1
|
Lee SWY, Cheung CHY, Ying MTC, Tam VCW, Khaw ML. Reply to Myers and Leprêtre. J Appl Physiol (1985) 2021; 130:673-674. [DOI: 10.1152/japplphysiol.01018.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Shara W. Y. Lee
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, People’s Republic of China
| | - Cara H. Y. Cheung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, People’s Republic of China
| | - Michael T. C. Ying
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, People’s Republic of China
| | - Victor C. W. Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, People’s Republic of China
| | - May L. Khaw
- Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
2
|
Louvaris Z, Rodrigues A, Dacha S, Gojevic T, Janssens W, Vogiatzis I, Gosselink R, Langer D. High-intensity exercise impairs extradiaphragmatic respiratory muscle perfusion in patients with COPD. J Appl Physiol (1985) 2020; 130:325-341. [PMID: 33119468 DOI: 10.1152/japplphysiol.00659.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The study investigated whether high-intensity exercise impairs inspiratory and expiratory muscle perfusion in patients with chronic obstructive pulmonary disease (COPD). We compared respiratory local muscle perfusion between constant-load cycling[sustained at 80% peak work rate (WRpeak)] and voluntary normocapnic hyperpnea reproducing similar work of breathing (WoB) in 18 patients [forced expiratory volume in the first second (FEV1): 58 ± 24% predicted]. Local muscle blood flow index (BFI), using indocyanine green dye, and fractional oxygen saturation (%StiO2) were simultaneously assessed by near-infrared spectroscopy (NIRS) over the intercostal, scalene, rectus abdominis, and vastus lateralis muscles. Cardiac output (impedance cardiography), WoB (esophageal/gastric balloon catheter), and diaphragmatic and extradiaphragmatic respiratory muscle electromyographic activity (EMG) were also assessed throughout cycling and hyperpnea. Minute ventilation, breathing pattern, WoB, and respiratory muscle EMG were comparable between cycling and hyperpnea. During cycling, cardiac output and vastus lateralis BFI were significantly greater compared with hyperpnea [by +4.2 (2.6-5.9) L/min and +4.9 (2.2-7.8) nmol/s, respectively] (P < 0.01). Muscle BFI and %StiO2 were, respectively, lower during cycling compared with hyperpnea in scalene [by -3.8 (-6.4 to -1.2) nmol/s and -6.6 (-8.2 to -5.1)%], intercostal [by -1.4 (-2.4 to -0.4) nmol/s and -6.0 (-8.6 to -3.3)%], and abdominal muscles [by -1.9 (-2.9 to -0.8) nmol/s and -6.3 (-9.1 to -3.4)%] (P < 0.001). The difference in respiratory (scalene and intercostal) muscle BFI between cycling and hyperpnea was associated with greater dyspnea (Borg CR10) scores (r = -0.54 and r = -0.49, respectively, P < 0.05). These results suggest that in patients with COPD, 1) locomotor muscle work during high-intensity exercise impairs extradiaphragmatic respiratory muscle perfusion and 2) insufficient adjustment in extradiaphragmatic respiratory muscle perfusion during high-intensity exercise may partly explain the increased sensations of dyspnea.NEW & NOTEWORTHY We simultaneously assessed the blood flow index (BFI) in three respiratory muscles during hyperpnea and high-intensity constant-load cycling sustained at comparable levels of work of breathing and respiratory neural drive in patients with COPD. We demonstrated that high-intensity exercise impairs respiratory muscle perfusion, as intercostal, scalene, and abdominal BFI increased during hyperpnea but not during cycling. Insufficient adjustment in respiratory muscle perfusion during exercise was associated with greater dyspnea sensations in patients with COPD.
Collapse
Affiliation(s)
- Zafeiris Louvaris
- Faculty of Movement and Rehabilitation Sciences, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, Leuven, Belgium.,Clinical Department of Respiratory Diseases, UZ Leuven, BREATHE Department CHROMETA, KU Leuven, Leuven, Belgium
| | - Antenor Rodrigues
- Faculty of Movement and Rehabilitation Sciences, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, Leuven, Belgium.,Laboratory of Research in Respiratory Physiotherapy (LFIP), Department of Physiotherapy, Londrina State University (UEL), Londrina, Brazil.,Research Aimed at Muscle Performance Laboratory (RAMP), Department of Physical Therapy, University of Toronto, Toronto, Canada
| | - Sauwaluk Dacha
- Faculty of Movement and Rehabilitation Sciences, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, Leuven, Belgium.,Faculty of Associated Medical Sciences, Department of Physical Therapy, Chiang Mai University, Chiang Mai, Thailand
| | - Tin Gojevic
- Faculty of Movement and Rehabilitation Sciences, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, Leuven, Belgium
| | - Wim Janssens
- Clinical Department of Respiratory Diseases, UZ Leuven, BREATHE Department CHROMETA, KU Leuven, Leuven, Belgium
| | - Ioannis Vogiatzis
- Faculty of Health and Life Sciences, Department of Sport, Exercise, and Rehabilitation, Northumbria University Newcastle, Newcastle, United Kingdom
| | - Rik Gosselink
- Faculty of Movement and Rehabilitation Sciences, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, Leuven, Belgium.,Clinical Department of Respiratory Diseases, UZ Leuven, BREATHE Department CHROMETA, KU Leuven, Leuven, Belgium
| | - Daniel Langer
- Faculty of Movement and Rehabilitation Sciences, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, Leuven, Belgium.,Clinical Department of Respiratory Diseases, UZ Leuven, BREATHE Department CHROMETA, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Cheung CHY, Khaw ML, Tam VCW, Ying MTC, Lee SWY. Performance evaluation of a portable bioimpedance cardiac output monitor for measuring hemodynamic changes in athletes during a head-up tilt test. J Appl Physiol (1985) 2020; 128:1146-1152. [DOI: 10.1152/japplphysiol.00822.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The use of impedance cardiography to monitor physiological changes in sports is rarely reported. Using head-up tilt test, we evaluated a portable noninvasive impedance cardiography device (PhysioFlow) by comparing it with a reference Doppler monitor (USCOM). Accuracy in tracking hemodynamic changes deteriorated with higher tilt, implying a gravitational influence on its performance. Stroke volume measurements were overestimated, but the changes were underestimated. Despite its convenient physical features, the suitability of PhysioFlow for sports use is questionable.
Collapse
Affiliation(s)
- Cara H. Y. Cheung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - May L. Khaw
- Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania
| | - Victor C. W. Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Michael T. C. Ying
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Shara W. Y. Lee
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| |
Collapse
|
4
|
Bretonneau Q, Pichon A, de Bisschop C. Effect of expiratory loaded breathing during moderate exercise on intercostal muscle oxygenation. Multidiscip Respir Med 2020; 15:702. [PMID: 33154819 PMCID: PMC7610065 DOI: 10.4081/mrm.2020.702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/16/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND In patients with obstructive lung disease, maintaining adequate ventilation during exercise may require greater contraction of the respiratory muscles, which may lead to a compression of muscle capillaries. Furthermore, dynamic hyperinflation (DH) is frequent during exercise in these patients, as it allows to reach higher expiratory flows and to satisfy respiratory demand. However, in such situation, intercostal muscles are likely to be stretched, which could affect the diameter of their capillaries. Thus, in a context of high level of expiratory resistance, intercostal muscle oxygenation may be disturbed during exercise, especially if DH occurs. METHODS Twelve participants (22±2 years) performed two sessions of moderate exercise (20 min) by breathing freely with and without a 20-cmH2O expiratory threshold load (ETL). Tissue saturation index (TSI) and concentration changes from rest (Δ) in oxygenated ([O2Hb]) and total haemoglobin ([tHb]) were measured in the seventh intercostal space using near-infrared spectroscopy. Respiratory, metabolic and cardiac variables were likewise recorded. RESULTS Throughout exercise, dyspnea was higher and TSI was lower in ETL condition than in control (p<0.01). After a few minutes of exercise, Δ [O2Hb] was also lower in ETL condition, as well as Δ [tHb], when inspiratory capacity started to be reduced (p<0.05). Changes in [O2Hb] and dyspnea were correlated with changes in expiratory flow rate (Vt/Te) (r = -0.66 and 0.66, respectively; p<0.05). CONCLUSION During exercise with ETL, impaired muscle oxygenation could be due to a limited increase in blood volume resulting from strong muscle contraction and/or occurrence of DH.
Collapse
Affiliation(s)
- Quentin Bretonneau
- Faculté des Sciences du Sport, Laboratoire ‘MOVE’ (EA 6314), Université de Poitiers, France
| | | | | |
Collapse
|
5
|
Kemps HMC, Thijssen EJM, Schep G, Sleutjes BTHM, De Vries WR, Hoogeveen AR, Wijn PFF, Doevendans PAFM. Evaluation of two methods for continuous cardiac output assessment during exercise in chronic heart failure patients. J Appl Physiol (1985) 2008; 105:1822-9. [DOI: 10.1152/japplphysiol.90430.2008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to evaluate the accuracy of two techniques for the continuous assessment of cardiac output in patients with chronic heart failure (CHF): a radial artery pulse contour analysis method that uses an indicator dilution method for calibration (LiDCO) and an impedance cardiography technique (Physioflow), using the Fick method as a reference. Ten male CHF patients (New York Heart Association class II–III) were included. At rest, cardiac output values obtained by LiDCO and Physioflow were compared with those of the direct Fick method. During exercise, the continuous Fick method was used as a reference. Exercise, performed on a cycle ergometer in upright position, consisted of two constant-load tests at 30% and 80% of the ventilatory threshold and a symptom-limited maximal test. Both at rest and during exercise LiDCO showed good agreement with reference values [bias ± limits of agreement (LOA), −1% ± 28% and 2% ± 28%, respectively]. In contrast, Physioflow overestimated reference values both at rest and during exercise (bias ± LOA, 48% ± 60% and 48% ± 52%, respectively). Exercise-related within-patient changes of cardiac output, expressed as a percent change, showed for both techniques clinically acceptable agreement with reference values (bias ± LOA: 2% ± 26% for LiDCO, and −2% ± 36% for Physioflow, respectively). In conclusion, although the limits of agreement with the Fick method are pretty broad, LiDCO provides accurate measurements of cardiac output during rest and exercise in CHF patients. Although Physioflow overestimates cardiac output, this method may still be useful to estimate relative changes during exercise.
Collapse
|