1
|
Ennist NM, Zhao Z, Stayrook SE, Discher BM, Dutton PL, Moser CC. De novo protein design of photochemical reaction centers. Nat Commun 2022; 13:4937. [PMID: 35999239 PMCID: PMC9399245 DOI: 10.1038/s41467-022-32710-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/12/2022] [Indexed: 11/09/2022] Open
Abstract
Natural photosynthetic protein complexes capture sunlight to power the energetic catalysis that supports life on Earth. Yet these natural protein structures carry an evolutionary legacy of complexity and fragility that encumbers protein reengineering efforts and obfuscates the underlying design rules for light-driven charge separation. De novo development of a simplified photosynthetic reaction center protein can clarify practical engineering principles needed to build new enzymes for efficient solar-to-fuel energy conversion. Here, we report the rational design, X-ray crystal structure, and electron transfer activity of a multi-cofactor protein that incorporates essential elements of photosynthetic reaction centers. This highly stable, modular artificial protein framework can be reconstituted in vitro with interchangeable redox centers for nanometer-scale photochemical charge separation. Transient absorption spectroscopy demonstrates Photosystem II-like tyrosine and metal cluster oxidation, and we measure charge separation lifetimes exceeding 100 ms, ideal for light-activated catalysis. This de novo-designed reaction center builds upon engineering guidelines established for charge separation in earlier synthetic photochemical triads and modified natural proteins, and it shows how synthetic biology may lead to a new generation of genetically encoded, light-powered catalysts for solar fuel production.
Collapse
Affiliation(s)
- Nathan M Ennist
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104-6058, USA. .,Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA. .,Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.
| | - Zhenyu Zhao
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104-6058, USA
| | - Steven E Stayrook
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104-6058, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT, 06516, USA
| | - Bohdana M Discher
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104-6058, USA
| | - P Leslie Dutton
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104-6058, USA
| | - Christopher C Moser
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104-6058, USA
| |
Collapse
|
2
|
De novo biosynthesis of a nonnatural cobalt porphyrin cofactor in E. coli and incorporation into hemoproteins. Proc Natl Acad Sci U S A 2021; 118:2017625118. [PMID: 33850014 DOI: 10.1073/pnas.2017625118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Enzymes that bear a nonnative or artificially introduced metal center can engender novel reactivity and enable new spectroscopic and structural studies. In the case of metal-organic cofactors, such as metalloporphyrins, no general methods exist to build and incorporate new-to-nature cofactor analogs in vivo. We report here that a common laboratory strain, Escherichia coli BL21(DE3), biosynthesizes cobalt protoporphyrin IX (CoPPIX) under iron-limited, cobalt-rich growth conditions. In supplemented minimal media containing CoCl2, the metabolically produced CoPPIX is directly incorporated into multiple hemoproteins in place of native heme b (FePPIX). Five cobalt-substituted proteins were successfully expressed with this new-to-nature cobalt porphyrin cofactor: myoglobin H64V V68A, dye decolorizing peroxidase, aldoxime dehydratase, cytochrome P450 119, and catalase. We show conclusively that these proteins incorporate CoPPIX, with the CoPPIX making up at least 95% of the total porphyrin content. In cases in which the native metal ligand is a sulfur or nitrogen, spectroscopic parameters are consistent with retention of native metal ligands. This method is an improvement on previous approaches with respect to both yield and ease-of-implementation. Significantly, this method overcomes a long-standing challenge to incorporate nonnatural cofactors through de novo biosynthesis. By utilizing a ubiquitous laboratory strain, this process will facilitate spectroscopic studies and the development of enzymes for CoPPIX-mediated biocatalysis.
Collapse
|
3
|
An electrochemical study of cobalt-salen (N,N′-bis(salicylidene)ethylenediaminocobalt(II) in the oxidation of syringyl alcohol in acetonitrile. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01459-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
Alberti MN, Polyhach Y, Tzirakis MD, Tödtli L, Jeschke G, Diederich F. Exploring the Strength of the H-Bond in Synthetic Models for Heme Proteins: The Importance of the N−H Acidity of the Distal Base. Chemistry 2016; 22:10194-202. [DOI: 10.1002/chem.201601505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Mariza N. Alberti
- Laboratorium für Organische Chemie; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Yevhen Polyhach
- Laboratory of Physical Chemistry; ETH Zurich; Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
| | - Manolis D. Tzirakis
- Laboratorium für Organische Chemie; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Laura Tödtli
- Laboratory of Physical Chemistry; ETH Zurich; Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry; ETH Zurich; Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
| | - François Diederich
- Laboratorium für Organische Chemie; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| |
Collapse
|
5
|
Morita Y, Oohora K, Sawada A, Doitomi K, Ohbayashi J, Kamachi T, Yoshizawa K, Hisaeda Y, Hayashi T. Intraprotein transmethylation via a CH3–Co(iii) species in myoglobin reconstituted with a cobalt corrinoid complex. Dalton Trans 2016; 45:3277-84. [DOI: 10.1039/c5dt04109k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A cobalt corrinoid complex bound in the myoglobin heme pocket demonstrates the formation of a CH3–Co(iii) bond and subsequent transmethylation.
Collapse
Affiliation(s)
- Yoshitsugu Morita
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita 565-0871
- Japan
| | - Koji Oohora
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita 565-0871
- Japan
| | - Akiyoshi Sawada
- Institute for Materials Chemistry and Engineering and International Research Centre for Molecular Systems
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Kazuki Doitomi
- Institute for Materials Chemistry and Engineering and International Research Centre for Molecular Systems
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Jun Ohbayashi
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita 565-0871
- Japan
| | - Takashi Kamachi
- Institute for Materials Chemistry and Engineering and International Research Centre for Molecular Systems
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and International Research Centre for Molecular Systems
- Kyushu University
- Fukuoka 819-0395
- Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)
| | - Yoshio Hisaeda
- Department of Chemistry and Biochemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Takashi Hayashi
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita 565-0871
- Japan
| |
Collapse
|
6
|
Reengineering cyt b562 for hydrogen production: A facile route to artificial hydrogenases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:598-603. [PMID: 26375327 DOI: 10.1016/j.bbabio.2015.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/09/2015] [Indexed: 11/20/2022]
Abstract
Bioinspired, protein-based molecular catalysts utilizing base metals at the active are emerging as a promising avenue to sustainable hydrogen production. The protein matrix modulates the intrinsic reactivity of organometallic active sites by tuning second-sphere and long-range interactions. Here, we show that swapping Co-Protoporphyrin IX for Fe-Protoporphyrin IX in cytochrome b562 results in an efficient catalyst for photoinduced proton reduction to molecular hydrogen. Further, the activity of wild type Co-cyt b562 can be modulated by a factor of 2.5 by exchanging the coordinating methionine with alanine or aspartic acid. The observed turnover numbers (TON) range between 125 and 305, and correlate well with the redox potential of the Co-cyt b562 mutants. The photosensitized system catalyzes proton reduction with high efficiency even under an aerobic atmosphere, implicating its use for biotechnological applications. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Collapse
|
7
|
Rapson TD, Warneke S, Musameh MM, Dacres H, Macdonald BCT, Trowell SC. Conversion of nitrous oxide to nitrogen by cobalt-substituted myoglobin. RSC Adv 2015. [DOI: 10.1039/c5ra15036a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Turning myoglobin into a nitrous oxide reductase.
Collapse
|
8
|
Shafizadeh N, Ha-Thi MH, Poisson L, Soep B, Maillard P. Observation in the gas phase of the ligation of 1-methylimidazole to hemoprotein mimics. J Chem Phys 2014; 141:174310. [PMID: 25381517 DOI: 10.1063/1.4900638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hemoprotein mimics, cobalt picket fence porphyrins have been prepared in the gas phase as neutral molecules for the first time. Their ligation properties have been studied with 1-methylimidazole and compared with those of other cobalt porphyrins, tetraphenyl porphyrin, and cobalt protoporphyrin IX chloride, in view of studying the sterical properties of the ligation. It is shown that the cobalt picket fence porphyrin can only accept one 1-methylimidazole ligand in contrast to less sterically crowded porphyrins like cobalt tetraphenylporphyrin that present two accessible ligation sites. The femtosecond dynamics of these ligated systems have been studied after excitation at 400 nm, in comparison with the unligated ones. The observed transients are formed in much shorter times, 30 fs for the ligated species, as compared to free species (100 fs), supporting the porphyrin to metal charge transfer nature of these transients. The similar decays of the ligated transients <1 ps reveal the absence of photodissociation of the cobalt-1-methylimidazole bond at this step of evolution.
Collapse
Affiliation(s)
- Niloufar Shafizadeh
- Institut des Sciences Moléculaires d'Orsay UMR8214, CNRS Université de Paris-Sud, Bat 210, 91405 Orsay, Cedex, France
| | - Minh-Huong Ha-Thi
- Institut des Sciences Moléculaires d'Orsay UMR8214, CNRS Université de Paris-Sud, Bat 210, 91405 Orsay, Cedex, France
| | - Lionel Poisson
- Laboratoire Francis Perrin CEA/DSM/IRAMIS/LIDyL - CNRS URA 2453, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Benoît Soep
- Laboratoire Francis Perrin CEA/DSM/IRAMIS/LIDyL - CNRS URA 2453, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Philippe Maillard
- Institut Curie, Section de Recherches, Bât 110-112, Centre Universitaire, F-91405 Orsay, France
| |
Collapse
|
9
|
Sommer DJ, Vaughn MD, Ghirlanda G. Protein secondary-shell interactions enhance the photoinduced hydrogen production of cobalt protoporphyrin IX. Chem Commun (Camb) 2014; 50:15852-5. [DOI: 10.1039/c4cc06700b] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An efficient molecular catalyst for hydrogen production is generated by incorporating Co-protoporphyrin IX into myoglobin. The activity is modulated by engineered mutations.
Collapse
|
10
|
McKenzie JR, Zhang C, Li CZ. Deposition Strategies for Osmium/Enzyme Films on Gold Electrode Based Sensing Arrays. ELECTROANAL 2013. [DOI: 10.1002/elan.201200547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Bakac A, Pestovsky O, Durfey BL, Kristian KE. Kinetics and thermodynamics of nitric oxide binding to transition metal complexes. Relationship to dioxygen binding. Chem Sci 2013. [DOI: 10.1039/c3sc50157d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Yang L, Fang W, Zhang Y. Metal centre effects on HNO binding in porphyrins and the electronic origin: metal's electronic configuration, position in the periodic table, and oxidation state. Chem Commun (Camb) 2012; 48:3842-4. [PMID: 22437041 DOI: 10.1039/c2cc31016c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HNO binds to many different metals in organometallic and bioinorganic chemistry. To help understand experimentally observed metal centre effects, a quantum chemical investigation was performed, revealing clear general binding trends with respect to metal centre characteristics and the electronic origin for the first time.
Collapse
Affiliation(s)
- Liu Yang
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, Castle Point on Hudson Hoboken, NJ 07030, USA
| | | | | |
Collapse
|
13
|
Nitrite reduction by CoII and MnII substituted myoglobins. J Inorg Biochem 2012; 107:47-53. [DOI: 10.1016/j.jinorgbio.2011.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/28/2011] [Accepted: 10/17/2011] [Indexed: 11/22/2022]
|
14
|
Hondroulis E, Zhang Z, Chen C, Li CZ. Impedance Based Nanotoxicity Assessment of Graphene Nanomaterials at the Cellular and Tissue Level. ANAL LETT 2012. [DOI: 10.1080/00032719.2011.633184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Prabhulkar S, Li CZ. Assessment of oxidative DNA damage and repair at single cellular level via real-time monitoring of 8-OHdG biomarker. Biosens Bioelectron 2010; 26:1743-9. [PMID: 20863679 DOI: 10.1016/j.bios.2010.08.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 08/08/2010] [Accepted: 08/12/2010] [Indexed: 02/07/2023]
Abstract
8-Hydroxydeoxyguanosine (8-OHdG) is the most important and best-documented biomarker of oxidative stress, which is involved in the instigation of various diseases. 8-OHdG levels correlate to oxidative DNA damage which is known to be the root cause of a variety of age-related chronic diseases. The purpose of our research was to develop a detection strategy capable of measuring 8-OHdG in real-time at the surface of a single cell. Activated carbon fiber microelectrodes were used as the sensing platform. The microelectrodes were used to measure 8-OHdG release from single lung epithelial cells under the influence of nicotine. In order to evaluate the direct role of nicotine in tobacco induced genotoxicity, we studied the influence of parameters such as nicotine concentration and exposure times on 8-OHdG secretion. 2-8 mM nicotine solutions induced dose-dependent DNA damage in single cells, which was observed via amperometric measurements of secreted 8-OHdG biomarker. Real-time 8-OHdG measurements from single cells exposed to 4 mM nicotine solution revealed cessation of 8-OHdG secretion after 110 min. We have successfully outlined a methodology to detect 8-OHdG at the surface of single cells. A similar protocol can be used to evaluate oxidative DNA damage and repair mechanisms in other disease models.
Collapse
Affiliation(s)
- Shradha Prabhulkar
- Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174, United States
| | | |
Collapse
|
16
|
Co-culture Based Blood-brain Barrier In Vitro Model, a Tissue Engineering Approach using Immortalized Cell Lines for Drug Transport Study. Appl Biochem Biotechnol 2010; 163:278-95. [DOI: 10.1007/s12010-010-9037-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/04/2010] [Indexed: 11/26/2022]
|
17
|
Li CZ, Taniguchi I, Mulchandani A. Redox properties of engineered ruthenium myoglobin. Bioelectrochemistry 2009; 75:182-8. [DOI: 10.1016/j.bioelechem.2009.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 04/10/2009] [Accepted: 04/16/2009] [Indexed: 11/28/2022]
|
18
|
Fruk L, Kuo CH, Torres E, Niemeyer CM. Apoenzyme reconstitution as a chemical tool for structural enzymology and biotechnology. Angew Chem Int Ed Engl 2009; 48:1550-74. [PMID: 19165853 DOI: 10.1002/anie.200803098] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Many enzymes contain a nondiffusible organic cofactor, often termed a prosthetic group, which is located in the active site and essential for the catalytic activity of the enzyme. These cofactors can often be extracted from the protein to yield the respective apoenzyme, which can subsequently be reconstituted with an artificial analogue of the native cofactor. Nowadays a large variety of synthetic cofactors can be used for the reconstitution of apoenzymes and, thus, generate novel semisynthetic enzymes. This approach has been refined over the past decades to become a versatile tool of structural enzymology to elucidate structure-function relationships of enzymes. Moreover, the reconstitution of apoenzymes can also be used to generate enzymes possessing enhanced or even entirely new functionality. This Review gives an overview on historical developments and the current state-of-the-art on apoenzyme reconstitution.
Collapse
Affiliation(s)
- Ljiljana Fruk
- Universität Dortmund, Fachbereich Chemie, Biologisch-Chemische Mikrostrukturtechnik, Otto-Hahn Strasse 6, 44227 Dortmund, Germany.
| | | | | | | |
Collapse
|
19
|
Fruk L, Kuo CH, Torres E, Niemeyer C. Rekonstitution von Apoenzymen als chemisches Werkzeug für die strukturelle Enzymologie und Biotechnologie. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200803098] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Dube H, Kasumaj B, Calle C, Felber B, Saito M, Jeschke G, Diederich F. Probing Hydrogen Bonding to Bound Dioxygen in Synthetic Models for Heme Proteins: The Importance of Precise Geometry. Chemistry 2009; 15:125-35. [DOI: 10.1002/chem.200802077] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
|
22
|
The effect of sodium dodecyl sulfate on the conformation of bovine serum albumin. Colloids Surf A Physicochem Eng Asp 2007. [DOI: 10.1016/j.colsurfa.2006.10.058] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Nuthakki B, Rusling JF. Electrochemical catalysis by crosslinked films of cobalt reconstituted myoglobin and poly(l-lysine) in a bicontinuous microemulsion. J Electroanal Chem (Lausanne) 2005. [DOI: 10.1016/j.jelechem.2005.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Lee Y, Song KB. Effect of gamma-irradiation on the molecular properties of myoglobin. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 35:590-4. [PMID: 12470593 DOI: 10.5483/bmbrep.2002.35.6.590] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To elucidate the effect of gamma-irradiation on the molecular properties of myoglobin, the secondary and tertiary structures, as well as the molecular weight size of the protein, were examined after irradiation at various irradiation doses. Gamma-irradiation of myoglobin solutions caused the disruption of the ordered structure of the protein molecules, as well as degradation, crosslinking, and aggregation of the polypeptide chains. A SDSPAGE study indicated that irradiation caused initial fragmentation of the proteins and subsequent aggregation, due to cross-linking of the protein molecules. The effect of irradiation on the protein was more significant at lower protein concentrations. Ascorbic acid protected against the degradation and aggregation of proteins by scavenging oxygen radicals that are produced by irradiation. A circular dichroism study showed that an increase of the irradiation decreased the alpha-helical content of myoglobin with a concurrent increase of the aperiodic structure content. Fluorescence spectroscopy indicated that irradiation increased the emission intensity that was excited at 280 nm.
Collapse
Affiliation(s)
- Yongwoo Lee
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Taejon 305-764, Korea
| | | |
Collapse
|
25
|
Hareau GPJ, Neya S, Funasaki N, Taniguchi I. New route to protoporphyrins III and XIII from common starting pyrroles. Tetrahedron Lett 2002. [DOI: 10.1016/s0040-4039(02)00466-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|