 116024 Dalian P. R. China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 116024 Dalian P. R. China
| | - Peng Tong
- State Key Laboratory of Fine Chemicals Dalian University of Technology 116024 Dalian P. R. China
| | - Puhua Sun
- State Key Laboratory of Fine Chemicals Dalian University of Technology 116024 Dalian P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 116024 Dalian P. R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 116024 Dalian P. R. China
- Key Laboratory for Advanced Materials East China University of Science and Technology 200237 Shanghai P. R. China
| |
Collapse
|
17
|
Yan L, Wang LH, Yang J, Liu XF, Li YL, Liu XH, Jiang ZQ. Diiron propane-1,2-dithiolate complexes with monosubstituted tris(3-chlorophenyl)phosphine or tris(4-trifluoromethylphenyl)phosphine: synthesis, characterization, crystal structures, and electrochemistry. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1735431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Lin Yan
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Ling-Hui Wang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Jun Yang
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Xu-Feng Liu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Xing-Hai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhong-Qing Jiang
- Department of Physics, Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
18
|
Li Q, Zhang R, Ma C, Lü S, Mu C, Li Y. Synthesis, characterization, and some electrocatalytic properties of heteromultinuclear Fe
I
/Ru
II
Clusters. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5461] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Qian‐Li Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical EngineeringLiaocheng University Liaocheng 252059 P. R. China
| | - Ru‐Fen Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical EngineeringLiaocheng University Liaocheng 252059 P. R. China
| | - Chun‐Lin Ma
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical EngineeringLiaocheng University Liaocheng 252059 P. R. China
| | - Shuang Lü
- School of PharmacyLiaocheng University Liaocheng 252059 China
| | - Chao Mu
- College of Chemistry and Environmental EngineeringSichuan University of Science & Engineering Zigong 643000 P. R. China
| | - Yu‐Long Li
- College of Chemistry and Environmental EngineeringSichuan University of Science & Engineering Zigong 643000 P. R. China
| |
Collapse
|
19
|
Arrigoni F, Bertini L, Breglia R, Greco C, De Gioia L, Zampella G. Catalytic H 2 evolution/oxidation in [FeFe]-hydrogenase biomimetics: account from DFT on the interplay of related issues and proposed solutions. NEW J CHEM 2020. [DOI: 10.1039/d0nj03393f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A DFT overview on selected issues regarding diiron catalysts related to [FeFe]-hydrogenase biomimetic research, with implications for both energy conversion and storage strategies.
Collapse
Affiliation(s)
- Federica Arrigoni
- Department of Biotechnology and Biosciences
- University of Milano – Bicocca
- 20126 Milan
- Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences
- University of Milano – Bicocca
- 20126 Milan
- Italy
| | - Raffaella Breglia
- Department of Biotechnology and Biosciences
- University of Milano – Bicocca
- 20126 Milan
- Italy
- Department of Earth and Environmental Sciences
| | - Claudio Greco
- Department of Biotechnology and Biosciences
- University of Milano – Bicocca
- 20126 Milan
- Italy
- Department of Earth and Environmental Sciences
| | - Luca De Gioia
- Department of Biotechnology and Biosciences
- University of Milano – Bicocca
- 20126 Milan
- Italy
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences
- University of Milano – Bicocca
- 20126 Milan
- Italy
| |
Collapse
|
20
|
Pieri C, Bhattacharjee A, Barrozo A, Faure B, Giorgi M, Fize J, Réglier M, Field M, Orio M, Artero V, Hardré R. Hydrogen evolution reaction mediated by an all-sulfur trinuclear nickel complex. Chem Commun (Camb) 2020; 56:11106-11109. [DOI: 10.1039/d0cc04174b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A trinuclear nickel complex with S-based ligands is reported as a bio-inspired model of the [NiFe] hydrogenases' active site. DFT calculations indicate that thiolate and thioether functions are involved as proton relays in the H2 evolution mechanism.
Collapse
Affiliation(s)
- Cyril Pieri
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- iSm2
- Marseille
| | | | | | - Bruno Faure
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- iSm2
- Marseille
| | - Michel Giorgi
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- Marseille
- France
| | - Jennifer Fize
- Univ. Grenoble Alpes
- CNRS
- CEA
- IRIG
- Laboratoire de Chimie et Biologie des Métaux
| | | | - Martin Field
- Univ. Grenoble Alpes
- CNRS
- CEA
- IRIG
- Laboratoire de Chimie et Biologie des Métaux
| | - Maylis Orio
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- iSm2
- Marseille
| | - Vincent Artero
- Univ. Grenoble Alpes
- CNRS
- CEA
- IRIG
- Laboratoire de Chimie et Biologie des Métaux
| | - Renaud Hardré
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- iSm2
- Marseille
| |
Collapse
|
21
|
Elsby MR, Baker RT. Strategies and mechanisms of metal–ligand cooperativity in first-row transition metal complex catalysts. Chem Soc Rev 2020; 49:8933-8987. [DOI: 10.1039/d0cs00509f] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of metal–ligand cooperation (MLC) by transition metal bifunctional catalysts has emerged at the forefront of homogeneous catalysis science.
Collapse
Affiliation(s)
- Matthew R. Elsby
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| | - R. Tom Baker
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| |
Collapse
|
22
|
Papadakis M, Barrozo A, Straistari T, Queyriaux N, Putri A, Fize J, Giorgi M, Réglier M, Massin J, Hardré R, Orio M. Ligand-based electronic effects on the electrocatalytic hydrogen production by thiosemicarbazone nickel complexes. Dalton Trans 2020; 49:5064-5073. [DOI: 10.1039/c9dt04775a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This work reports on the synthesis and characterization of a series of mononuclear thiosemicarbazone nickel complexes that display significant catalytic activity for hydrogen production in DMF using trifluoroacetic acid as the proton source.
Collapse
Affiliation(s)
| | | | | | | | - Anisa Putri
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- Marseille
- France
| | - Jennifer Fize
- Univ. Grenoble Alpes
- CNRS
- CEA
- IRIG
- Laboratoire de Chimie et Biologie des Métaux
| | | | | | - Julien Massin
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- Marseille
- France
| | - Renaud Hardré
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- Marseille
- France
| | - Maylis Orio
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- Marseille
- France
| |
Collapse
|
23
|
Ilina Y, Lorent C, Katz S, Jeoung J, Shima S, Horch M, Zebger I, Dobbek H. X‐ray Crystallography and Vibrational Spectroscopy Reveal the Key Determinants of Biocatalytic Dihydrogen Cycling by [NiFe] Hydrogenases. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yulia Ilina
- Institut für Biologie, Strukturbiologie/BiochemieHumboldt-Universität zu Berlin Philippstraße 13 10115 Berlin Germany
| | - Christian Lorent
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Sagie Katz
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Jae‐Hun Jeoung
- Institut für Biologie, Strukturbiologie/BiochemieHumboldt-Universität zu Berlin Philippstraße 13 10115 Berlin Germany
| | - Seigo Shima
- Max-Planck-Institut für Terrestrische Mikrobiologie Karl-von-Frisch-Str. 10 35043 Marburg Germany
| | - Marius Horch
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
- Department of Chemistry and York Biomedical Research InstituteUniversity of York Heslington York YO10 5DD UK
| | - Ingo Zebger
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Holger Dobbek
- Institut für Biologie, Strukturbiologie/BiochemieHumboldt-Universität zu Berlin Philippstraße 13 10115 Berlin Germany
| |
Collapse
|
24
|
Barrozo A, Orio M. Molecular Electrocatalysts for the Hydrogen Evolution Reaction: Input from Quantum Chemistry. CHEMSUSCHEM 2019; 12:4905-4915. [PMID: 31557393 DOI: 10.1002/cssc.201901828] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/22/2019] [Indexed: 06/10/2023]
Abstract
In the pursuit of carbon-free fuels, hydrogen can be considered as an apt energy carrier. The design of molecular electrocatalysts for hydrogen production is important for the development of renewable energy sources that are abundant, inexpensive, and environmentally benign. Over the last 20 years, a large number of electrocatalysts have been developed, and considerable efforts have been directed toward the design of earth-abundant, first-row transition-metal complexes capable of promoting electrocatalytic hydrogen evolution reaction (HER). In this context, numerical approaches have emerged as powerful tools to study the catalytic performances of these complexes. This review covers some of the most significant theoretical mechanistic studies of biomimetic and bioinspired homogeneous HER catalysts. The approaches employed to study the free energy landscapes are discussed and methods used to obtain accurate estimates of relevant observables required to study the HER are presented. Furthermore, the structural and electronic parameters that govern the reactivity, and are necessary to achieve efficient hydrogen production, are discussed in view of future research directions.
Collapse
Affiliation(s)
- Alexandre Barrozo
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397, Marseille, France
| | - Maylis Orio
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397, Marseille, France
| |
Collapse
|
25
|
Li Q, Gong S, Lü L, Lü S, Deng C, Yang J, Li Y. Unexpected Reaction of Fe
3
(CO)
12
with Dialkyldithiophosphate: The Case of P–S Bond Activation. Z Anorg Allg Chem 2019. [DOI: 10.1002/zaac.201900192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qian‐Li Li
- Department of Chemistry and Chemical Engineering Liaocheng University 252059 Liaocheng P. R. China
| | - Sheng Gong
- Department of Chemistry and Chemical Engineering Liaocheng University 252059 Liaocheng P. R. China
| | - Liang Lü
- Department of Chemistry and Chemical Engineering Liaocheng University 252059 Liaocheng P. R. China
| | - Shuang Lü
- School of Pharmacy Liaocheng University 252059 Liaocheng P. R. China
| | - Cheng‐Long Deng
- College of Chemistry and Environmental Engineering Sichuan University of Science & Engineering 643000 Zigong P. R. China
| | - Jun Yang
- College of Chemistry and Environmental Engineering Sichuan University of Science & Engineering 643000 Zigong P. R. China
| | - Yu‐Long Li
- College of Chemistry and Environmental Engineering Sichuan University of Science & Engineering 643000 Zigong P. R. China
| |
Collapse
|
26
|
Ilina Y, Lorent C, Katz S, Jeoung JH, Shima S, Horch M, Zebger I, Dobbek H. X-ray Crystallography and Vibrational Spectroscopy Reveal the Key Determinants of Biocatalytic Dihydrogen Cycling by [NiFe] Hydrogenases. Angew Chem Int Ed Engl 2019; 58:18710-18714. [PMID: 31591784 PMCID: PMC6916344 DOI: 10.1002/anie.201908258] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Indexed: 11/23/2022]
Abstract
[NiFe] hydrogenases are complex model enzymes for the reversible cleavage of dihydrogen (H2). However, structural determinants of efficient H2 binding to their [NiFe] active site are not properly understood. Here, we present crystallographic and vibrational‐spectroscopic insights into the unexplored structure of the H2‐binding [NiFe] intermediate. Using an F420‐reducing [NiFe]‐hydrogenase from Methanosarcina barkeri as a model enzyme, we show that the protein backbone provides a strained chelating scaffold that tunes the [NiFe] active site for efficient H2 binding and conversion. The protein matrix also directs H2 diffusion to the [NiFe] site via two gas channels and allows the distribution of electrons between functional protomers through a subunit‐bridging FeS cluster. Our findings emphasize the relevance of an atypical Ni coordination, thereby providing a blueprint for the design of bio‐inspired H2‐conversion catalysts.
Collapse
Affiliation(s)
- Yulia Ilina
- Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany
| | - Christian Lorent
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Sagie Katz
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Jae-Hun Jeoung
- Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany
| | - Seigo Shima
- Max-Planck-Institut für Terrestrische Mikrobiologie, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Marius Horch
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.,Department of Chemistry and York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - Ingo Zebger
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Holger Dobbek
- Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany
| |
Collapse
|
27
|
Horch M, Schoknecht J, Wrathall SLD, Greetham GM, Lenz O, Hunt NT. Understanding the structure and dynamics of hydrogenases by ultrafast and two-dimensional infrared spectroscopy. Chem Sci 2019; 10:8981-8989. [PMID: 31762978 PMCID: PMC6857670 DOI: 10.1039/c9sc02851j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/05/2019] [Indexed: 11/21/2022] Open
Abstract
Hydrogenases are valuable model enzymes for sustainable energy conversion approaches using H2, but rational utilization of these base-metal biocatalysts requires a detailed understanding of the structure and dynamics of their complex active sites. The intrinsic CO and CN- ligands of these metalloenzymes represent ideal chromophores for infrared (IR) spectroscopy, but structural and dynamic insight from conventional IR absorption experiments is limited. Here, we apply ultrafast and two-dimensional (2D) IR spectroscopic techniques, for the first time, to study hydrogenases in detail. Using an O2-tolerant [NiFe] hydrogenase as a model system, we demonstrate that IR pump-probe spectroscopy can explore catalytically relevant ligand bonding by accessing high-lying vibrational states. This ultrafast technique also shows that the protein matrix is influential in vibrational relaxation, which may be relevant for energy dissipation from the active site during fast reaction steps. Further insights into the relevance of the active site environment are provided by 2D-IR spectroscopy, which reveals equilibrium dynamics and structural constraints imposed on the H2-accepting intermediate of [NiFe] hydrogenases. Both techniques offer new strategies for uniquely identifying redox-structural states in complex catalytic mixtures via vibrational quantum beats and 2D-IR off-diagonal peaks. Together, these findings considerably expand the scope of IR spectroscopy in hydrogenase research, and new perspectives for the characterization of these enzymes and other (bio-)organometallic targets are presented.
Collapse
Affiliation(s)
- Marius Horch
- Department of Chemistry , York Biomedical Research Institute , University of York , Heslington , York , YO10 5DD , UK .
- Institut für Chemie , Technische Universität Berlin , Straße des 17. Juni 135 , Berlin , D-10623 , Germany
| | - Janna Schoknecht
- Institut für Chemie , Technische Universität Berlin , Straße des 17. Juni 135 , Berlin , D-10623 , Germany
| | - Solomon L D Wrathall
- Department of Chemistry , York Biomedical Research Institute , University of York , Heslington , York , YO10 5DD , UK .
| | - Gregory M Greetham
- STFC Central Laser Facility, Research Complex at Harwell , Rutherford Appleton Laboratory , Harwell Science and Innovation Campus , Didcot , Oxford , OX110PE , UK
| | - Oliver Lenz
- Institut für Chemie , Technische Universität Berlin , Straße des 17. Juni 135 , Berlin , D-10623 , Germany
| | - Neil T Hunt
- Department of Chemistry , York Biomedical Research Institute , University of York , Heslington , York , YO10 5DD , UK .
| |
Collapse
|
28
|
Ghosh S, Rahaman A, Orton G, Gregori G, Bernat M, Kulsume U, Hollingsworth N, Holt KB, Kabir SE, Hogarth G. Synthesis, Molecular Structures and Electrochemical Investigations of [FeFe]‐Hydrogenase Biomimics [Fe
2
(CO)
6‐
n
(EPh
3
)
n
(µ‐edt)] (E = P, As, Sb;
n
= 1, 2). Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900891] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shishir Ghosh
- Department of Chemistry University College London 20 Gordon Street WC1H 0AJ London UK
- Department of Chemistry Jahangirnagar University Dhaka 1342 Savar Bangladesh
- Department of Chemistry King's College London Britannia House 7 Trinity Street SE1 1DB London UK
| | - Ahibur Rahaman
- Department of Chemistry Jahangirnagar University Dhaka 1342 Savar Bangladesh
| | - Georgia Orton
- Department of Chemistry King's College London Britannia House 7 Trinity Street SE1 1DB London UK
| | - Gregory Gregori
- Department of Chemistry University College London 20 Gordon Street WC1H 0AJ London UK
| | - Martin Bernat
- Department of Chemistry University College London 20 Gordon Street WC1H 0AJ London UK
| | - Ummey Kulsume
- Department of Chemistry Jahangirnagar University Dhaka 1342 Savar Bangladesh
| | - Nathan Hollingsworth
- Department of Chemistry University College London 20 Gordon Street WC1H 0AJ London UK
| | - Katherine B. Holt
- Department of Chemistry University College London 20 Gordon Street WC1H 0AJ London UK
| | - Shariff E. Kabir
- Department of Chemistry Jahangirnagar University Dhaka 1342 Savar Bangladesh
| | - Graeme Hogarth
- Department of Chemistry King's College London Britannia House 7 Trinity Street SE1 1DB London UK
| |
Collapse
|
29
|
Yan L, He J, Liu XF, Li YL, Jiang ZQ, Wu HK. Phosphine-substituted diiron 1,2-dithiolate complexes as the models for the active site of [FeFe]-hydrogenases. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1665648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Lin Yan
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Jiao He
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Xu-Feng Liu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Zhong-Qing Jiang
- Department of Physics, Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hong-Ke Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
30
|
Synthesis, structures, and electrochemistry of diiron toluene-3,4-dithiolate complexes containing phosphine ligands. TRANSIT METAL CHEM 2019. [DOI: 10.1007/s11243-019-00342-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Lei H, Li X, Meng J, Zheng H, Zhang W, Cao R. Structure Effects of Metal Corroles on Energy-Related Small Molecule Activation Reactions. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00310] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry,
Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry,
Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Jia Meng
- Key Laboratory of Applied Surface and Colloid Chemistry,
Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry,
Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry,
Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry,
Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
32
|
Li QL, Lü S, Zhang RF, Zhao D, Ma CL. Substitution reactions of diiron diselenolato complex with bisphosphine ligands. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.12.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
|
34
|
Nurttila SS, Becker R, Hessels J, Woutersen S, Reek JNH. Photocatalytic Hydrogen Evolution by a Synthetic [FeFe] Hydrogenase Mimic Encapsulated in a Porphyrin Cage. Chemistry 2018; 24:16395-16406. [PMID: 30117602 PMCID: PMC6282596 DOI: 10.1002/chem.201803351] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Indexed: 12/12/2022]
Abstract
The design of a biomimetic and fully base metal photocatalytic system for photocatalytic proton reduction in a homogeneous medium is described. A synthetic pyridylphosphole-appended [FeFe] hydrogenase mimic was encapsulated inside a supramolecular zinc porphyrin-based metal-organic cage structure Fe4 (Zn-L)6 . The binding is driven by the selective pyridine-zinc porphyrin interaction and results in the catalyst being bound strongly inside the hydrophobic cavity of the cage. Excitation of the capsule-forming porphyrin ligands with visible light while probing the IR spectrum confirmed that electron transfer takes place from the excited porphyrin cage to the catalyst residing inside the capsule. Light-driven proton reduction was achieved by irradiation of an acidic solution of the caged catalyst with visible light.
Collapse
Affiliation(s)
- Sandra S. Nurttila
- Van 't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| | - René Becker
- Van 't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| | - Joeri Hessels
- Van 't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| | - Sander Woutersen
- Van 't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| | - Joost N. H. Reek
- Van 't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| |
Collapse
|
35
|
Tai H, Higuchi Y, Hirota S. Comprehensive reaction mechanisms at and near the Ni-Fe active sites of [NiFe] hydrogenases. Dalton Trans 2018. [PMID: 29532823 DOI: 10.1039/c7dt04910b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
[NiFe] hydrogenase (H2ase) catalyzes the oxidation of dihydrogen to two protons and two electrons and/or its reverse reaction. For this simple reaction, the enzyme has developed a sophisticated but intricate mechanism with heterolytic cleavage of dihydrogen (or a combination of a hydride and a proton), where its Ni-Fe active site exhibits various redox states. Recently, thermodynamic parameters of the acid-base equilibrium for activation-inactivation, a new intermediate in the catalytic reaction, and new crystal structures of [NiFe] H2ases have been reported, providing significant insights into the activation-inactivation and catalytic reaction mechanisms of [NiFe] H2ases. This Perspective provides an overview of the reaction mechanisms of [NiFe] H2ases based on these new findings.
Collapse
Affiliation(s)
- Hulin Tai
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan.
| | | | | |
Collapse
|
36
|
Tai H, Xu L, Nishikawa K, Higuchi Y, Hirota S. Equilibrium between inactive ready Ni-SI r and active Ni-SI a states of [NiFe] hydrogenase studied by utilizing Ni-SI r-to-Ni-SI a photoactivation. Chem Commun (Camb) 2018; 53:10444-10447. [PMID: 28884761 DOI: 10.1039/c7cc06061k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previously, the Ni-SIr state of [NiFe] hydrogenase was found to convert to the Ni-SIa state by light irradiation. Herein, large activation energies and a large kinetic isotope effect were obtained for the reconversion of the Ni-SIa state to the Ni-SIr state after the Ni-SIr-to-Ni-SIa photoactivation, suggesting that the Ni-SIa state reacts with H2O and leaves a bridging hydroxo ligand for the Ni-SIr state.
Collapse
Affiliation(s)
- Hulin Tai
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan. and CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Liyang Xu
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan.
| | - Koji Nishikawa
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yoshiki Higuchi
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan and Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Shun Hirota
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan. and CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
37
|
Ott JC, Blasius CK, Wadepohl H, Gade LH. Synthesis, Characterization, and Reactivity of a High-Spin Iron(II) Hydrido Complex Supported by a PNP Pincer Ligand and Its Application as a Homogenous Catalyst for the Hydrogenation of Alkenes. Inorg Chem 2018; 57:3183-3191. [DOI: 10.1021/acs.inorgchem.7b03227] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jonas C. Ott
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| | - Clemens K. Blasius
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| | - Lutz. H. Gade
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| |
Collapse
|
38
|
Perotto CU, Sodipo CL, Jones GJ, Tidey JP, Blake AJ, Lewis W, Davies ES, McMaster J, Schröder M. Heterobimetallic [NiFe] Complexes Containing Mixed CO/CN - Ligands: Analogs of the Active Site of the [NiFe] Hydrogenases. Inorg Chem 2018; 57:2558-2569. [PMID: 29465237 DOI: 10.1021/acs.inorgchem.7b02905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of synthetic analogs of the active sites of [NiFe] hydrogenases remains challenging, and, in spite of the number of complexes featuring a [NiFe] center, those featuring CO and CN- ligands at the Fe center are under-represented. We report herein the synthesis of three bimetallic [NiFe] complexes [Ni( N2 S2)Fe(CO)2(CN)2], [Ni( S4)Fe(CO)2(CN)2], and [Ni( N2 S3)Fe(CO)2(CN)2] that each contain a Ni center that bridges through two thiolato S donors to a {Fe(CO)2(CN)2} unit. X-ray crystallographic studies on [Ni( N2 S3)Fe(CO)2(CN)2], supported by DFT calculations, are consistent with a solid-state structure containing distinct molecules in the singlet ( S = 0) and triplet ( S = 1) states. Each cluster exhibits irreversible reduction processes between -1.45 and -1.67 V vs Fc+/Fc and [Ni( N2 S3)Fe(CO)2(CN)2] possesses a reversible oxidation process at 0.17 V vs Fc+/Fc. Spectroelectrochemical infrared (IR) and electron paramagnetic resonance (EPR) studies, supported by density functional theory (DFT) calculations, are consistent with a NiIIIFeII formulation for [Ni( N2 S3)Fe(CO)2(CN)2]+. The singly occupied molecular orbital (SOMO) in [Ni( N2 S3)Fe(CO)2(CN)2]+ is based on Ni 3dz2 and 3p S with the S contributions deriving principally from the apical S-donor. The nature of the SOMO corresponds to that proposed for the Ni-C state of the [NiFe] hydrogenases for which a NiIIIFeII formulation has also been proposed. A comparison of the experimental structures, and the electrochemical and spectroscopic properties of [Ni( N2 S3)Fe(CO)2(CN)2] and its [Ni( N2 S3)] precursor, together with calculations on the oxidized [Ni( N2 S3)Fe(CO)2(CN)2]+ and [Ni( N2 S3)]+ forms suggests that the binding of the {Fe(CO)(CN)2} unit to the {Ni(CysS)4} center at the active site of the [NiFe] hydrogenases suppresses thiolate-based oxidative chemistry involving the bridging thiolate S donors. This is in addition to the role of the Fe center in modulating the redox potential and geometry and supporting a bridging hydride species between the Ni and Fe centers in the Ni-C state.
Collapse
Affiliation(s)
- Carlo U Perotto
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - Charlene L Sodipo
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - Graham J Jones
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - Jeremiah P Tidey
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - Alexander J Blake
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - William Lewis
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - E Stephen Davies
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - Jonathan McMaster
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - Martin Schröder
- The University of Manchester , Oxford Road , Manchester , M13 9PL , United Kingdom
| |
Collapse
|
39
|
Tai H, Xu L, Inoue S, Nishikawa K, Higuchi Y, Hirota S. Photoactivation of the Ni-SIr state to the Ni-SIa state in [NiFe] hydrogenase: FT-IR study on the light reactivity of the ready Ni-SIr state and as-isolated enzyme revisited. Phys Chem Chem Phys 2018; 18:22025-30. [PMID: 27456760 DOI: 10.1039/c6cp04628b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Ni-SIr state of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F was photoactivated to its Ni-SIa state by Ar(+) laser irradiation at 514.5 nm, whereas the Ni-SL state was light induced from a newly identified state, which was less active than any other identified state and existed in the "as-isolated" enzyme.
Collapse
Affiliation(s)
- Hulin Tai
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan. and CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Liyang Xu
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan.
| | - Seiya Inoue
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Koji Nishikawa
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yoshiki Higuchi
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan and Graduate School of Life Science, University of Hyogo, 3-2-1 Koto Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Shun Hirota
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan. and CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
40
|
Maiti BK, Almeida RM, Moura I, Moura JJ. Rubredoxins derivatives: Simple sulphur-rich coordination metal sites and its relevance for biology and chemistry. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Sheng YD, Yu XY, Liu XF, Li YL. 2-(Diphenylphosphino)benzaldehyde or isopropyldiphenylphosphine substituted diiron dithiolate complexes. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.08.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Niu SJ, Yu XY, Liu XF, Li YL. Tris(2-methoxyphenyl)phosphine substituted diiron ethanedithiolate complexes containing hydroxymethyl, methyl or ethyl groups. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.08.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Enzymatic and spectroscopic properties of a thermostable [NiFe]‑hydrogenase performing H 2-driven NAD +-reduction in the presence of O 2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1859:8-18. [PMID: 28970007 DOI: 10.1016/j.bbabio.2017.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/17/2017] [Accepted: 09/28/2017] [Indexed: 12/18/2022]
Abstract
Biocatalysts that mediate the H2-dependent reduction of NAD+ to NADH are attractive from both a fundamental and applied perspective. Here we present the first biochemical and spectroscopic characterization of an NAD+-reducing [NiFe]‑hydrogenase that sustains catalytic activity at high temperatures and in the presence of O2, which usually acts as an inhibitor. We isolated and sequenced the four structural genes, hoxFUYH, encoding the soluble NAD+-reducing [NiFe]‑hydrogenase (SH) from the thermophilic betaproteobacterium, Hydrogenophilus thermoluteolus TH-1T (Ht). The HtSH was recombinantly overproduced in a hydrogenase-free mutant of the well-studied, H2-oxidizing betaproteobacterium Ralstonia eutropha H16 (Re). The enzyme was purified and characterized with various biochemical and spectroscopic techniques. Highest H2-mediated NAD+ reduction activity was observed at 80°C and pH6.5, and catalytic activity was found to be sustained at low O2 concentrations. Infrared spectroscopic analyses revealed a spectral pattern for as-isolated HtSH that is remarkably different from those of the closely related ReSH and other [NiFe]‑hydrogenases. This indicates an unusual configuration of the oxidized catalytic center in HtSH. Complementary electron paramagnetic resonance spectroscopic analyses revealed spectral signatures similar to related NAD+-reducing [NiFe]‑hydrogenases. This study lays the groundwork for structural and functional analyses of the HtSH as well as application of this enzyme for H2-driven cofactor recycling under oxic conditions at elevated temperatures.
Collapse
|
44
|
Kositzki R, Mebs S, Schuth N, Leidel N, Schwartz L, Karnahl M, Wittkamp F, Daunke D, Grohmann A, Apfel UP, Gloaguen F, Ott S, Haumann M. Electronic and molecular structure relations in diiron compounds mimicking the [FeFe]-hydrogenase active site studied by X-ray spectroscopy and quantum chemistry. Dalton Trans 2017; 46:12544-12557. [PMID: 28905949 DOI: 10.1039/c7dt02720f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synthetic diiron compounds of the general formula Fe2(μ-S2R)(CO)n(L)6-n (R = alkyl or aromatic groups; L = CN- or phosphines) are versatile models for the active-site cofactor of hydrogen turnover in [FeFe]-hydrogenases. A series of 18 diiron compounds, containing mostly a dithiolate bridge and terminal ligands of increasing complexity, was characterized by X-ray absorption and emission spectroscopy in combination with density functional theory. Fe K-edge absorption and Kβ main-line emission spectra revealed the varying geometry and the low-spin state of the Fe(i) centers. Good agreement between experimental and calculated core-to-valence-excitation absorption and radiative valence-to-core-decay emission spectra revealed correlations between spectroscopic and structural features and provided access to the electronic configuration. Four main effects on the diiron core were identified, which were preferentially related to variation either of the dithiolate or of the terminal ligands. Alteration of the dithiolate bridge affected mainly the Fe-Fe bond strength, while more potent donor substitution and ligand field asymmetrization changed the metal charge and valence level localization. In contrast, cyanide ligation altered all relevant properties and, in particular, the frontier molecular orbital energies of the diiron core. Mutual benchmarking of experimental and theoretical parameters provides guidelines to verify the electronic properties of related diiron compounds.
Collapse
Affiliation(s)
- Ramona Kositzki
- Freie Universität Berlin, Fachbereich Physik, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Synthesis of diiron sulfur clusters containing thiolato-1,8-naphthalene imide ligand. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Cao J, Zhou Y. Excited state relaxation processes of H 2-evolving Ru-Pd supramolecular photocatalysts containing a linear or non-linear bridge: a DFT and TDDFT study. Phys Chem Chem Phys 2017; 19:11529-11539. [PMID: 28425524 DOI: 10.1039/c6cp07857e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this study, the early-time excited state relaxation processes of bimetallic Ru-Pd supramolecular photocatalysts containing a linear 2,2':5',2''-terpyridine or a nonlinear 2,2':6',2''-terpyridine bridging ligand (BL) were investigated by density functional theory (DFT) and time-dependent DFT (TDDFT) approaches. The bridge based metal-to-ligand charge transfer triplet (3MLCT) state of the metal complex containing a linear bridging ligand was calculated to be the lowest energy triplet (T1) state which is closely related to the photocatalytic H2 production, while for that having a nonlinear bridging ligand, the T1 state is a Ru metal-centered (MC) triplet (3MCRu) state that is short-lived and rapidly decays to the ground electronic state (S0). Our simulation provides an alternative explanation for the smaller interligand electron transfer (ILET) rate in the Ru-Pd complex containing a linear bridge compared to the corresponding monometal Ru complex. Based on the calculation, we also suggest that the successive 3MLCT → 3MCRu → S0 conversion is responsible for the inefficiency of the Ru-Pd complex containing nonlinear bridge as a photocatalyst for H2 production. This study provides theoretical insights into the key steps of the photoinduced processes of the bimetallic H2-evolving supramolecular photocatalyst.
Collapse
Affiliation(s)
- Jun Cao
- Guizhou Provincial Key Laboratory of Computational Nano-material Science, Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology, Guizhou Education University, Guiyang, Guizhou 550018, China
| | | |
Collapse
|
47
|
Natarajan M, Pandey IK, Kaur-Ghumaan S. Synthesis and Electrocatalysis of Diiron Monothiolate Complexes: Small Molecule Mimics of the [FeFe] Hydrogenase Enzyme. ChemistrySelect 2017. [DOI: 10.1002/slct.201700084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mookan Natarajan
- Department of Chemistry; University of Delhi; Delhi- 110007 India
| | | | | |
Collapse
|
48
|
Yen TH, He ZC, Lee GH, Tseng MC, Shen YH, Tseng TW, Liaw WF, Chiang MH. Reduced thione ligation is preferred over neutral phosphine ligation in diiron biomimics regarding electronic functionality: a spectroscopic and computational investigation. Chem Commun (Camb) 2017; 53:332-335. [DOI: 10.1039/c6cc08042a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Sulfur means superiority: effective electronic communication and buffering by sulfur ligation.
Collapse
Affiliation(s)
- Tao-Hung Yen
- Institute of Chemistry
- Academia Sinica
- Taipei 115
- Taiwan
- Molecular Science Technology Program
| | - Zong-Cheng He
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Gene-Hsiang Lee
- Instrumentation Center
- National Taiwan University
- Taipei 106
- Taiwan
| | | | - Yu-Hsuan Shen
- Department of Chemistry
- National Taiwan University
- Taipei 106
- Taiwan
| | - Tien-Wen Tseng
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 300
- Taiwan
| | - Ming-Hsi Chiang
- Institute of Chemistry
- Academia Sinica
- Taipei 115
- Taiwan
- Molecular Science Technology Program
| |
Collapse
|
49
|
Xie ZL, Durgaprasad G, Ali AK, Rose MJ. Substitution reactions of iron(ii) carbamoyl-thioether complexes related to mono-iron hydrogenase. Dalton Trans 2017; 46:10814-10829. [DOI: 10.1039/c7dt01696d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A C,N,S pincer complex has been synthesized for structural modeling of the organometallic active site of mono-[Fe] hydrogenase (HMD).
Collapse
Affiliation(s)
- Zhu-Lin Xie
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | | | - Azim K. Ali
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Michael J. Rose
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| |
Collapse
|
50
|
Downes CA, Marinescu SC. Bioinspired Metal Selenolate Polymers with Tunable Mechanistic Pathways for Efficient H2 Evolution. ACS Catal 2016. [DOI: 10.1021/acscatal.6b03161] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Courtney A. Downes
- University of Southern California, Department of Chemistry, Los Angeles, California 90089, United States
| | - Smaranda C. Marinescu
- University of Southern California, Department of Chemistry, Los Angeles, California 90089, United States
| |
Collapse
|