1
|
Zhou FQ. Pyruvate as a Potential Beneficial Anion in Resuscitation Fluids. Front Med (Lausanne) 2022; 9:905978. [PMID: 35991638 PMCID: PMC9382911 DOI: 10.3389/fmed.2022.905978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
There have been ongoing debates about resuscitation fluids because each of the current fluids has its own disadvantages. The debates essentially reflect an embarrassing clinical status quo that all fluids are not quite ideal in most clinical settings. Therefore, a novel fluid that overcomes the limitations of most fluids is necessary for most patients, particularly diabetic and older patients. Pyruvate is a natural potent antioxidant/nitrosative and anti-inflammatory agent. Exogenous pyruvate as an alkalizer can increase cellular hypoxia and anoxia tolerance with the preservation of classic glycolytic pathways and the reactivation of pyruvate dehydrogenase activity to promote oxidative metabolism and reverse the Warburg effect, robustly preventing and treating hypoxic lactic acidosis, which is one of the fatal complications in critically ill patients. In animal studies and clinical reports, pyruvate has been shown to play a protective role in multi-organ functions, especially the heart, brain, kidney, and intestine, demonstrating a great potential to improve patient survival. Pyruvate-enriched fluids including crystalloids and colloids and oral rehydration solution (ORS) may be ideal due to the unique beneficial properties of pyruvate relative to anions in contemporary existing fluids, such as acetate, bicarbonate, chloride, citrate, lactate, and even malate. Preclinical studies have demonstrated that pyruvate-enriched saline is superior to 0.9% sodium chloride. Moreover, pyruvate-enriched Ringer’s solution is advantageous over lactated Ringer’s solution. Furthermore, pyruvate as a carrier in colloids, such as hydroxyethyl starch 130/0.4, is more beneficial than its commercial counterparts. Similarly, pyruvate-enriched ORS is more favorable than WHO-ORS in organ protection and shock resuscitation. It is critical that pay attention first to improving abnormal saline with pyruvate for ICU patients. Many clinical trials with a high dose of intravenous or oral pyruvate were conducted over the past half century, and results indicated its effectiveness and safety in humans. The long-term instability of pyruvate aqueous solutions and para-pyruvate cytotoxicity is not a barrier to the pharmaceutical manufacturing of pyruvate-enriched fluids for ICU patients. Clinical trials with sodium pyruvate-enriched solutions are urgently warranted.
Collapse
|
2
|
Huang Q, Ma Q, Li F, Zhu-Salzman K, Cheng W. Metabolomics Reveals Changes in Metabolite Profiles among Pre-Diapause, Diapause and Post-Diapause Larvae of Sitodiplosis mosellana (Diptera: Cecidomyiidae). INSECTS 2022; 13:insects13040339. [PMID: 35447781 PMCID: PMC9032936 DOI: 10.3390/insects13040339] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022]
Abstract
Simple Summary Diapause is a programmed developmental arrest coupled with an evident reduction in metabolic rate and a dramatic increase in stress tolerance. Sitodiplosis mosellana, a periodic but devastating wheat pest, spends the hot summer and cold winter as diapausing larvae. However, little is known about the metabolic changes underlying this obligatory diapause. The objective of this study was to identify significantly altered metabolites and pathways in diapausing S. mosellana at stages of pre-diapause, diapause, post-diapause quiescence and post-diapause development using gas chromatography/time-of-flight mass spectrometry and the orthogonal partial least squares discriminant analysis. Pairwise comparisons of the four groups showed that 54 metabolites significantly changed. Of which, 37 decreased in response to diapause, including four TCA cycle intermediates and most amino acids, whereas 12 increased. Three metabolites were significantly higher in the cold quiescence stage than in other stages. The elevated metabolites included the well-known cryoprotectants trehalose, glycerol, proline and alanine. In conclusion, the low metabolic rate and cold tolerance S. mosellana displayed during diapause may be closely correlated with its reduced TCA cycle activity or/and the increased biosynthesis of cryoprotectants. The results have contributed to our understanding of the biochemical mechanism underlying diapause and the related stress tolerance in this key pest. Abstract Sitodiplosis mosellana, a notorious pest of wheat worldwide, copes with temperature extremes during harsh summers and winters by entering obligatory diapause as larvae. However, the metabolic adaptive mechanism underlying this process is largely unknown. In this study, we performed a comparative metabolomics analysis on S. mosellana larvae at four programmed developmental stages, i.e., pre-diapause, diapause, low temperature quiescence and post-diapause development. In total, we identified 54 differential metabolites based on pairwise comparisons of the four groups. Of these metabolites, 37 decreased in response to diapause, including 4 TCA cycle intermediates (malic acid, citric acid, fumaric acid, α-ketoglutaric acid), 2 saturated fatty acids (palmitic acid, stearic acid) and most amino acids. In contrast, nine metabolites, including trehalose, glycerol, mannitol, proline, alanine, oleic acid and linoleic acid were significantly higher in both the diapause and quiescent stages than the other two stages. In addition to two of them (trehalose, proline), glutamine was also significantly highest in the cold quiescence stage. These elevated metabolites could function as cryoprotectants and/or energy reserves. These findings suggest that the reduced TCA cycle activity and elevated biosynthesis of functional metabolites are most likely responsible for maintaining low metabolic activity and cold tolerance during diapause, which is crucial for the survival and post-diapause development of this pest.
Collapse
Affiliation(s)
- Qitong Huang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Q.H.); (Q.M.)
| | - Qian Ma
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Q.H.); (Q.M.)
| | - Fangxiang Li
- Xi’an Agricultural Technology Extension Centre, Xi’an 710061, China;
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Correspondence: (K.Z.-S.); (W.C.)
| | - Weining Cheng
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Q.H.); (Q.M.)
- Correspondence: (K.Z.-S.); (W.C.)
| |
Collapse
|
3
|
Lee SI, Hoeijmakers JGJ, Faber CG, Merkies ISJ, Lauria G, Waxman SG. The small fiber neuropathy NaV1.7 I228M mutation: impaired neurite integrity via bioenergetic and mitotoxic mechanisms, and protection by dexpramipexole. J Neurophysiol 2020; 123:645-657. [DOI: 10.1152/jn.00360.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Gain-of-function variants in voltage-gated sodium channel NaV1.7 that increase firing frequency and spontaneous firing of dorsal root ganglion (DRG) neurons have recently been identified in 5–10% of patients with idiopathic small fiber neuropathy (I-SFN). Our previous in vitro observations suggest that enhanced sodium channel activity can contribute to a decrease in length of peripheral sensory axons. We have hypothesized that sustained sodium influx due to the expression of SFN-associated sodium channel variants may trigger an energetic deficit in neurons that contributes to degeneration and loss of nerve fibers in SFN. Using an ATP FRET biosensor, we now demonstrate reduced steady-state levels of ATP and markedly faster ATP decay in response to membrane depolarization in cultured DRG neurons expressing an SFN-associated variant NaV1.7, I228M, compared with wild-type neurons. We also observed that I228M neurons show a significant reduction in mitochondrial density and size, indicating dysfunctional mitochondria and a reduced bioenergetic capacity. Finally, we report that exposure to dexpramipexole, a drug that improves mitochondrial energy metabolism, increases the neurite length of I228M-expressing neurons. Our data suggest that expression of gain-of-function variants of NaV1.7 can damage mitochondria and compromise cellular capacity for ATP production. The resulting bioenergetic crisis can consequently contribute to loss of axons in SFN. We suggest that, in addition to interventions that reduce ionic disturbance caused by mutant NaV1.7 channels, an alternative therapeutic strategy might target the bioenergetic burden and mitochondrial damage that occur in SFN associated with NaV1.7 gain-of-function mutations. NEW & NOTEWORTHY Sodium channel NaV1.7 mutations that increase dorsal root ganglion (DRG) neuron excitability have been identified in small fiber neuropathy (SFN). We demonstrate reduced steady-state ATP levels, faster depolarization-evoked ATP decay, and reduced mitochondrial density and size in cultured DRG neurons expressing SFN-associated variant NaV1.7 I228M. Dexpramipexole, which improves mitochondrial energy metabolism, has a protective effect. Because gain-of-function NaV1.7 variants can compromise bioenergetics, therapeutic strategies that target bioenergetic burden and mitochondrial damage merit study in SFN.
Collapse
Affiliation(s)
- Seong-il Lee
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
- Center for Neuroscience and Regeneration Research, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Janneke G. J. Hoeijmakers
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Catharina G. Faber
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ingemar S. J. Merkies
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Neurology, Curaçao Medical Center, Willemstad, Curaçao
| | - Giuseppe Lauria
- Neuroalgology Unit, Foundazione IRCCS Istituto Neurologico “Carlo Besta,” Milan, Italy
- Department of Biomedical and Clinical Sciences “Luigi Sacco,” University of Milan, Milan, Italy
| | - Stephen G. Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
- Center for Neuroscience and Regeneration Research, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
4
|
Zhang C, Li X, Liu Q. Sorbitol dehydrogenase inhibitor protects the liver from ischemia/reperfusion-induced injury via elevated glycolytic flux and enhanced sirtuin 1 activity. Mol Med Rep 2014; 11:283-8. [PMID: 25333577 DOI: 10.3892/mmr.2014.2715] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 06/26/2014] [Indexed: 11/05/2022] Open
Abstract
Sorbitol dehydrogenase (SDH), a key enzyme of the polyol pathway, has recently been demonstrated to have an important role in mediating tissue ischemia/reperfusion (I/R) injury. The present study investigated how this enzyme may affect the ischemic liver and the mechanism underlying its effect. Firstly, C57BL/6 mice were subjected to oral administration of CP-470,711 (5 mg/kg body weight/day for five days) and 70% hepatic I/R. Next the present study further investigated the changes in liver function, histology, inflammation, apoptosis and necrosis; the cytosolic adenosine triphosphate (ATP) and nictotinamide adenine dinucleotide [NAD(H)] contents and the protein level of caspase 3 and sirtuin 1 (SIRT1). The data demonstrated that sorbitol dehydrogenase inhibitor (SDI)-administration significantly alleviated I/R-induced liver injury, palliated histological changes and lowered the level of hepatocyte apoptosis and necrosis. In addition, SDI-pretreatment in ischemic liver markedly maintained the cytosolic ATP and NAD(H) proportion, enhanced SIRT1 and suppressed the activation of caspase 3 at the protein level. The findings in the present study revealed that the flux through SDH may render the liver more vulnerable to I/R-induced injury and interventions targeting this enzyme may provide a novel adjunctive approach to protect from severe tissue injury following liver ischemia.
Collapse
Affiliation(s)
- Changhe Zhang
- Department of General Surgery, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Xiangcheng Li
- Department of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qinhong Liu
- Department of General Surgery, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
5
|
Polyol pathway exacerbated ischemia/reperfusion-induced injury in steatotic liver. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:963629. [PMID: 24967007 PMCID: PMC4055005 DOI: 10.1155/2014/963629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 02/07/2023]
Abstract
Background. The polyol pathway, a bypass pathway of glucose metabolism initiated by aldose reductase (AR), has been shown to play an important role in mediating tissue ischemia/reperfusion (I/R) impairment recently. Here, we investigated how and why this pathway might affect the fatty liver following I/R. Methods. Two opposite models were created: mice with high-fat-diet-induced liver steatosis were treated with aldose reductase inhibition (ARI) and subsequent I/R; and AR-overexpressing L02 hepatocytes were sequentially subjected to steatosis and hypoxia/reoxygenation. We next investigated (a) the hepatic injuries, including liver function, histology, and hepatocytes apoptosis/necrosis; (b) the NAD(P)(H) contents, redox status, and mitochondrial function; and (c) the flux through the caspase-dependent apoptosis pathway. Results. AR-inhibition in vivo markedly attenuated the I/R-induced liver injuries, maintained the homeostasis of NAD(P)(H) contents and redox status, and suppressed the caspase-dependent apoptosis pathway. Correspondingly, AR overexpression in vitro presented the opposite effects. Conclusion. The flux through the polyol pathway may render steatotic liver greater vulnerability to I/R. Interventions targeting this pathway might provide a novel adjunctive approach to protect fatty liver from ischemia.
Collapse
|
6
|
Hu S, Liu WW, Zhao Y, Lin ZL, Luo HM, Bai XD, Sheng ZY, Zhou FQ. Pyruvate-enriched oral rehydration solution improved intestinal absorption of water and sodium during enteral resuscitation in burns. Burns 2013; 40:693-701. [PMID: 24280524 DOI: 10.1016/j.burns.2013.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/19/2013] [Accepted: 09/05/2013] [Indexed: 10/26/2022]
Abstract
AIM To investigate alteration in intestinal absorption during enteral resuscitation with pyruvate-enriched oral rehydration solution (Pyr-ORS) in scalded rats. METHODS To compare pyruvate-enriched oral rehydration solution (Pyr-ORS) with World Health Organisation oral rehydration solution (WHO-ORS), 120 rats were randomly divided into 6 groups and 2 subgroups. At 1.5 and 4.5 h after a 35% TBSA scald, the intestinal absorption rate, mucosal blood flow (IMBF), Na(+)-K(+)-ATPase activity and aquaporin-1 (AQP-1) expression were determined (n = 10), respectively. RESULTS The intestinal Na(+)-K(+)-ATPase activity, AQP-1 expression and IMBF were markedly decreased in scald groups, but they were profoundly preserved by enteral resuscitation with WHO-ORS and further improved significantly with Pyr-ORS at both time points. Na(+)-K+-ATPase activities remained higher in enteral resuscitation with Pyr-ORS (Group SP) than those with WHO-ORS (Group SW) at 4.5 h. AQP-1 and IMBF were significantly greater in Group SP than in Group SW at both time points. Intestinal absorption rates of water and sodium were obviously inhibited in scald groups; however, rates were also significantly preserved in Group SP than in Group SW with an over 20% increment at both time points. CONCLUSION The Pyr-ORS may be superior to the standard WHO-ORS in the promotion of intestinal absorption of water and sodium during enteral resuscitation.
Collapse
Affiliation(s)
- Sen Hu
- Laboratory of Shock and Organ Dysfunction, Burns Institute, the First Hospital Affiliated to the People's Liberation Army General Hospital, No. 51 Fu-cheng Road, Beijing 100048, China
| | - Wei-wei Liu
- Department of Burns and Plastic Surgery, The Armed Police General Hospital of People's Liberation Army, No. 69 Yong-ding Road, Beijing 100039, China
| | - Ying Zhao
- Department of Burns and Plastic Surgery, The Armed Police General Hospital of People's Liberation Army, No. 69 Yong-ding Road, Beijing 100039, China
| | - Zhi-long Lin
- Department of Burns and Plastic Surgery, The Armed Police General Hospital of People's Liberation Army, No. 69 Yong-ding Road, Beijing 100039, China
| | - Hong-min Luo
- Laboratory of Shock and Organ Dysfunction, Burns Institute, the First Hospital Affiliated to the People's Liberation Army General Hospital, No. 51 Fu-cheng Road, Beijing 100048, China
| | - Xiao-dong Bai
- Department of Burns and Plastic Surgery, The Armed Police General Hospital of People's Liberation Army, No. 69 Yong-ding Road, Beijing 100039, China.
| | - Zhi-yong Sheng
- Laboratory of Shock and Organ Dysfunction, Burns Institute, the First Hospital Affiliated to the People's Liberation Army General Hospital, No. 51 Fu-cheng Road, Beijing 100048, China
| | - Fang-qiang Zhou
- Fresenius Dialysis Centers at Chicago, Rolling Meadows Facility, No. 4180 Winnetka Ave, Rolling Meadows, IL 60008, USA.
| |
Collapse
|
7
|
Gou D, Tan H, Cai H, Zhou F. Pyruvate effects on red blood cells during in vitro cardiopulmonary bypass with dogs' blood. Artif Organs 2012; 36:988-91. [PMID: 22747952 DOI: 10.1111/j.1525-1594.2012.01482.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To investigate the effects of pyruvate (Pyr) on adenosine triphosphate (ATP), endothelial nitric oxide synthase (eNOS), and nitric oxide (NO) in red blood cells (RBCs) during the cardiopulmonary bypass procedure (CPB), blood, 500 mL, was collected from each of 10 healthy dogs (weight 12-18 kg). The blood was divided into two parts (250 mL each) and randomly assigned into the control group (Group C, n = 10) or the Pyr group (Group P, n = 10). The blood was commingled with an equal volume of 0.9% NaCl and pyruvated isotonic solution (Pyr 50 mM) in the extracorporeal circuit in the two groups, respectively. The CPB procedure was fixed at 120 min, and the transferring flow was 4 L/min. Contents of ATP in RBCs, eNOS activities, and NO productions in plasma were measured before CPB and during CPB at 30, 60, 90, and 120 min in both groups. The ATP level, eNOS activity, and NO production were not different prior to CPB between the two groups. A decline of ATP levels was shown in both groups but remained significantly higher in Group P than in Group C at the same time points during in vitro CPB (P < 0.01). Values of eNOS and NO were significantly increased in Group C but markedly reduced in Group P during CPB, compared with pre-CPB (P < 0.01). The CPB procedure significantly damaged dogs' RBCs in the ATP level, eNOS activity, and NO production, in vitro, but Pyr effectively protected RBCs in these functions during CPB. Pyr would be clinically protective for RBCs during CPB.
Collapse
Affiliation(s)
- DaMing Gou
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | | | | | | |
Collapse
|
8
|
Michaud MR, Denlinger DL. Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis): a metabolomic comparison. J Comp Physiol B 2007; 177:753-63. [PMID: 17576567 DOI: 10.1007/s00360-007-0172-5] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 04/20/2007] [Accepted: 05/22/2007] [Indexed: 11/29/2022]
Abstract
Flesh flies can enhance their cold hardiness by entering a photoperiod-induced pupal diapause or by a temperature-induced rapid cold-hardening process. To determine whether the same or different metabolites are involved in these two responses, derivatized polar extracts from flesh flies subjected to these treatments were examined using gas chromatography-mass spectrophotometry (GC-MS). This metabolomic approach demonstrated that levels of metabolites involved in glycolysis (glycerol, glucose, alanine, pyruvate) were elevated by both treatments. Metabolites elevated uniquely in response to rapid cold-hardening include glutamine, cystathionine, sorbitol, and urea while levels of beta-alanine, ornithine, trehalose, and mannose levels were reduced. Rapid cold-hardening also uniquely perturbed the urea cycle. In addition to the elevated metabolites shared with rapid cold-hardening, leucine concentrations were uniquely elevated during diapause while levels of a number of other amino acids were reduced. Pools of two aerobic metabolic intermediates, fumarate and citrate, were reduced during diapause, indicating a reduction of Krebs cycle activity. Principal component analysis demonstrated that rapid cold-hardening and diapause are metabolically distinct from their untreated, non-diapausing counterparts. We discuss the possible contribution of each altered metabolite in enhancing the overall cold hardiness of the organism, as well as the efficacy of GC-MS metabolomics for investigating insect physiological systems.
Collapse
Affiliation(s)
- M Robert Michaud
- Department of Entomology, Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210-1242, USA.
| | | |
Collapse
|
9
|
Silva MA, Murphy N, Richards DA, Wigmore SJ, Bramhall SR, Buckels JAC, Adams DH, Mirza DF. Interstitial Lactic Acidosis in the Graft During Organ Harvest, Cold Storage, and Reperfusion of Human Liver Allografts Predicts Subsequent Ischemia Reperfusion Injury. Transplantation 2006; 82:227-33. [PMID: 16858286 DOI: 10.1097/01.tp.0000226234.76036.c1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The impact of the process of liver transplantation on glucose metabolism in the graft was studied using microdialysis. METHODS Microdialysis catheters were inserted into 15 human livers to monitor metabolic changes that took place during organ harvest, the process of backtable preparation of the graft, and following implantation in the recipient where it remained in situ for 48 hours. The cannula was perfused with isotonic solution and hourly samples of perfusate were collected and analyzed. RESULTS Six livers showed serum biochemical evidence of ischemia/reperfusion (IR) injury with 24 hours aspartate transaminase (AST) levels >2000 IU/L (Group A) whereas the remaining patients showed little evidence of IR injury (Group B). In Group A, lactate levels in the donor microdialysate rose to >6 mM (P < 0.05), were significantly higher during backtable preparation of the liver (>15 mM; P < 0.03), and took longer to normalize in the recipient following implantation (18 vs. 8 hours, P < 0.03) than lactate levels of the livers of patients in Group B who did not develop ischemia reperfusion injury. No significant differences were observed in glucose, pyruvate, or glycerol concentrations between the two groups. CONCLUSIONS Interstitial lactic acidosis in the donor allograft is associated with significant reperfusion injury on implantation.
Collapse
Affiliation(s)
- Michael A Silva
- The Liver Unit, Queen Elizabeth Hospital, University Hospital Birmingham NHS Trust, UK
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Cheng Y, Liu YF, Cheng DH, Li BF, Zhao N. Evaluation of CMU-1 preservation solutions using an isolated perfused rat liver model. World J Gastroenterol 2005; 11:2522-5. [PMID: 15832430 PMCID: PMC4305647 DOI: 10.3748/wjg.v11.i16.2522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: CMU-1 is a new preservation solution with a low potassium concentration as well as low viscosity that is highly effective in reducing preservation injury. The purpose of this experiment is to compare the protective effect of CMU-1 solution with that of UW during cold preservation and normothermic reperfusion.
METHODS: Wistar rats were divided into two groups according to different preservation solution: CMU-1 group and UW group. After 6, 12 and 24 h cold storage of rat liver in different preservation solutions, the isolated perfused rat liver model was applied to reperfuse the liver for 120 min normothermically (37 °C) with Krebs-Henseleit solution, meanwhile the pH value of the preservation solution was measured. The perfusate was sampled for the evaluation of alanine aminotransferase (ALT) and lactate dehydrogenase (LDH). At the end of the reperfusion, all of the bile product was collected, energy metabolic substrate and histological examination were performed.
RESULTS: After preserving for 6 h, pH value of both groups did not change; after 12 h, both decreased but with no significant difference. After 24 h, pH value in UW solution group significantly decreased. The total adenine nucleotides level and AEC in liver tissue decreased with preservation time, but they were higher in CMU-1 group. And the amount of bile product after perfusion for 120 min in CMU-1 group was much more than that in UW group. However, there were no significant differences in ALT and LDH levels between two groups. Histology showed no difference.
CONCLUSION: The preservation effect of CMU-1 solution is similar with that of UW solution. However, CMU-1 solution shows some advantages over UW solution in energy meta-bolism, preventing intracellular acidosis and bile product.
Collapse
Affiliation(s)
- Ying Cheng
- Organ Transplant Unit, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, China.
| | | | | | | | | |
Collapse
|