1
|
Katsuda Y, Tanaka K, Mori T, Narita M, Takeshima H, Kondo T, Yamabe Y, Matsufuji M, Sato D, Hamada Y, Yamaguchi K, Ushijima T, Inada E, Kuzumaki N, Iseki M, Narita M. Histone modification of pain-related gene expression in spinal cord neurons under a persistent postsurgical pain-like state by electrocautery. Mol Brain 2021; 14:146. [PMID: 34544461 PMCID: PMC8451106 DOI: 10.1186/s13041-021-00854-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/08/2021] [Indexed: 11/10/2022] Open
Abstract
Chronic postsurgical pain (CPSP) is a serious problem. We developed a mouse model of CPSP induced by electrocautery and examined the mechanism of CPSP. In this mouse model, while both incision and electrocautery each produced acute allodynia, persistent allodynia was only observed after electrocautery. Under these conditions, we found that the mRNA levels of Small proline rich protein 1A (Sprr1a) and Annexin A10 (Anxa10), which are the key modulators of neuropathic pain, in the spinal cord were more potently and persistently increased by electrocautery than by incision. Furthermore, these genes were overexpressed almost exclusively in chronic postsurgical pain-activated neurons. This event was associated with decreased levels of tri-methylated histone H3 at Lys27 and increased levels of acetylated histone H3 at Lys27 at their promoter regions. On the other hand, persistent allodynia and overexpression of Sprr1a and Anxa10 after electrocautery were dramatically suppressed by systemic administration of GSK-J4, which is a selective H3K27 demethylase inhibitor. These results suggest that the effects of electrocautery contribute to CPSP along with synaptic plasticity and epigenetic modification.
Collapse
Affiliation(s)
- Yosuke Katsuda
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Kenichi Tanaka
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tomohisa Mori
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Michiko Narita
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Hideyuki Takeshima
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takashige Kondo
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Yoshiyuki Yamabe
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Misa Matsufuji
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Daisuke Sato
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Yusuke Hamada
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.,Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Keisuke Yamaguchi
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Department of Anesthesiology and Pain Medicine, Juntendo Tokyo Koto Geriatric Medical Center, 3-3-20 Shinsuna, Koto-ku, Tokyo, 136-0075, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Eiichi Inada
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Naoko Kuzumaki
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Masako Iseki
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Minoru Narita
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan. .,Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan. .,Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
2
|
Watanabe C, Komiyama A, Yoshizumi M, Sakurada S, Mizoguchi H. Morphine Antinociception Restored by Use of Methadone in the Morphine-Resistant Inflammatory Pain State. Front Pharmacol 2020; 11:593647. [PMID: 33343363 PMCID: PMC7746881 DOI: 10.3389/fphar.2020.593647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/23/2020] [Indexed: 01/06/2023] Open
Abstract
The antinociceptive effect of methadone in the morphine-resistant inflammatory pain state was described in the paw-withdrawal test using the complete Freund’s adjuvant (CFA)-induced mouse inflammatory pain model. After intraplantar (i.pl.) injection of CFA, thermal hyperalgesia was observed in the ipsilateral paw. The antinociceptive effects of subcutaneous (s.c.) injection of morphine, fentanyl, and oxycodone against thermal hyperalgesia in the inflammatory pain state were reduced in the ipsilateral paw 7 days after CFA pretreatment. On the contrary, the antinociceptive effect of s.c. injection of methadone was maintained in the ipsilateral paw 7 days after CFA pretreatment. The suppressed morphine antinociception in the CFA model mice was bilaterally restored following s.c. treatment with methadone 20 min prior to or 3 days after CFA pretreatment. The suppressed morphine antinociception was also bilaterally restored by intraperitoneal treatment with MK-801 30 min prior to CFA pretreatment; however, the s.c. injection of morphine 30 min prior to CFA pretreatment failed to restore the suppressed morphine antinociception in the CFA model mice. The expression level of mRNA for µ-opioid receptors 7 days after i.pl. pretreatment was not significantly changed by i.pl. pretreatment with CFA or s.c. pretreatment with methadone. In conclusion, methadone is extremely effective against thermal hyperalgesia in the morphine-resistant inflammatory pain state, and restores suppressed morphine antinociception in the inflammatory pain state without altering the expression level of mRNA for µ-opioid receptors.
Collapse
Affiliation(s)
- Chizuko Watanabe
- Department of Physiology and Anatomy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Asami Komiyama
- Department of Physiology and Anatomy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Masaru Yoshizumi
- Department of Physiology and Anatomy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Shinobu Sakurada
- Department of Physiology and Anatomy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Hirokazu Mizoguchi
- Department of Physiology and Anatomy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
3
|
Miyamoto K, Kume K, Ohsawa M. Role of microglia in mechanical allodynia in the anterior cingulate cortex. J Pharmacol Sci 2017; 134:158-165. [PMID: 28669596 DOI: 10.1016/j.jphs.2017.05.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/12/2017] [Accepted: 05/22/2017] [Indexed: 01/06/2023] Open
Abstract
Plastic changes that increase nociceptive transmission are observed in several brain regions under conditions of chronic pain. Synaptic plasticity in the anterior cingulate cortex (ACC) is particularly associated with neuropathic pain. Glial cells are considered candidates for the modulation of neural plastic changes in the central nervous system. In this study, we aimed to investigate the role of ACC glial cells in the development of neuropathic pain. First, we examined the expression of glial cells in the ACC of nerve-ligated mice. The expression of astrocytes and microglia was increased in the ACC of nerve-ligated mice, which was reversed by intracerebroventricular (i.c.v) treatment with the microglia inhibitor minocycline. Then, we examined the effect of minocycline on mechanical allodynia in nerve-ligated mice. I.c.v. and intra-ACC treatment with minocycline partially inhibited mechanical allodynia in the nerve-ligated mice. The expression of phosphorylated alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluR1 subunit at Ser831, but not at Ser845, was increased in the ACC of the nerve-ligated mice compared to sham-operated mice, which was attenuated by minocycline administration. These results suggest that the activation of microglia in the ACC is involved in the development of hyperalgesia in mice with neuropathic pain.
Collapse
Affiliation(s)
- Keisuke Miyamoto
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Masahiro Ohsawa
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| |
Collapse
|
4
|
Involvement of inhibition of RhoA/Rho kinase signaling in simvastatin-induced amelioration of neuropathic pain. Neuroscience 2016; 333:204-13. [PMID: 27457035 DOI: 10.1016/j.neuroscience.2016.07.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 12/19/2022]
Abstract
Small molecular G-protein plays a key role in several diseases. This study was designed to reveal the role of RhoA signaling in the pathophysiology of neuropathic pain in mice. Partial sciatic nerve injury caused thermal hyperalgesia, mechanical allodynia, and increased plasma membrane translocation of RhoA in the lumber spinal cord. GFAP-immunoreactivity (ir), Iba-1-ir, and Rho kinase 2 (ROCK2-ir) was also increased in the ipsilateral spinal dorsal horn of nerve-ligated mice. Moreover, partial nerve ligation increased the expression of phosphorylated myristoylated alanine-rich protein kinase C substrate (MARCKS)-ir in the ipsilateral spinal dorsal horn. Daily intrathecal administration of simvastatin, beginning 3days before nerve injury, completely blocked all these changes in nerve-ligated mice. Pharmacological inhibition of ROCK also attenuated the increased expression of GFAP-ir and phosphorylated MARCKS-ir. Together, it is suggested that astrogliosis initiated by the activation of RhoA/ROCK signaling results in MARCKS phosphorylation in nerve terminals, which leads to hyperalgesia in neuropathic pain. Furthermore, simvastatin exerts antihyperalgesic and antiallodynic effects through the inhibition of spinal RhoA activation.
Collapse
|
5
|
Montes GC, Hammes N, da Rocha MD, Montagnoli TL, Fraga CAM, Barreiro EJ, Sudo RT, Zapata-Sudo G. Treatment with Adenosine Receptor Agonist Ameliorates Pain Induced by Acute and Chronic Inflammation. ACTA ACUST UNITED AC 2016; 358:315-23. [DOI: 10.1124/jpet.115.231241] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/17/2016] [Indexed: 12/28/2022]
|
6
|
Ma Y, Zhou C, Li G, Tian Y, Liu J, Yan L, Jiang Y, Tian S. Effects on Spatial Cognition and Nociceptive Behavior Following Peripheral Nerve Injury in Rats with Lesion of the Striatal Marginal Division Induced by Kainic Acid. Neurochem Res 2015; 40:2357-64. [DOI: 10.1007/s11064-015-1727-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/16/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
|
7
|
de Souza Nunes JP, da Silva KAB, da Silva GF, Quintão NLM, Corrêa R, Cechinel-Filho V, de Campos-Buzzi F, Niero R. The antihypersensitive and antiinflammatory activities of a benzofuranone derivative in different experimental models in mice: the importance of the protein kinase C pathway. Anesth Analg 2014; 119:836-846. [PMID: 25010822 DOI: 10.1213/ane.0000000000000351] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Benzofuranone (BF1) was synthesized and its effects evaluated on mechanical hypersensitivity and paw edema models induced by different agents and on neuropathic pain induced by partial ligation of the sciatic nerve. An attempt was also made to elucidate the mechanism of action. METHODS Swiss mice were used for the tests. Hypersensitivity was induced by intraplantar injection of carrageenan, bradykinin (BK), prostaglandin E2 (PGE2), epinephrine, lipopolysaccharide, or complete Freund adjuvant or by using a neuropathic pain model (evaluated with von Frey filament 0.6 g). The antiinflammatory effects were investigated in a paw edema model induced by carrageenan, PGE2, and BK (measured with a plethysmometer). The involvement of protein kinase C (PKC) was investigated through a nociception model induced by phorbol myristate acetate. RESULTS BF1 inhibited the hypersensitivity and paw edema induced by intraplantar injection of carrageenan, BK, and PGE2 (P < 0.001), and it was effective in reducing the hypersensitivity evoked by complete Freund adjuvant or epinephrine (P < 0.001) but not by lipopolysaccharide (P = 0.2570). BF1 inhibited the licking behavior induced by phorbol myristate acetate (P < 0.001), suggesting involvement of the PKC pathway. A reduction in hypersensitivity of mice submitted to partial ligation of the sciatic nerve (P < 0.001) was observed, with inhibition of neutrophil migration and interleukin-1β production into the spinal cord. BF1 treatment did not interfere with locomotor activity (P = 0.0783) and thermal withdrawal threshold (P = 0.5953), which are important adverse effects of other analgesics. CONCLUSIONS BF1 has dose-dependent antihypersensitive and antiinflammatory effects in both acute and chronic models of pain and inflammation, possibly mediated through interference with the PKC activation pathway. The easy and fast synthesis of this compound, low-cost, low-concentration-requirement, and once-daily-administration drug suggest it as a candidate for future clinical studies.
Collapse
Affiliation(s)
- Juliana Paula de Souza Nunes
- From the Programa de Pós-Graduação em Ciências Farmacêuticas and Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí, Rua Uruguai, Itajaí, SC, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Aoki Y, Mizoguchi H, Watanabe C, Takeda K, Sakurada T, Sakurada S. Potential involvement of μ-opioid receptor dysregulation on the reduced antinociception of morphine in the inflammatory pain state in mice. J Pharmacol Sci 2014; 124:258-66. [PMID: 24553404 DOI: 10.1254/jphs.13242fp] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The antinociceptive effect of morphine in the inflammatory pain state was described in the von Frey filament test using the complete Freund's adjuvant (CFA)-induced mouse inflammatory pain model. After an i.pl. injection of CFA, mechanical allodynia was observed in the ipsilateral paw. The antinociceptive effect of morphine injected s.c. and i.t. against mechanical allodynia was reduced bilaterally at 1 day and 4 days after the CFA pretreatment. The expression level of mRNA for μ-opioid receptors at 1 day after the CFA pretreatment was reduced bilaterally in the lumbar spinal cord and dorsal root ganglion (DRG). In contrast, the protein level of μ-opioid receptors at 1 day after CFA pretreatment was decreased in the ipsilateral side in the DRG but not the lumbar spinal cord. Single or repeated i.t. pretreatment with the protein kinase Cα (PKCα) inhibitor Ro-32-0432 completely restored the reduced morphine antinociception in the contralateral paw but only partially restored it in the ipsilateral paw in the inflammatory pain state. In conclusion, reduced morphine antinociception against mechanical allodynia in the inflammatory pain state is mainly mediated via a decrease in μ-opioid receptors in the ipsilateral side and via the desensitization of μ-opioid receptors in the contralateral side by PKCα-induced phosphorylation.
Collapse
Affiliation(s)
- Yuta Aoki
- Department of Physiology and Anatomy, Tohoku Pharmaceutical University, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Aoki Y, Mizoguchi H, Watanabe C, Sakurada T, Sakurada S. Differential alternation of the antinociceptive effect of narcotic analgesics on the inflammatory pain state. Neurosci Lett 2014; 560:122-5. [DOI: 10.1016/j.neulet.2013.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/01/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
|
10
|
Ohsawa M, Mutoh J, Yamamoto S, Hisa H. Involvement of protein isoprenylation in neuropathic pain induced by sciatic nerve injury in mice. Neurosci Lett 2014; 564:27-31. [PMID: 24486886 DOI: 10.1016/j.neulet.2014.01.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/14/2014] [Accepted: 01/18/2014] [Indexed: 11/18/2022]
Abstract
Isoprenylation is crucial step for activating many intracellular signaling. The present study examined whether inhibition of the protein isoprenylation could affect neuropathic pain in partial sciatic nerve-ligated mice. Intrathecal treatment with a geranylgeranyl transferase I inhibitor GGTI-2133, but not with a farnesyl transferase inhibitor FTI-277, dose-dependently blocked the thermal hyperalgesia in partial sciatic nerve-ligated mice. Intrathecal treatment with GGTI-2133 also attenuated the mechanical allodynia in partial sciatic nerve-ligated mice. Phosphorylated MARCKS expression was increased in the ipsilateral side of the spinal cord dorsal horn in partial sciatic nerve-ligated mice, and this increase was attenuated by GGTI-2133 but not by FTI-277. These results suggest that protein isoprenylation by geranylgeranyl transferase I is involved in the neuropathic pain.
Collapse
Affiliation(s)
- Masahiro Ohsawa
- Second Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshino-machi, Nobeoka-shi, Miyazaki 882-8508, Japan; Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| | - Junpei Mutoh
- Second Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshino-machi, Nobeoka-shi, Miyazaki 882-8508, Japan
| | - Shohei Yamamoto
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Hiroaki Hisa
- Second Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshino-machi, Nobeoka-shi, Miyazaki 882-8508, Japan
| |
Collapse
|
11
|
Wang S, Zhang L, Ma Y, Chen L, Tian Y, Mao J, Martyn JJA. Nociceptive behavior following hindpaw burn injury in young rats: response to systemic morphine. PAIN MEDICINE 2010; 12:87-98. [PMID: 21143761 DOI: 10.1111/j.1526-4637.2010.01021.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Develop a burn injury model in young age rats. BACKGROUND Management of pain after burn injury in pediatric patients is an unresolved clinical issue. METHODS A burn injury model in young rats of 3-4 weeks old was developed by briefly immersing the dorsal part of the right hindpaw in a hot water bath (85°C) for 12 seconds under pentobarbital anesthesia. RESULTS Burn injury, but not sham control, induced nociceptive behaviors (mechanical allodynia, thermal hyperalgesia) when examined on post-injury day 2, 4, and 7. In burn-injured rats, there was the upregulated expression of the NR1 subunit of the N-methyl-d-aspartate (NMDA) receptor, Akt1, Akt2, and protein kinase C γ (PKCγ), but downregulated expression of neuronal nitric oxide synthase (NOS), inducible NOS, and glycogen synthase kinase-3β, within the spinal cord dorsal horn ipsilateral to burn injury. Moreover, intraperitoneal administration of a clinically available NMDA receptor antagonist dextromethorphan (30 mg/kg, once daily × 7 days beginning on day 7 after burn injury) attenuated mechanical allodynia and thermal hyperalgesia in burn-injured rats. Different from our previous finding in adult burn-injured rats; however, burn injury in young rats of this age did not spontaneously shift the morphine antinociceptive response curve to the right within the dose range used in the study when exposed to morphine for the first time, suggesting that the development of intrinsic tolerance to morphine antinociception may be different from adult rats following burn injury. CONCLUSIONS Our data suggest that this model may be used to explore the mechanisms of burn injury-induced nociception in young rats and to differentiate the sequelae from burn injury between adult and young rats under certain experimental conditions.
Collapse
Affiliation(s)
- Shuxing Wang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Furuta S, Shimizu T, Narita M, Matsumoto K, Kuzumaki N, Horie S, Suzuki T, Narita M. Subdiaphragmatic vagotomy promotes nociceptive sensitivity of deep tissue in rats. Neuroscience 2009; 164:1252-62. [PMID: 19772896 DOI: 10.1016/j.neuroscience.2009.09.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Accepted: 09/10/2009] [Indexed: 11/30/2022]
Abstract
To verify whether vagal dysfunction is associated with chronic pain, we evaluated the effects of subdiaphragmatic vagotomy (vgx) on the sensitivity toward noxious stimuli in rats. Vgx rats showed sustained hyperalgesia in the gastrocnemius muscle without tissue damage (no increase in vgx-induced plasma creatine phosphokinase or lactose dehydrogenase levels) accompanied by hypersensitivity to colonic distension. We found a dramatic increase in the levels of metabotropic glutamate receptor 5, protein kinase C (PKC) gamma and phosphorylated-PKCgamma within the spinal cord dorsal horn in vgx rats, which suggests that vgx may evoke sensory nerve plasticity. Morphine produced a dose-dependent increase in the withdrawal threshold in both vgx and sham-operated rats, but the effect of a lower dose in vgx rats was weaker than that in sham-operated rats. Muscle hyperalgesia in vgx rats was also attenuated by gabapentin and amitriptyline, but was not affected by diclofenac, dexamethasone or diazepam. These findings indicate that subdiaphragmatic vagal dysfunction caused chronic muscle hyperalgesia accompanied by visceral pain and both gabapentin and amitriptyline were effective for subdiaphragmatic vagotomy-induced pain, which are partially similar to fibromyalgia syndrome. Furthermore, this chronic muscle pain may result from nociceptive neuroplasticity of the spinal cord dorsal horn.
Collapse
Affiliation(s)
- S Furuta
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Narita M, Nakamura A, Ozaki M, Imai S, Miyoshi K, Suzuki M, Suzuki T. Comparative pharmacological profiles of morphine and oxycodone under a neuropathic pain-like state in mice: evidence for less sensitivity to morphine. Neuropsychopharmacology 2008; 33:1097-112. [PMID: 17593930 DOI: 10.1038/sj.npp.1301471] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present study was undertaken to investigate pharmacological actions induced by morphine and oxycodone under a neuropathic pain-like state. In the mu-opioid receptor (MOR) binding study and G-protein activation, we confirmed that both morphine and oxycodone showed MOR agonistic activities. Mice with sciatic nerve ligation exhibited the marked neuropathic pain-like behavior. Under these conditions, antinociception induced by subcutaneously (s.c.) injected morphine was significantly decreased by sciatic nerve ligation, whereas s.c. injection of oxycodone produced a profound antinociception in sciatic nerve-ligated mice. There were no significant differences in spinal or supraspinal antinociception of morphine and oxycodone between sham operation and nerve ligation. Moreover, either morphine- or oxycodone-induced increase in guanosine-5'-o-(3-thio) triphosphate ([(35)S]GTPgammaS) binding in the spinal cord, periaqueductal gray matter and thalamus in sciatic nerve-ligated mice was similar to that in sham-operated mice. Antinociception induced by s.c., intrathecal, or intracerebroventricular injection of the morphine metabolite morphine-6-glucuronide (M-6-G) was significantly decreased by sciatic nerve ligation. Furthermore, the increase in the G-protein activation induced by M-6-G was eliminated in sciatic nerve ligation. In addition, either morphine- or oxycodone-induced rewarding effect was dramatically suppressed under a neuropathic pain-like state. The increased [(35)S]GTPgammaS binding by morphine or oxycodone was significantly lower in the lower midbrain of mice with sciatic nerve ligation compared with that in control mice. These findings provide further evidence that oxycodone shows a profound antinociceptive effect under a neuropathic pain-like state with less of a rewarding effect. Furthermore, the reduction in G-protein activation induced by M-6-G may, at least in part, contribute to the suppression of the antinociceptive effect produced by morphine under a neuropathic pain-like state.
Collapse
Affiliation(s)
- Minoru Narita
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa-ku, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Niikura K, Kobayashi Y, Okutsu D, Furuya M, Kawano K, Maitani Y, Suzuki T, Narita M. Implication of spinal protein kinase Cγ isoform in activation of the mouse brain by intrathecal injection of the protein kinase C activator phorbol 12,13-dibutyrate using functional magnetic resonance imaging analysis. Neurosci Lett 2008; 433:6-10. [DOI: 10.1016/j.neulet.2007.12.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2007] [Revised: 12/06/2007] [Accepted: 12/12/2007] [Indexed: 10/22/2022]
|
15
|
Niikura K, Narita M, Okutsu D, Tsurukawa Y, Nanjo K, Kurahashi K, Kobayashi Y, Suzuki T. Implication of endogenous beta-endorphin in the inhibition of the morphine-induced rewarding effect by the direct activation of spinal protein kinase C in mice. Neurosci Lett 2008; 433:54-8. [PMID: 18262361 DOI: 10.1016/j.neulet.2007.12.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 12/18/2007] [Accepted: 12/19/2007] [Indexed: 11/25/2022]
Abstract
It has often been proposed that opioid addiction does not arise as a consequence of opioid treatment for pain. Recently, we demonstrated that activated protein kinase C (PKC) in the spinal cord associated with chronic pain-like hyperalgesia suppressed the morphine-induced rewarding effect in mice. In the present study, we investigated whether a gene deletion for an endogenous mu-opioid peptide beta-endorphin could affect pain-like behavior and the suppression of the morphine-induced rewarding effect by the direct activation of PKC in the spinal cord. We found that activation of spinal PKC by intrathecal (i.t.) treatment with phorbol 12,13-dibutyrate (PDBu), a specific PKC activator, caused thermal hyperalgesia, pain-like behaviors and suppression of the morphine-induced rewarding effect. This suppression of morphine reward was eliminated in mice that lacked beta-endorphin. In contrast, thermal hyperalgesia and pain-like behaviors were not affected in beta-endorphin knockout mice. These results suggest that the activation of PKC in the spinal cord may play an essential role in the suppression of the morphine-induced rewarding effect in mice with neuropathic pain through the constant release of beta-endorphin.
Collapse
Affiliation(s)
- Keiichi Niikura
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Narita M, Shimamura M, Imai S, Kubota C, Yajima Y, Takagi T, Shiokawa M, Inoue T, Suzuki M, Suzuki T. Role of interleukin-1beta and tumor necrosis factor-alpha-dependent expression of cyclooxygenase-2 mRNA in thermal hyperalgesia induced by chronic inflammation in mice. Neuroscience 2007; 152:477-86. [PMID: 18262365 DOI: 10.1016/j.neuroscience.2007.10.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 10/17/2007] [Accepted: 10/19/2007] [Indexed: 02/09/2023]
Abstract
The present study investigated whether the endogenous pro-inflammatory cytokines [interleukin (IL)-1beta and tumor necrosis factor-alpha (TNF-alpha)]-dependent expression of cyclooxygenase-2 (COX-2) mRNA within the spinal cord could be involved in the development of chronic inflammatory pain-like behaviors in mice. We demonstrated that the expression of COX-2 mRNA on the ipsilateral side of the spinal cord was significantly increased 6 h and 3 days after intraplantar injection of complete Freund's adjuvant (CFA), compared with the expression in saline-treated mice. In addition, the chronic pain-like behaviors following CFA injection were markedly suppressed by repeated intrathecal (i.t.) pre-treatment with the COX-2 inhibitor etodolac, but not with the COX-1 inhibitor mofezolac. The cytosolic level of the activated form of nuclear factor-kappa B (NF-kappaB), which is a major contributor to the induction of COX-2, on the ipsilateral side of the mouse spinal cord was also increased compared with that in the saline-treated mice. The key finding in the present study was that a single i.t. injection with either IL-1beta or TNF-alpha induced a marked increase in spinal COX-2 mRNA and persistent thermal hyperalgesia in mice. Furthermore, CFA-induced hypersensitivity to inflammatory pain was significantly reduced by repeated i.t. pre-injection of the recombinant Fc chimera of IL-1 receptor I or soluble TNF receptor I, which sequesters endogenous IL-1beta or TNF-alpha, respectively. In contrast, the expression of spinal COX-2 mRNA in CFA-treated mice was similar to that in saline-treated mice at 7 days after CFA injection. The present findings strongly indicate the early intrathecal use of the COX-2 inhibitor for the relief of chronic inflammatory pain. Furthermore, together with the result in a previous study that pro-inflammatory cytokines lead to stimulation of a NF-kappaB-dependent transcriptional pathway, these findings suggest that a spinal cytokine/NF-kappaB/COX-2 pathway may play an important role in the development, but not maintenance, of chronic pain following peripheral tissue inflammation.
Collapse
Affiliation(s)
- M Narita
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tzschentke TM. Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 2007; 12:227-462. [PMID: 17678505 DOI: 10.1111/j.1369-1600.2007.00070.x] [Citation(s) in RCA: 1015] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Conditioned place preference (CPP) continues to be one of the most popular models to study the motivational effects of drugs and non-drug treatments in experimental animals. This is obvious from a steady year-to-year increase in the number of publications reporting the use this model. Since the compilation of the preceding review in 1998, more than 1000 new studies using place conditioning have been published, and the aim of the present review is to provide an overview of these recent publications. There are a number of trends and developments that are obvious in the literature of the last decade. First, as more and more knockout and transgenic animals become available, place conditioning is increasingly used to assess the motivational effects of drugs or non-drug rewards in genetically modified animals. Second, there is a still small but growing literature on the use of place conditioning to study the motivational aspects of pain, a field of pre-clinical research that has so far received little attention, because of the lack of appropriate animal models. Third, place conditioning continues to be widely used to study tolerance and sensitization to the rewarding effects of drugs induced by pre-treatment regimens. Fourth, extinction/reinstatement procedures in place conditioning are becoming increasingly popular. This interesting approach is thought to model certain aspects of relapse to addictive behavior and has previously almost exclusively been studied in drug self-administration paradigms. It has now also become established in the place conditioning literature and provides an additional and technically easy approach to this important phenomenon. The enormous number of studies to be covered in this review prevented in-depth discussion of many methodological, pharmacological or neurobiological aspects; to a large extent, the presentation of data had to be limited to a short and condensed summary of the most relevant findings.
Collapse
Affiliation(s)
- Thomas M Tzschentke
- Grünenthal GmbH, Preclinical Research and Development, Department of Pharmacology, Aachen, Germany.
| |
Collapse
|
18
|
Miyoshi K, Narita M, Takatsu M, Suzuki T. mGlu5 receptor and protein kinase C implicated in the development and induction of neuropathic pain following chronic ethanol consumption. Eur J Pharmacol 2007; 562:208-11. [PMID: 17349994 DOI: 10.1016/j.ejphar.2007.01.091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 01/23/2007] [Accepted: 01/24/2007] [Indexed: 10/23/2022]
Abstract
The central mechanisms of neuropathic pain following chronic ethanol consumption are poorly understood. We previously reported that the levels of metabotropic glutamate 5 (mGlu5) receptor and phosphorylated-protein kinase C (PKC) were significantly increased in the spinal cord following chronic ethanol consumption. The aim of this study was to investigate whether mGlu5 receptor and PKC inhibitors directly attenuate the neuropathic pain-like state induced by chronic ethanol treatment in rats. A significant decrease in the mechanical nociceptive threshold was observed 5 weeks of chronic ethanol consumption. This hyperalgesia was significantly attenuated by repeated i.p. injection of (S)-2,6-diamino-N-[[1-(oxotridecyl)-2-piperidinyl]methyl] hexanamide dihydrochloride (NPC15437), a selective PKC inhibitor, once a day for a week after 4 weeks of ethanol treatment. Furthermore, this hyperalgesia was also significantly attenuated by repeated i.p. injection of 6-methyl-2-[phenylethynyl]-pyridine (MPEP), a selective mGlu5 receptor inhibitor, once a day for a week after 4 weeks of ethanol treatment. Furthermore, the hyperalgesia that developed after 5 weeks of ethanol treatment was significantly suppressed by a single i.p. post-injection with either NPC15437 or MPEP. These findings constitute direct evidence that spinal mGlu5 receptor and PKC play substantial roles in the development and maintenance of an ethanol-dependent neuropathic pain-like state in rats.
Collapse
Affiliation(s)
- Kan Miyoshi
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | |
Collapse
|
19
|
Miyoshi K, Narita M, Narita M, Suzuki T. Involvement of mGluR5 in the ethanol-induced neuropathic pain-like state in the rat. Neurosci Lett 2006; 410:105-9. [PMID: 17081689 DOI: 10.1016/j.neulet.2006.08.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 08/06/2006] [Accepted: 08/29/2006] [Indexed: 11/26/2022]
Abstract
Alcohol neuropathy has been thought to involve decreased nerve function following chronic ethanol consumption. However, there is no reliably successful therapy, largely due to a lack of understanding of the central underlying mechanisms. The aim of this study was to investigate the mechanisms that contribute to the neuropathic pain-like state induced by chronic ethanol treatment in rats. Rats were chronically treated with ethanol diet (1.25-5% of ethanol) for over 70 days. Mechanical hyperalgesia was observed during ethanol consumption and even after ethanol withdrawal. Under these conditions, an immunohistochemical study showed an increase in metabotropic glutamate receptor 5 (mGluR5) immunoreactivity in the superficial spinal dorsal horn of chronic ethanol-fed rats. Furthermore, immunoblot analysis revealed that the protein level of mGluR5 was clearly increased following chronic ethanol consumption. These findings support the idea that the increased levels of mGluR5 in the spinal cord may be, at least in part, involved in the induction of ethanol-dependent neuropathic pain-like state.
Collapse
Affiliation(s)
- Kan Miyoshi
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Tokyo 142-8501, Japan
| | | | | | | |
Collapse
|
20
|
Narita M, Kaneko C, Miyoshi K, Nagumo Y, Kuzumaki N, Nakajima M, Nanjo K, Matsuzawa K, Yamazaki M, Suzuki T. Chronic pain induces anxiety with concomitant changes in opioidergic function in the amygdala. Neuropsychopharmacology 2006; 31:739-50. [PMID: 16123756 DOI: 10.1038/sj.npp.1300858] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Clinically, it has been reported that chronic pain induces depression, anxiety, and reduced quality of life. The endogenous opioid system has been implicated in nociception, anxiety, and stress. The present study was undertaken to investigate whether chronic pain could induce anxiogenic effects and changes in the opioidergic function in the amygdala in mice. We found that either injection of complete Freund's adjuvant (CFA) or neuropathic pain induced by sciatic nerve ligation produced a significant anxiogenic effect at 4 weeks after the injection or surgery. Under these conditions, the selective mu-opioid receptor agonist [D-Ala2,N-MePhe4,Gly5-ol]-enkephalin (DAMGO)- and the selective delta-opioid receptor agonist (+)-4-[(alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80)-stimulated [35S]GTPgammaS binding in membranes of the amygdala was significantly suppressed by CFA injection or nerve ligation. CFA injection was associated with a significant increase in the kappa-opioid receptor agonist 2-(3,4-dichlorophenyl)-N-methyl-N-[(1S)-1-phenyl-2-(1-pyrrolidinyl)ethyl]acetamide hydrochloride (ICI199,441)-stimulated [35S]GTPgammaS binding in membranes of the amygdala. The intracerebroventricular administration and microinjection of a selective mu-opioid receptor antagonist, a selective delta-opioid receptor antagonist, and the endogenous kappa-opioid receptor ligand dynorphin A caused a significant anxiogenic effect in mice. We also found that thermal hyperalgesia induced by sciatic nerve ligation was reversed at 8 weeks after surgery. In the light-dark test, the time spent in the lit compartment was not changed at 8 weeks after surgery. Collectively, the present data constitute the first evidence that chronic pain has an anxiogenic effect in mice. This phenomenon may be associated with changes in opioidergic function in the amygdala.
Collapse
Affiliation(s)
- Minoru Narita
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Narita M, Usui A, Narita M, Niikura K, Nozaki H, Khotib J, Nagumo Y, Yajima Y, Suzuki T. Protease-activated receptor-1 and platelet-derived growth factor in spinal cord neurons are implicated in neuropathic pain after nerve injury. J Neurosci 2006; 25:10000-9. [PMID: 16251448 PMCID: PMC6725566 DOI: 10.1523/jneurosci.2507-05.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recently, it has been reported that both thrombin-sensitive protease-activated receptor 1 (PAR-1) and platelet-derived growth factor (PDGF) are present not only in platelets, but also in the CNS, which indicates that they have various physiological functions. In this study, we evaluated whether PAR-1/PDGF in the spinal cord could contribute to the development of a neuropathic pain-like state in mice. Thermal hyperalgesia and tactile allodynia induced by sciatic nerve ligation were significantly suppressed by repeated intrathecal injection of hirudin, which is characterized as a specific and potent thrombin inhibitor. Furthermore, a single intrathecal injection of thrombin produced long-lasting hyperalgesia and allodynia, and these effects were also inhibited by hirudin in normal mice. In nerveligated mice, the increase in the binding of [35S]GTPgammaS to membranes of the spinal cord induced by thrombin and PAR-1-like immunoreactivity (IR) in the spinal cord were each greater than those in sham-operated mice. Thermal hyperalgesia and tactile allodynia induced by sciatic nerve ligation were also suppressed by repeated intrathecal injection of either the PDGF alpha receptor (PDGFRalpha)/Fc chimera protein or the PDGFR-dependent tyrosine kinase inhibitor AG17 [(3,5-di-tert-butyl-4-hydroxybenzylidene)-malononitrile]. Moreover, thermal hyperalgesia and tactile allodynia induced by thrombin in normal mice were virtually eliminated by intrathecal pretreatment with PDGFRalpha/Fc. In immunohistochemical studies, PAR-1-like IR-positive cells in the spinal dorsal horn were mostly colocated on PDGF-like IR-positive neuronal cells. These data provide novel evidence that PAR-1 and PDGF-A-mediated signaling pathway within spinal cord neurons may be directly implicated in neuropathic pain after nerve injury in mice.
Collapse
Affiliation(s)
- Minoru Narita
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Tokyo 142-8501, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang S, Lim G, Yang L, Zeng Q, Sung B, Jeevendra Martyn JA, Mao J. A rat model of unilateral hindpaw burn injury: Slowly developing rightwards shift of the morphine dose–response curve. Pain 2005; 116:87-95. [PMID: 15936884 DOI: 10.1016/j.pain.2005.03.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 01/18/2005] [Accepted: 03/30/2005] [Indexed: 11/24/2022]
Abstract
Management of pain after burn injury is an unresolved clinical issue. In a rat model of hindpaw burn injury, we examined the effects of systemic morphine on nociceptive behaviors following injury. Injury was induced by immersing the dorsal part of one hindpaw into a hot water bath (85 degrees C) for 4, 7, or 12 s under pentobarbital anesthesia. Mechanical allodynia to von Frey filament stimulation and thermal hyperalgesia to radiant heat were assessed. Burn injury induced by the 12-s (but not 4-, or 7-s) hot water immersion resulted in reliable and lasting mechanical allodynia and thermal hyperalgesia evident by day 1. In addition, there was an upregulation of protein kinase Cgamma and a progressive downregulation of mu-opioid receptors within the spinal cord dorsal horn ipsilateral to injury as revealed by immunohistochemistry and Western blot. In both injured and sham rats, the anti-nociceptive effects of subcutaneous morphine were examined on post-injury days 7 and 14. While the morphine AD50 dose was comparable on day 7 between burn (1.61 mg/kg) and control (1.7 mg/kg) rats, the morphine dose-response curve was shifted to the right in burn-injured rats (4.6 mg/kg) on post-injury day 14 as compared with both the injured rats on post-injury day 7 and sham rats on day 14 (1.72 mg/kg). These data indicate that hindpaw burn injury reliably produces persistent mechanical allodynia and thermal hyperalgesia and that the reduced efficacy of morphine anti-nociception in chronic burn injury may be in part due to a downregulation of spinal mu-opioid receptors.
Collapse
Affiliation(s)
- Shuxing Wang
- Pain Research Group, MGH Pain Center, WACC 324, Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School, 15 Parkman Street, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Yajima Y, Narita M, Usui A, Kaneko C, Miyatake M, Narita M, Yamaguchi T, Tamaki H, Wachi H, Seyama Y, Suzuki T. Direct evidence for the involvement of brain‐derived neurotrophic factor in the development of a neuropathic pain‐like state in mice. J Neurochem 2005; 93:584-94. [PMID: 15836617 DOI: 10.1111/j.1471-4159.2005.03045.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thermal hyperalgesia and tactile allodynia induced by sciatic nerve ligation were completely suppressed by repeated intrathecal (i.t.) injection of a TrkB/Fc chimera protein, which sequesters endogenous brain-derived neurotrophic factor (BDNF). In addition, BDNF heterozygous (+/-) knockout mice exhibited a significant suppression of nerve ligation-induced thermal hyperalgesia and tactile allodynia compared with wild-type mice. After nerve ligation, BDNF-like immunoreactivity on the superficial laminae of the ipsilateral side of the spinal dorsal horn was clearly increased compared with that of the contralateral side. It should be noted that a single i.t. injection of BDNF produced a long-lasting thermal hyperalgesia and tactile allodynia in normal mice, and these responses were abolished by i.t. pre-treatment with either a Trk-dependent tyrosine kinase inhibitor K-252a or a selective protein kinase C (PKC) inhibitor Ro-32-0432. Supporting these findings, we demonstrated here for the first time that the increase in intracellular Ca2+ concentration by application of BDNF in cultured mouse spinal neurons was abolished by pre-treatment with either K-252a or Ro-32-0432. Taken together, these findings suggest that the binding of spinally released BDNF to TrkB by nerve ligation may activate PKC within the spinal cord, resulting in the development of a neuropathic pain-like state in mice.
Collapse
Affiliation(s)
- Yoshinori Yajima
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Oe K, Narita M, Imai S, Shibasaki M, Kubota C, Kasukawa A, Hamaguchi M, Yajima Y, Yamazaki M, Suzuki T. Inhibition of the morphine-induced rewarding effect by direct activation of spinal protein kinase C in mice. Psychopharmacology (Berl) 2004; 177:55-60. [PMID: 15179546 DOI: 10.1007/s00213-004-1929-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2003] [Accepted: 04/26/2004] [Indexed: 11/26/2022]
Abstract
RATIONALE We previously demonstrated that the morphine-induced rewarding effect was attenuated under a neuropathic pain-like state following partial sciatic nerve ligation in rodents. Furthermore, the up-regulation of protein kinase C (PKC) activity in the spinal cord is considered to be the key factor for induction of hyperalgesia following sciatic nerve ligation. However, little direct evidence is available for the involvement of activated PKC in the spinal cord in reduction of rewarding effects induced by morphine under chronic pain-like state. OBJECTIVE The present study was to investigate whether direct activation of spinal PKC by intrathecal (IT) administration of a specific PKC activator, phorbol 12,13-dibutyrate (PDBu) could produce hyperalgesia and suppress the place preference induced by morphine in mice. METHOD The morphine-induced rewarding effect was investigated using the conditioned place preference method. Conditioning sessions (three for morphine, three for saline) were started 24 h after IT injection of PDBu or saline and conducted once daily for 6 days. On the day after the final conditioning session, a post-conditioning test was performed. RESULTS IT-administered PDBu produced a long-lasting thermal hyperalgesia. Under these conditions, the place preference induced by morphine was abolished by a single IT pretreatment with PDBu. The effect was reversed by concomitant IT treatment with the specific PKC inhibitor Ro-32-0432. In contrast, IT-administered PDBu failed to affect the hyperlocomotion and supraspinal antinociception induced by morphine. CONCLUSION The present findings suggest that activated PKC in the spinal cord with chronic pain-like hyperalgesia may play a substantial role in the suppression of the morphine-induced rewarding effect in mice with chronic pain-like hyperalgesia.
Collapse
Affiliation(s)
- Kousei Oe
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Siebel JS, Beirith A, Calixto JB. Evidence for the involvement of metabotropic glutamatergic, neurokinin 1 receptor pathways and protein kinase C in the antinociceptive effect of dipyrone in mice. Brain Res 2004; 1003:61-7. [PMID: 15019564 DOI: 10.1016/j.brainres.2003.11.075] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2003] [Indexed: 11/24/2022]
Abstract
This study aimed to investigate further the mechanisms involved in the antinociception caused by dipyrone, given by intraperitoneal (i.p.) or intrathecal (i.t.) routes. The intraperitoneal administration of dipyrone to mice 30 min prior resulted in a significant and dose-related inhibition of the biting responses induced by i.t. injection of glutamate, trans-ACPD or substance P (SP). In addition, dipyrone given by i.t. route, 15 min before glutamate, trans-ACPD or SP, also produced a significant reduction in their nociceptive effects. In addition, dipyrone given by i.t. route, 15 min before glutamate, trans-ACPD or SP, also produced a significant reduction in their nociceptive effects. Dipyrone, given either systemically (i.p.) or by i.t. route also caused a dose-dependent inhibition of phorbol myristate acetate (PMA)-induced nociception. Given by systemic route, dipyrone inhibited PMA-induced paw oedema formation. Collectively, these results extend previous data from our group indicating that glutamatergic-mediated pain responses, specifically those mediated by metabotropic receptor subtype, together with inhibition of neurokinin NK(1)-mediated response, account for the antinociceptive action of dipyrone in mice. Furthermore, we have also produced experimental evidence indicating that the activation of the protein kinase C-dependent pathway plays a role in the dipyrone antinociceptive action.
Collapse
Affiliation(s)
- Joice S Siebel
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Rua Ferreira Lima, 82, Florianópolis, SC 88015-420, Brazil
| | | | | |
Collapse
|
26
|
Narita M, Suzuki M, Imai S, Narita M, Ozaki S, Kishimoto Y, Oe K, Yajima Y, Yamazaki M, Suzuki T. Molecular mechanism of changes in the morphine-induced pharmacological actions under chronic pain-like state: Suppression of dopaminergic transmission in the brain. Life Sci 2004; 74:2655-73. [PMID: 15041447 DOI: 10.1016/j.lfs.2004.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the present study, we demonstrated whether a neuropathic pain-like state induced by sciatic nerve ligation in rodents could cause a long-lasting change in intracellular signaling in both supraspinal and spinal cord related to the suppression of morphine's effect. Mice with sciatic nerve ligation exhibited a significant suppression of the morphine-induced antinociception. Under this condition, phosphorylated-conventional protein kinase C-like immunoreactivity (p-cPKC-IR) and phosphorylated-micro-opioid receptor (p-MOR)-IR were clearly increased on the ipsilateral side in the dorsal horn of the spinal cord of nerve-ligated mice. It is of interest to note that astroglial hypertrophy as well as its proliferation was also noted in this area of sciatic nerve-ligated mice. Like nerve injury, the increase in cPKC activities and astroglial hypertrophy/proliferation in this region was observed by repeated morphine treatment. These findings suggest that the phosphorylation of both cPKC and MOR in the dorsal horn of the spinal cord by sciatic nerve ligation may play a substantial role in the suppression of morphine-induced antinociception under a neuropathic pain-like state. Sciatic nerve injury also caused a significant inhibition of MOR-mediated G-protein activation onto GABAergic neurons and a dramatic reduction in ERK activities onto dopaminergic neurons in the ventral tegmental area (VTA) regulating the rewarding effect of opioids. Furthermore, we found that the inhibition of ERK cascade in the VTA by treatment with specific inhibitors suppressed the morphine-induced rewarding effect in normal mice. These findings provide evidence that the direct reduction in MOR function and the persistent decrease in ERK activity of dopaminergic neurons in the VTA may contribute to the suppression of the morphine-induced rewarding effect under a neuropathic pain-like state. Conclusively, our recent findings provide novel evidences for the mechanism underlying the less sensitivity to opioids under a neuropathic pain-like state.
Collapse
Affiliation(s)
- Minoru Narita
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Narita M, Kuzumaki N, Suzuki M, Narita M, Oe K, Yamazaki M, Yajima Y, Suzuki T. Increased phosphorylated-μ-opioid receptor immunoreactivity in the mouse spinal cord following sciatic nerve ligation. Neurosci Lett 2004; 354:148-52. [PMID: 14698460 DOI: 10.1016/j.neulet.2003.09.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study was designed to determine whether a state of neuropathic pain induced by sciatic nerve ligation could alter phosphorylated-mu-opioid receptor-like immunoreactivity in the superficial dorsal horn of the mouse spinal cord. Mice with sciatic nerve ligation exhibited a significant suppression of the morphine-induced antinociception. Under this condition, phosphorylated-mu-opioid receptor-like immunoreactivity was clearly increased on the ipsilateral side in the superficial laminae of the L5 lumbar spinal dorsal horn in nerve-ligated mice. These findings suggest that the phosphorylation of the mu-opioid receptor in the spinal cord under a neuropathic pain-like state may, at least in part, contribute to the reduction in the antinociceptive effect produced by morphine in the mouse.
Collapse
Affiliation(s)
- Minoru Narita
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Narita M, Oe K, Kato H, Shibasaki M, Narita M, Yajima Y, Yamazaki M, Suzuki T. Implication of spinal protein kinase C in the suppression of morphine-induced rewarding effect under a neuropathic pain-like state in mice. Neuroscience 2004; 125:545-51. [PMID: 15099668 DOI: 10.1016/j.neuroscience.2004.02.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2004] [Indexed: 10/26/2022]
Abstract
We previously demonstrated that spinal protein kinase C (PKC) is involved in the development of a neuropathic pain-like state induced by sciatic nerve ligation, and the morphine-induced rewarding effect is attenuated by sciatic nerve ligation in rodents. Here we first investigated whether sciatic nerve injury could change the activity of a conventional PKC (cPKC) and an atypical PKC isoform PKCzeta in the mouse spinal cord. The second experiment was to investigate whether direct inhibition of spinal PKC by intrathecal (i.t.) administration of a specific PKC inhibitor, 2-[8-[(dimethylamino)methyl]-6,7,8,9-tetrahydropyrido[1,2-a]indol-3-yl]-3-(1-methyl-1H-indole-3-yl)maleimide (RO-32-0432), could affect the rewarding effect induced by morphine following sciatic nerve ligation in mice. We found here that the activities of both cPKC and PKCzeta in the spinal cord were clearly increased following sciatic nerve ligation. Furthermore, i.t. administration of RO-32-0432 reversed a long-lasting pain-like syndrome as indicated by thermal hyperalgesia following sciatic nerve ligation in mice. These data provide direct evidence that activated cPKC and PKCzeta in the spinal cord may contribute to the development and maintenance of neuropathic pain. In the present study, we confirmed that the morphine-induced place preference was significantly suppressed by sciatic nerve ligation. It should be mentioned that i.t. pretreatment with RO-32-0432 significantly reversed the attenuation of morphine-induced rewarding effect following sciatic nerve ligation. These results suggest that activation of PKCs, including cPKC and PKCzeta, within the spinal cord is directly responsible for the attenuation of the morphine-induced rewarding effect under a neuropathic pain-like state following sciatic nerve ligation in mice.
Collapse
Affiliation(s)
- M Narita
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Yajima Y, Narita M, Shimamura M, Narita M, Kubota C, Suzuki T. Differential involvement of spinal protein kinase C and protein kinase A in neuropathic and inflammatory pain in mice. Brain Res 2003; 992:288-93. [PMID: 14625068 DOI: 10.1016/j.brainres.2003.08.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, we demonstrated the differential role of spinal protein kinases in neuropathic and inflammatory pain. Mice with sciatic nerve ligation exhibited a spinal protein kinase C (PKC)-dependent neuropathic pain-like state. In contrast, an intraplanter injection of inflammatory agent caused a protein kinase A (PKA)-related thermal hyperalgesia. These findings suggest that the substantial activation of spinal PKC and PKA may differentially contribute to the development of respective chronic pain-like state in mice.
Collapse
Affiliation(s)
- Yoshinori Yajima
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Yajima Y, Narita M, Narita M, Matsumoto N, Suzuki T. Involvement of a spinal brain-derived neurotrophic factor/full-length TrkB pathway in the development of nerve injury-induced thermal hyperalgesia in mice. Brain Res 2002; 958:338-46. [PMID: 12470870 DOI: 10.1016/s0006-8993(02)03666-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Partial sciatic nerve ligation in mice caused a marked and persistent decrease in the latency of paw withdrawal from a thermal stimulus only on the ipsilateral side. This thermal hyperalgesia was abolished by repeated intrathecal pretreatment with a specific antibody to brain-derived neurotrophic factor (BDNF), but not neurotrophin-4, just before and after the nerve ligation. These results provide direct evidence that BDNF within the spinal cord may contribute to the development of thermal hyperalgesia caused by nerve injury in mice. We previously reported that protein level of full-length TrkB, which contains the cytoplasmic protein tyrosine kinase domain, were clearly increased on the ipsilateral side of spinal cord membranes obtained from sciatic nerve-ligated mice. In the present study, we further demonstrated that the increased in the protein level of full-length TrkB is completely reversed by concomitant intrathecal injection of BDNF antibody. Furthermore, thermal hyperalgesia induced by nerve ligation was completely suppressed by repeated intrathecal injection of a specific antibody to full-length TrkB and an inhibitor of the protein tyrosine kinase activity for the neurotrophin receptor, K-252a. However, repeated intrathecal injection of a specific antibody to truncated TrkB, which lacks the cytoplasmic protein tyrosine kinase domain, failed to reverse thermal hyperalgesia observed in nerve-ligated mice. These findings suggest the possibility that the binding of BDNF to full-length TrkB and subsequent its activation may play a critical role in the development of neuropathic pain-like thermal hyperalgesia induced by nerve injury in mice.
Collapse
Affiliation(s)
- Yoshinori Yajima
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | | | |
Collapse
|
31
|
Bortalanza LB, Ferreira J, Hess SC, Delle Monache F, Yunes RA, Calixto JB. Anti-allodynic action of the tormentic acid, a triterpene isolated from plant, against neuropathic and inflammatory persistent pain in mice. Eur J Pharmacol 2002; 453:203-8. [PMID: 12398905 DOI: 10.1016/s0014-2999(02)02428-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Experiments were designed to address whether the pentacyclic triterpene tormentic acid isolated from the stem bark of the plant Vochysia divergens exerts oral anti-allodynic properties in two models of chronic pain in mice: neuropathic pain caused by partial ligation of the sciatic nerve and inflammatory pain produced by intraplantar injection of Complete Freund's Adjuvant. Oral administration of tormentic acid (30 mg/kg) twice a day for several consecutive days produced time-dependent and pronounced anti-allodynia effect in both ispsilateral and contralateral paws after plantar injection of Complete Freund's Adjuvant. The inhibition observed was 82+/-9% and 100+/-11%, respectively. Interestingly, tormentic acid did not inhibit paw oedema formation following Complete Freund's Adjuvant plantar injection. Tormentic acid (30 mg/kg, p.o.) and gabapentin (70 mg/kg, p.o.), given twice a day, inhibited markedly the neuropathic allodynia induced by partial ligation of the sciatic nerve, with inhibition of 91+/-19% and 71+/-16%, respectively. The anti-allodynic action of tormentic acid was not associated with impairment of the motor activity of the animals. Together, the present results indicate that tormentic acid or its derivatives might be of potential interest in the development of new clinically relevant drugs for the management of persistent neuropathic and inflammatory allodynia.
Collapse
Affiliation(s)
- Léslei B Bortalanza
- Departamento de Farmacologia and Departamento de Química, Universidade Federal de Santa Catarina, Rua Ferreira Lima, 82, 88015-420, SC, Florianópolis, Brazil
| | | | | | | | | | | |
Collapse
|
32
|
Ohsawa M, Narita M, Mizoguchi H, Cheng E, Tseng LF. Reduced hyperalgesia induced by nerve injury, but not by inflammation in mice lacking protein kinase C gamma isoform. Eur J Pharmacol 2001; 429:157-60. [PMID: 11698038 DOI: 10.1016/s0014-2999(01)01317-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein kinase C is one of protein kinases which might be involved in the nerve injury- or inflammation-induced hyperalgesia. The present study was designed to investigate the hyperalgesia with thermal paw-withdrawal test induced by sciatic nerve ligation or by intraplantar injection of a complete Freund's adjuvant solution in protein kinase C gamma knockout and its wild-type mice. Either sciatic nerve ligation or intraplantar injection of a complete Freund's adjuvant caused a marked decrease of the paw-withdrawal latency only on the ipsilateral, but not on the contralateral side of the paw in wild-type mice. This ipsilateral hyperalgesia induced by sciatic nerve ligation was significantly attenuated in protein kinase C gamma knockout mice. On the other hand, the ipsilateral hyperalgesia induced by complete Freund's adjuvant remained about the same in protein kinase C gamma knockout mice as in wild-type mice. The results indicate that protein kinase C gamma is involved in the development of the thermal hyperalgesia induced by nerve ligation, but not by complete Freund's adjuvant-induced inflammation.
Collapse
Affiliation(s)
- M Ohsawa
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|