1
|
Qneibi M, Jaradat N, Hawash M, Olgac A, Emwas N. Ortho versus Meta Chlorophenyl-2,3-Benzodiazepine Analogues: Synthesis, Molecular Modeling, and Biological Activity as AMPAR Antagonists. ACS OMEGA 2020; 5:3588-3595. [PMID: 32118174 PMCID: PMC7045501 DOI: 10.1021/acsomega.9b04000] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/29/2020] [Indexed: 05/10/2023]
Abstract
2,3-Benzodiazepine compounds are an important family of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) antagonists that act in a noncompetitive manner. Due to the critical role of AMPARs in the synapse and various neurological diseases, significant scientific interest in elucidating the molecular basis of the function of the receptors has spiked. The analogues were synthesized to assess the functional consequence of removing the amine group of the phenyl ring, the potency and efficacy of inhibition by substituting a halogen group at the meta vs ortho position of the phenyl ring, and layout the prediction of potential drug candidates for AMPAR hyperactivation. Using the whole-cell patch-clamp technique, we assessed the effect of the derivative on the amplitude of various AMPA-type glutamate receptors and calculated the desensitization and deactivation rates before and after treatment of HEK293 cells. We noticed that the amino group is not necessary for inhibition as long as an electron-withdrawing group is placed on the meta position of the phenyl ring of BDZ. Furthermore, compound 4a significantly inhibited and affected the desensitization rate of the tested AMPARs but showed no effect on the deactivation rate. The current study paves the way to a better understanding of AMPARs and provides possible drug candidates of 2,3-BDZ different from the conventional derivatives.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department
of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
- E-mail: . Tel: +972-545-975-016
| | - Nidal Jaradat
- Department
of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammed Hawash
- Department
of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Abdurrahman Olgac
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, Ankara 06330, Turkey
| | - Nour Emwas
- Department
of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
2
|
Heuzeroth H, Wawra M, Fidzinski P, Dag R, Holtkamp M. The 4-Aminopyridine Model of Acute Seizures in vitro Elucidates Efficacy of New Antiepileptic Drugs. Front Neurosci 2019; 13:677. [PMID: 31316344 PMCID: PMC6610309 DOI: 10.3389/fnins.2019.00677] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/13/2019] [Indexed: 12/28/2022] Open
Abstract
Up to date, preclinical screening for new antiepileptic substances is performed by a combination of different in vivo models of acute seizures, for which large numbers of animals are necessary. So far, little attention has been paid to in vitro models, which are also able to detect antiepileptic efficacy and in principle could likewise serve for exploratory preclinical screening. One of the established in vitro models of acute seizures is the 4-aminopyridine (4-AP) model. Previous studies have shown that the 4-AP model is capable to recapitulate the antiepileptic efficacy of standard antiepileptic drugs (AEDs) such as valproate or carbamazepine. Here, we employed a dual methodological approach using electrophysiology and optical imaging to systematically test the antiepileptic efficacy of three new-generation AEDs with distinct mechanisms of action (lacosamide, zonisamide, and levetiracetam). We found that frequency of 4-AP induced seizure like events (SLE) was the most sensitive parameter to detect dose-dependent antiepileptic effects in these compounds. Specifically, levetiracetam reduced SLE frequency while lacosamide and zonisamide at higher doses completely blocked SLE incidence. Analysis of the intrinsic optical signal additionally revealed a subiculum-specific reduction of the area involved in the propagation of ictal activity when lacosamide or zonisamide were administered. Taken together, our data adds some evidence that acute seizure models in vitro are in principle capable to detect antiepileptic effects across different mechanisms of action with efficacy similar to acute models in vivo. Further studies with negative controls, e.g., penicillin as a proconvulsant, and other clinically relevant AEDs are needed to determine if this acute in vitro model might be useful as exploratory screening tool. In view of the increasing sensitivity toward animal welfare, an affective in vitro model may help to reduce the number of laboratory animals deployed in burdening in vivo experiments and to preselect substances for subsequent testing in time- and cost-laborious models of chronic epilepsy.
Collapse
Affiliation(s)
- Hanno Heuzeroth
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Wawra
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Pawel Fidzinski
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ramazan Dag
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Holtkamp
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Distinct modulation of the endocannabinoid system upon kainic acid-induced in vivo seizures and in vitro epileptiform bursting. Mol Cell Neurosci 2014; 62:1-9. [PMID: 25064144 DOI: 10.1016/j.mcn.2014.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/06/2014] [Accepted: 07/23/2014] [Indexed: 12/11/2022] Open
Abstract
There is clear evidence on the neuroprotective role of the endocannabinoid (eCB) signaling cascade in various models of epilepsy. In particular, increased levels of eCBs protect against kainic acid (KA)-induced seizures. However, the molecular mechanisms underlying this effect and its age-dependence are still unknown. To clarify this issue, we investigated which step of the biosynthetic and catabolic pathways of the eCBs may be responsible for the eCB-mediated neuroprotection in the hippocampus of P14 and P56-70 KA-treated rats. We found that both anandamide and N-palmitoylethanolamine, together with their biosynthetic enzyme significantly increased in the hippocampus of younger KA-treated rats, while decreasing in adults. In contrast, the levels of the other major eCB, 2-arachidonoylglycerol, similar to its biosynthetic enzyme, were higher in the hippocampus of P56-70 compared to P14 rats. In line with these data, extracellular field recordings in CA1 hippocampus showed that enhancement of endogenous AEA and 2-AG significantly counteracted KA-induced epileptiform bursting in P56-70 and P14 rats, respectively. On the contrary, while the CB1R antagonist SR141716 per se did not affect the population spike, it did worsen KA-induced bursts, confirming increased eCB tone upon KA treatment. Altogether these data indicate an age-specific alteration of the eCB system caused by KA and provide insights for the protective mechanism of the cannabinoid system against epileptiform discharges.
Collapse
|
4
|
Mattes H, Carcache D, Kalkman HO, Koller M. alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) antagonists: from bench to bedside. J Med Chem 2010; 53:5367-82. [PMID: 20356304 DOI: 10.1021/jm901688m] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Henri Mattes
- Novartis Pharma AG, Werk Klybeck, WKL-122-241 Postfach, CH-4002 Basel, Switzerland.
| | | | | | | |
Collapse
|
5
|
Borbély S, Dobó E, Czégé D, Molnár E, Bakos M, Szucs B, Vincze A, Világi I, Mihály A. Modification of ionotropic glutamate receptor-mediated processes in the rat hippocampus following repeated, brief seizures. Neuroscience 2008; 159:358-68. [PMID: 19154779 DOI: 10.1016/j.neuroscience.2008.12.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 12/17/2008] [Accepted: 12/19/2008] [Indexed: 10/21/2022]
Abstract
The seizure-induced molecular and functional alterations of glutamatergic transmission in the hippocampus have been investigated. Daily repeated epileptic seizures were induced for 12 days by intraperitoneal administration of 4-aminopyridine (4-AP; 4.5 mg/kg) in adult Wistar rats. The seizure symptoms were evaluated on the Racine's scale. One day after the last injection, the brains were removed for in vitro electrophysiological experiments and immunohistochemical analysis. The glutamate receptor subunits NR1, NR2A, NR2B, GluR1, GluR1(flop), GluR2, and KA-2 were studied using the histoblotting method. The semi-quantitative analysis of subunit immunoreactivities in hippocampal layers was performed with densitometry. In the hippocampus, increase of GluR1, GluR1(flop) and NR2B immunostaining was observed in most of the areas and layers. The significant decrease of GluR2 staining intensity was observed in the CA1 and dentate gyrus. Calcium permeability of hippocampal neurons was tested by a cobalt uptake assay in hippocampal slices. The uptake of cobalt increased in the CA1 area and dentate gyrus, but not in the CA3 region following 4-AP treatment. Effects of AMPA and NMDA (N-methyl-d-aspartate) glutamate receptor antagonists (1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride (GYKI 52466) and D-APV respectively) were measured in hippocampal slices using extracellular recording. Analysis of the population spikes revealed the reduced effectiveness of the AMPA receptor antagonist GYKI 52466, while the effect of the NMDA receptor antagonist d-(2R)-amino-5-phosphonovaleric acid was similar to controls. The results demonstrated that repeated convulsions induced structural and functional changes in AMPA receptor-mediated transmission, while NMDA and kainate receptor systems displayed only alterations in receptor subunit composition.
Collapse
Affiliation(s)
- S Borbély
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117, Budapest Pázmány Péter sétány 1/C, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wang D, Darwish DS, Schreurs BG. Effects of 4-aminopyridine on classical conditioning of the rabbit (Oryctolagus cuniculus) nictitating membrane response. Behav Pharmacol 2006; 17:319-29. [PMID: 16914950 DOI: 10.1097/01.fbp.0000224381.56121.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A large body of data suggests that potassium channels may play an important role in learning and memory. Previous in-vitro research in a number of species including Hermissenda and the rabbit suggests that a 4-aminopyridine-sensitive transient potassium channel may be involved in classical conditioning. We investigated the effects of in-vivo 4-aminopyridine administration (0.5 mg/kg) on classical conditioning of the rabbit nictitating membrane response using a battery of tests designed to assess the associative, sensory, and motor contributors of 4-aminopyridine to responding. 4-Aminopyridine enhanced both classical conditioning and conditioning-specific reflex modification compared with a saline vehicle control, and these effects had several nonassociative components including an increase in the frequency of responding to both the conditioned and the unconditioned stimuli, suggesting a sensitizing effect of the drug. Although 4-aminopyridine can have peripheral effects, it may also modify cerebellar excitability or hippocampal neurotransmitter balance resulting in heightened responsiveness to stimulation.
Collapse
Affiliation(s)
- Desheng Wang
- Department of Physiology and Pharmacology, Blanchette Rockefeller Neurosciences Institute, West Virginia University School of Medicine, Morgantown, West Virginia 26506, USA
| | | | | |
Collapse
|
7
|
Mihály A, Szakács R, Bohata C, Dobó E, Krisztin-Péva B. Time-dependent distribution and neuronal localization of c-fos protein in the rat hippocampus following 4-aminopyridine seizures. Epilepsy Res 2001; 44:97-108. [PMID: 11325566 DOI: 10.1016/s0920-1211(01)00190-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The immunohistochemical localization of c-fos protein in the CNS neurons was studied in a model of generalized epilepsy induced by the intraperitoneal injection of 4-aminopyridine to adult Wistar rats. This specific blocker of the voltage-dependent potassium channels proved to be suitable for use in the investigation of epileptogenesis. Following the treatment of adult rats with 5 mg kg of 4-aminopyridine, the animals experienced generalized seizures. At the end of the experiment, the rats were briefly anesthetized and perfused with fixative. Frozen coronal plane sections were cut and processed for immunohistochemistry, using polyclonal c-fos antibody. The number and distribution of immunostained cell nuclei in the hippocampus were analyzed in detail with the help of a digital microscope camera and a morphometry program. The highest level of immunostaining was detected in most of the structures at 3 h, but the level had decreased to the control level by 5 h following 4-aminopyridine injection. In the dentate fascia, immunostaining was highest at 1 h and then decreased slowly until 5 h post-injection. The activated neuronal assemblies were analyzed with the aid of parvalbumin c-fos double immunostaining. These countings revealed the highest inhibitory interneuronal activation in every part of the hippocampus (including the dentate fascia) at 3 h post-injection. The results indicate that systemic 4-aminopyridine induces limbic seizures, which are probably initiated in the entorhinal cortex.
Collapse
Affiliation(s)
- A Mihály
- Department of Anatomy, Albert Szent-Györgyi Health Science Center, Faculty of Medicine, University of Szeged, PO Box 427, H-6701, Szeged, Hungary.
| | | | | | | | | |
Collapse
|