1
|
Özatman E, Aksu B, Zemheri IE, Erman H, Durakbaşa ÇU. Investigation of reno-protective efficacy of thymoquinone in a unilateral hydronephrosis model. Biotech Histochem 2024:1-8. [PMID: 38780092 DOI: 10.1080/10520295.2024.2358034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
We aimed to evaluate the effects of the antioxidant thymoquinone on treated and untreated kidneys on histological and oxidative parameters as well as Kidney Injury Molecule (KIM-1) levels in an experimental unilateral ureteropelvic junction obstruction (UPJO) with resultant hydronephrosis (HN) model. In adherence to the Animal research: reporting of in vivo exepriments guidelines, 34 male Wistar rats were randomly divided into four groups which were named accordingly: "CO" (corn oil), "TQ" (thymoquinone and corn oil), "HNCO" (UPJO-HN and corn oil), "HNTQ" (UPJO-HN, thymoquinone and corn oil). Histologically, pelvic epithelial damage, glomerular shrinkage and sclerosis, tubular damage, interstitial edema-inflammation-fibrosis (IEIF), and vascular congestion were assessed. Biochemically, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione reductase (GR) and KIM-1 levels were assessed. Macroscopic HN developed in all obstructed kidneys. Ipsilateral obstructed kidneys deteriorated in all histological parameters. Thymoquinone attenuated glomerular shrinkage and sclerosis alterations but increased vascular congestion. Contralateral non-obstructed kidneys also showed histological deterioration. Thymoquinone had beneficial effects in terms of IEIF presence in contralateral kidneys but it increased vascular congestion. MDA and SOD results were inconclusive. UPJO caused decreased GR levels in the ipsilateral kidneys but not in the contralateral ones. This effect was not ameliorated by thymoquinone treatment. KIM-1 levels were increased in ipsilateral obstructed kidneys with a lower level in HNTQ group than in HNCO. KIM-1 level of the ipsilateral HNTQ group was higher than in both non-obstructed ipsilateral kidney groups. The effect of thymoquinone in ameliorating bilaterally observed histological alterations was limited and controversial. Oxidative damage detected by GR measurements was not prevented by thymoquinone. Thymoquinone partially decreased the damage as evidenced by reduced KIM-1 levels in thymoquinone-treated obstructed kidneys.
Collapse
Affiliation(s)
- Erdem Özatman
- Department of Pediatric Surgery, Istanbul Medeniyet University Faculty of Medicine, Hospital, Prof. Dr. Suleyman Yalcin Sehir Hospital, Istanbul, Turkey
| | - Burhan Aksu
- Department of Pediatric Surgery, Istanbul Medeniyet University Faculty of Medicine, Hospital, Prof. Dr. Suleyman Yalcin Sehir Hospital, Istanbul, Turkey
| | - Itir Ebru Zemheri
- Department of Pathology, Saglik Bilimleri University Hamidiye Faculty of Medicine, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Hayriye Erman
- Department of Biochemistry, Istanbul Medeniyet University Faculty of Medicine, Prof. Dr. Suleyman Yalcin Sehir Hospital, Istanbul, Turkey
| | - Çiğdem Ulukaya Durakbaşa
- Department of Pediatric Surgery, Istanbul Medeniyet University Faculty of Medicine, Hospital, Prof. Dr. Suleyman Yalcin Sehir Hospital, Istanbul, Turkey
| |
Collapse
|
2
|
Metformin alleviates cholestasis-associated nephropathy through regulating oxidative stress and mitochondrial function. LIVER RESEARCH 2021. [DOI: 10.1016/j.livres.2020.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Ommati MM, Attari H, Siavashpour A, Shafaghat M, Azarpira N, Ghaffari H, Moezi L, Heidari R. Mitigation of cholestasis-associated hepatic and renal injury by edaravone treatment: Evaluation of its effects on oxidative stress and mitochondrial function. LIVER RESEARCH 2021. [DOI: 10.1016/j.livres.2020.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Farshad O, Ommati MM, Yüzügülen J, Jamshidzadeh A, Mousavi K, Ahmadi Z, Azarpira N, Ghaffari H, Najibi A, Shafaghat M, Niknahad H, Heidari R. Carnosine Mitigates Biomarkers of Oxidative Stress, Improves Mitochondrial Function, and Alleviates Histopathological Alterations in the Renal Tissue of Cholestatic Rats. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.60] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Cholestatic liver disease primarily affects hepatic tissue. Cholestasis could also influence the function of other organs rather than the liver. Cholestasis-induced kidney injury is a severe clinical complication known as "cholemic nephropathy" (CN). Bile duct ligation (BDL) is a trustworthy experimental model for inducing CN. Although the precise mechanism of renal injury in cholestasis is not fully recognized, several studies revealed the role of oxidative stress in CN. There is no promising pharmacological intervention against CN. Carnosine (CAR) is a peptide extensively investigated for its pharmacological effects. Radical scavenging and antioxidative stress are major features of CAR. The current study aimed to evaluate the role of CAR supplementation on the CN. Methods: CAR was administered (250 and 500 mg/kg, i.p) to BDL rats for 14 consecutive days. Urine and serum markers of renal injury, biomarkers of oxidative stress in the kidney tissue, and renal histopathological alterations were monitored. Results: Significant elevation in oxidative stress biomarkers, including ROS formation, lipid peroxidation, oxidized glutathione (GSSG) levels, and protein carbonylation were found in the kidney of BDL rats. Moreover, renal tissue antioxidant capacity and reduced glutathione (GSH) levels were significantly decreased in the organ of cholestatic animals. Renal histopathological changes, including tubular atrophy, interstitial inflammation, tissue fibrosis, and cast formation, were detected in the kidney of BDL rats. It was found that CAR administration significantly protected the kidney of cholestatic animals. Conclusion: The antioxidative properties of this peptide might play a fundamental role in its protective properties during cholestasis.
Collapse
Affiliation(s)
- Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz Iran
| | - Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, Peoples’ Republic of China
| | - Jale Yüzügülen
- Eastern Mediterranean University, Faculty of Pharmacy, Famagusta, North Cyprus, Turkey
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Mousavi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Ahmadi
- Eastern Mediterranean University, Faculty of Pharmacy, Famagusta, North Cyprus, Turkey
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hasti Ghaffari
- Department of Veterinary Sciences, Islamic Azad University, Urmia Branch, Urmia, Iran
| | - Asma Najibi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Shafaghat
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz Iran
| |
Collapse
|
5
|
Martínez-Cecilia D, Reyes-Díaz M, Ruiz-Rabelo J, Gomez-Alvarez M, Villanueva CM, Álamo J, Muntané J, Padillo FJ. Oxidative stress influence on renal dysfunction in patients with obstructive jaundice: A case and control prospective study. Redox Biol 2015; 8:160-4. [PMID: 26774750 PMCID: PMC4731952 DOI: 10.1016/j.redox.2015.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 12/20/2022] Open
Abstract
Background: Obstructive Jaundice (OJ) is associated with a significant risk of developing acute renal failure (ARF). The involvement of oxidative stress in the development of cholestasis has been demonstrated in different experimental models. However, its role in the morbidity of human cholestasis is far to be elucidated. The aim of the study was the evaluation of oxidative stress markers in blood from patients with OJ and its relation to complications and benign/malignant evolution of cholestasis. Methods: A prospective cross-sectional study of 105 patients with OJ and 34 control subjects were included. Several markers of liver function and oxidative stress, such as lipoperoxides (LPO), as well as reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were assessed. Results: The patients with OJ showed a marked increase in plasma levels of LPO, SOD and GSH, while GSH-Px levels were decreased. The increase in lipid peroxidation products and the depletion of SOD activity in blood were also related to renal dysfunction. The highest level of LPO was associated with malignant etiology of the disease. The logistic regression analysis showed that the age of the patient and the levels of LPO in blood were predictors of renal dysfunction in OJ patients. Conclusions: This study demonstrates a correlation between oxidative stress and renal dysfunction patients with OJ. Obstructive jaundice was associated to a decreased glomerular filtration rate. Renal impairment was more frequent in jaundiced patients than in healthy subjects. LPO levels were higher in jaundiced patients than in healhy subjects, with highest levels related to malignant ethiology. Renal function was affected by the intensity of the biliary obstruction, and the balance between LPO and antioxidant defenses
Collapse
Affiliation(s)
- David Martínez-Cecilia
- General and Digestive Surgery Service, Complejo Hospitalario de Toledo, Av de Barber, 30, 45071 Toledo, Spain.
| | - María Reyes-Díaz
- Department of General Surgery, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - Juan Ruiz-Rabelo
- General and Digestive Surgery Service, Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Manuel Gomez-Alvarez
- General and Digestive Surgery Service, Hospital Universitario Reina Sofía, Cordoba, Spain
| | | | - José Álamo
- Department of General Surgery, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - Jordi Muntané
- Department of General Surgery, Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Francisco Javier Padillo
- Department of General Surgery, Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
6
|
Long Y, Dong X, Yuan Y, Huang J, Song J, Sun Y, Lu Z, Yang L, Yu W. Metabolomics changes in a rat model of obstructive jaundice: mapping to metabolism of amino acids, carbohydrates and lipids as well as oxidative stress. J Clin Biochem Nutr 2015; 57:50-9. [PMID: 26236101 PMCID: PMC4512893 DOI: 10.3164/jcbn.14-147] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/04/2015] [Indexed: 12/11/2022] Open
Abstract
The study examined the global metabolic and some biochemical changes in rats with cholestasis induced by bile duct ligation (BDL). Serum samples were collected in male Wistar rats with BDL (n = 8) and sham surgery (n = 8) at day 3 after surgery for metabolomics analysis using a combination of reversed phase chromatography and hydrophilic interaction chromatography (HILIC) and quadrupole-time-of-flight mass spectrometry (Q-TOF MS). The serum levels of malondialdehyde (MDA), total antioxidative capacity (T-AOC), glutathione (GSH) and glutathione disulfide (GSSG), the activities of superoxide dismutase (SOD) and glutathion peroxidase (GSH-Px) were measured to estimate the oxidative stress state. Key changes after BDL included increased levels of l-phenylalanine, l-glutamate, l-tyrosine, kynurenine, l-lactic acid, LysoPCc (14:0), glycine and succinic acid and decreased levels of l-valine, PCb (19:0/0:0), taurine, palmitic acid, l-isoleucine and citric acid metabolism products. And treatment with BDL significantly decreased the levels of GSH, T-AOC as well as SOD, GSH-Px activities, and upregulated MDA levels. The changes could be mapped to metabolism of amino acids and lipids, Krebs cycle and glycolysis, as well as increased oxidative stress and decreased antioxidant capability. Our study indicated that BDL induces major changes in the metabolism of all 3 major energy substances, as well as oxidative stress.
Collapse
Affiliation(s)
- Yue Long
- Department of Anaesthesiology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China ; Department of Anesthesiology, 163th Hospital of PLA, Hunan 410003, China
| | - Xin Dong
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yawei Yuan
- Department of Anaesthesiology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China
| | - Jinqiang Huang
- Department of Anaesthesiology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China
| | - Jiangang Song
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yumin Sun
- Department of Anaesthesiology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China
| | - Zhijie Lu
- Department of Anaesthesiology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China
| | - Liqun Yang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Weifeng Yu
- Department of Anaesthesiology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China
| |
Collapse
|
7
|
Hatipoglu S, Yildiz H, Bulbuloglu E, Coskuner I, Kurutas EB, Hatipoglu F, Ciralik H, Berhuni MS. Protective effects of intravenous anesthetics on kidney tissue in obstructive jaundice. World J Gastroenterol 2014; 20:3320-3326. [PMID: 24695809 PMCID: PMC3964402 DOI: 10.3748/wjg.v20.i12.3320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/02/2014] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the protective effects on kidney tissue of frequently used intravenous anesthetics (ketamine, propofol, thiopental, and fentanyl) in rats with obstructive jaundice.
METHODS: There is an increased incidence of postoperative acute renal failure in patients with obstructive jaundice. Thirty-two Wistar-albino rats were randomly divided into four equal groups. Laparatomy was performed on each animal in the four groups and common bile ducts were ligated and severed on day 0. After 7 d, laparotomy was again performed using ketamine, propofol, thiopental, or fentanyl anesthesia whose antioxidative properties are well known in oxidative stress in a rat liver model of obstructive jaundice. After 2 h, the rats were sacrificed. Renal tissue specimens were analyzed for catalase, superoxide dismutase and malondialdehyde enzymes activities. All values are expressed as the mean ± SD. P values less than 0.05 were considered statistically significant.
RESULTS: All animals survived without complications until the end of the study. Enlargement in the bile duct and obstructive jaundice were observed in all rats. Catalase was found to be significantly lower in the fentanyl group than in the ketamine (P = 0.039), propofol (P = 0.012), and thiopental (P = 0.001) groups. Superoxide dismutase activities were similar in all groups (P > 0.05). Malondialdehyde was found to be significantly lower in the ketamine group than in the propofol (P = 0.028), thiopental (P = 0.002) and fentanyl (P = 0.005) groups. Malondialdehyde was also lower in the fentanyl group than in the thiopental group (P = 0.001). The results showed that obstructive jaundice sensitizes renal tissue to damage under the different anesthetics.
CONCLUSION: Among the agents tested, ketamine and propofol generated the least amount of oxidative stres on renal tissues in this rat model of obstructive jaundice created by common bile duct ligation. The importance of free radical injury in renal tissue in obstructive jaundice under different intravenous anesthetics during hepatobiliary and liver transplant surgery should be considered for prevention of postoperative acute renal failure.
Collapse
|
8
|
Aydın S, Tokaç M, Taner G, Arıkök AT, Dündar HZ, Ozkardeş AB, Taşlıpınar MY, Kılıç M, Başaran AA, Başaran N. Antioxidant and antigenotoxic effects of lycopene in obstructive jaundice. J Surg Res 2012; 182:285-95. [PMID: 23154037 DOI: 10.1016/j.jss.2012.10.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/12/2012] [Accepted: 10/17/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND Obstructive jaundice, a frequently observed condition caused by obstruction of the common bile duct or its flow and seen in many clinical situations, may end up with serious complications like sepsis, immune depression, coagulopathy, wound breakdown, gastrointestinal hemorrhage, and hepatic and renal failures. Intrahepatic accumulation of reactive oxygen species is thought to be an important cause for the possible mechanisms of the pathogenesis of cholestatic tissue injury from jaundice. Carotenoids have been well described that are able to scavenge reactive oxygen species. Lycopene, a carotenoid present in tomatoes, tomato products, and several fruits and vegetables, have been suggested to have antioxidant activity, so may play a role in certain diseases related to the oxidative stress. The aim of the present study was to determine the effects of lycopene on oxidative stress and DNA damage induced by experimental biliary obstruction in Wistar albino rats. MATERIALS AND METHODS Daily doses of 100 mg/kg lycopene were given to the bile duct-ligation (BDL) rats orally for 14 days. DNA damage was evaluated by an alkaline comet assay. The levels of aspartate transferase, amino alanine transferase, gamma glutamyl transferase, alkaline phosphatase, and direct bilirubin were analyzed in plasma for the determination of liver functions. The levels of malondialdehyde, reduced glutathione, nitric oxide, catalase, superoxide dismutase, and glutathione S transferase were determined in the liver and kidney tissues. Pro-inflammatory cytokine tumor necrosis factor-alpha level was determined in the liver tissues. Histologic examinations of the liver and kidney tissues were also performed. RESULTS According to this study, lycopene significantly recovered the parameters of liver functions in plasma, reduced malondialdehyde and nitric oxide levels, enhanced reduced glutathione levels, as well as enhancing all antioxidant enzyme activity in all tissues obtained from the BDL group. Moreover, the parameters of DNA damage in the liver and kidney tissue cells, whole blood cells, and lymphocytes were significantly lower in the lycopene-treated BDL group, compared with the BDL group. CONCLUSIONS Lycopene significantly reduced the DNA damage, and markedly recovered the liver and kidney tissue injuries seen in rats with obstructive jaundice.
Collapse
Affiliation(s)
- Sevtap Aydın
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, University of Hacettepe, Ankara, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Aktas C, Kanter M, Erboga M, Mete R, Oran M. Melatonin attenuates oxidative stress, liver damage and hepatocyte apoptosis after bile-duct ligation in rats. Toxicol Ind Health 2012; 30:835-44. [PMID: 23095487 DOI: 10.1177/0748233712464811] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The goal of this study was to evaluate the possible protective effects of melatonin against cholestatic oxidative stress, liver damage and hepatocyte apoptosis in the common rats with bile duct ligation (BDL). A total of 24 male Wistar albino rats were divided into three groups: control, BDL and BDL + received melatonin; each group contains eight animals. Melatonin-treated BDL rats received daily melatonin 100 mg/kg/day via intraperitoneal injection. The application of BDL clearly increased the malondialdehyde (MDA) levels and decreased the superoxide dismutase (SOD) and glutathione (GSH) activities. Melatonin treatment significantly decreased the elevated tissue MDA levels and increased the reduced SOD and GSH enzyme levels in the tissues. The changes demonstrate that the bile duct proliferation and fibrosis in expanded portal tracts include the extension of proliferated bile ducts into lobules, mononuclear cells and neutrophil infiltration into the widened portal areas as observed in the BDL group. The data indicate that melatonin attenuates BDL-induced cholestatic liver injury, bile duct proliferation and fibrosis. The α-smooth muscle actin (α-SMA) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in the BDL were observed to be reduced with the melatonin treatment. These results suggest that administration of melatonin is a potentially beneficial agent to reduce liver damage in BDL by decreasing oxidative stress.
Collapse
Affiliation(s)
- Cevat Aktas
- Department of Histology and Embryology, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Mehmet Kanter
- Department of Histology and Embryology, Faculty of Medicine, Medeniyet University, Istanbul, Turkey
| | - Mustafa Erboga
- Department of Histology and Embryology, Faculty of Medicine, University of Trakya, Edirne, Turkey
| | - Rafet Mete
- Department of Gastroenterology, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Mustafa Oran
- Department of Internal Diseases, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| |
Collapse
|
10
|
Tain YL, Hsieh CS, Chen CC, Sheen JM, Lee CT, Huang LT. Melatonin prevents increased asymmetric dimethylarginine in young rats with bile duct ligation. J Pineal Res 2010; 48:212-221. [PMID: 20210851 DOI: 10.1111/j.1600-079x.2010.00745.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Identifying and treating kidney injury in cirrhosis is important. Bile duct ligation (BDL) is a commonly used cholestatic liver disease model. We hypothesized that asymmetric dimethylarginine (ADMA) is involved in BDL-induced oxidative stress and kidney injury, which can be prevented by melatonin. We also intended to elucidate whether increased ADMA is due to increased protein arginine methyltransferase-1 (PRMT1, ADMA-synthesizing enzyme) and/or decreased dimethylarginine dimethylaminohydrolase (DDAH, ADMA-metabolizing enzyme). Three groups of young rats were studied, sham (N = 7), untreated BDL rats (N = 9), and melatonin-treated BDL rats (N = 6, BDL + M). Melatonin-treated BDL rats received daily melatonin 1 mg/kg/day via intraperitoneal injection. One-third of the young BDL rats died compared with none in the BDL + M group. All surviving rats were killed 14 days after surgery. BDL rats had higher plasma aspartate aminotransferase, alanine aminotransferase, direct and total bilirubin, and ammonia levels than shams. They also had kidney injury characterized by increased tubulointerstitial injury scores and plasma creatinine and symmetric dimethylarginine levels, which melatonin prevented. Plasma ADMA levels were elevated in BDL rats, combined with increased hepatic PRMT1 and decreased renal DDAH activity. In addition, melatonin increased hepatic DDAH2 expression, increased DDAH activity and concomitantly decreased ADMA contents in both the liver and kidney. In conclusion, melatonin therapy decreased mortality and prevented kidney injury induced by BDL via reduction of ADMA (by increasing DDAH activity) and oxidative stress.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Chih-Sung Hsieh
- Department of Pediatric Surgery, Pingtung Christian Hospital, Pingtung, Taiwan
| | - Chih-Cheng Chen
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Chien-Te Lee
- Department of Nephrology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Ara C, Karabulut AB, Kirimlioglu H, Coban S, Ugras M, Kirimliglu V, Yilmaz S. Protective Effect of Resveratrol Against Renal Oxidative Stress in Cholestasis. Ren Fail 2009. [DOI: 10.1081/jdi-65221] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
12
|
Huang LT, Tiao MM, Tain YL, Chen CC, Hsieh CS. Melatonin ameliorates bile duct ligation-induced systemic oxidative stress and spatial memory deficits in developing rats. Pediatr Res 2009; 65:176-80. [PMID: 19047958 DOI: 10.1203/pdr.0b013e31818d5bc7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bile duct ligation (BDL) induces primary biliary cirrhosis characterized by cholestasis, impaired liver function, and cognition. Young male Sprague-Dawley rats were used: rats underwent laparotomy without BDL [sham-control (SC) group]; rats had restricted diets supply [diet-control (DC) group]; rats underwent BDL for 2 wk (BDL group); BDL rats with melatonin (500 microg/kg/d) intraperitoneally for 2 wk [melatonin (500 microg/kg/d) (M500) group]; and BDL rats with melatonin (1000 microg/kg/d/intraperitoneally) for 2 wk [melatonin (1000 microg/kg/d) (M1000) group]. All the surviving rats were assessed for spatial memory and blood was tested for biochemical study. Liver, brain cortex, and hippocampus were collected for determination of malondialdehyde (MDA) and glutathione (GSH)/oxidized glutathione (GSSG) ratios. BDL group rats had significantly higher plasma direct/total bilirubin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), MDA values and higher liver MDA values and lower GSH/GSSG ratios when compared with SC group. In addition, BDL group rats had impaired spatial performance. After melatonin treatment, cholestatic rats' plasma MDA levels, liver MDA levels, and liver GSH/GSSG ratios approached to the values of SC group. Only high dose of melatonin improved spatial performance. Results of this study indicate cholestasis in the developing rats increase oxidative stress and cause spatial memory deficits, which are prevented by melatonin treatment.
Collapse
Affiliation(s)
- Li-Tung Huang
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | | | | | | | | |
Collapse
|
13
|
Emre MH, Polat A, Eşrefoğlu M, Karabulut AB, Gül M. Effects of melatonin and acetylsalicylic acid against hepatic oxidative stress after bile duct ligation in rat. ACTA ACUST UNITED AC 2008; 95:349-63. [PMID: 19009911 DOI: 10.1556/aphysiol.2008.0001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
UNLABELLED The aim of this study was to assess the effect of melatonin and acetylsalicylic acid (ASA) on hepatic damage induced by bile duct ligation (BDL). MATERIAL AND METHODS Male Sprague-Dawley rats were subjected to either sham operation or common BDL before treatment with ASA, melatonin or vehicle. Hepatic superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) enzyme activities and reduced glutathione (GSH), malondialdehyde (MDA) and nitric oxide (NO) levels were evaluated. RESULTS Our results have indicated that BDL caused a significant increase in lipid peroxidation whereas a statistically insignificant decrease in GSH level and some of the antioxidant enzyme activities. Both MEL and ASA administrations, either separately or together, decreased MDA whereas co-administration of MEL with ASA increased GSH levels in BDL rats. CONCLUSIONS CAT activity and MEL level decreased in the liver tissues of rats with BDL after administration of either melatonin alone or with ASA. However, melatonin and ASA administration increases liver tissue GSH levels in BDL ligated rats
Collapse
Affiliation(s)
- M H Emre
- Department of Physiology, Inonu University, Medical School, 44280 Malatya, Turkey.
| | | | | | | | | |
Collapse
|
14
|
Muñoz-Castañeda JR, Túnez I, Herencia C, Ranchal I, González R, Ramírez LM, Arjona A, Barcos M, Espejo I, Cruz A, Montilla P, Padillo FJ, Muntané J. Melatonin exerts a more potent effect than S-adenosyl-l-methionine against iron metabolism disturbances, oxidative stress and tissue injury induced by obstructive jaundice in rats. Chem Biol Interact 2008; 174:79-87. [DOI: 10.1016/j.cbi.2008.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 05/02/2008] [Accepted: 05/06/2008] [Indexed: 11/15/2022]
|
15
|
Cruz A, Túnez I, Martínez R, Muñoz-Castañeda JR, Ramírez LM, Recio M, Ochoa L, Arjona A, Montilla P, Muntané J, Padillo FJ. Melatonin prevents brain oxidative stress induced by obstructive jaundice in rats. J Neurosci Res 2008; 85:3652-6. [PMID: 17671989 DOI: 10.1002/jnr.21436] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aim of the study was to analyze the impact of melatonin on brain oxidative stress in experimental biliary obstruction. Cholestasis was done by a double ligature and section of the extrahepatic biliary duct. Melatonin was injected intraperitoneally (500 microg/kg/day). Malondialdehyde (MDA), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) contents were determined in the brain tissue. Biliary obstruction raised MDA and reduced GSH contents in the cortex, cerebellum, and hypothalamus areas. Moreover, the scavenger enzyme activity significantly dropped in all areas of the brain. Melatonin drastically reduced MDA concentration and enhanced GSH concentration, as well as all antioxidant enzyme activity in all brain areas obtained from the bile duct-ligated animals. In conclusion, the treatment with melatonin decreased lipid peroxidation and recovered the antioxidant status in the brain from cholestatic animals.
Collapse
Affiliation(s)
- Adolfo Cruz
- Department of General Surgery, Reina Sofía University Hospital, Avenida Menendez Pidal s/n, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Alcaraz A, Iyú D, Atucha NM, García-Estañ J, Ortiz MC. Vitamin E supplementation reverses renal altered vascular reactivity in chronic bile duct-ligated rats. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1486-93. [PMID: 17158269 DOI: 10.1152/ajpregu.00309.2006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An altered vascular reactivity is an important manifestation of the hemodynamic and renal dysfunction during liver cirrhosis. Oxidative stress-derived substances and nitric oxide (NO) have been shown to be involved in those alterations. In fact, both can affect vascular contractile function, directly or by influencing intracellular signaling pathways. Nevertheless, it is unknown whether oxidative stress contributes to the impaired systemic and renal vascular reactivity observed in cirrhosis. To test this, we evaluated the effect of vitamin E supplementation (5,000 IU/kg diet) on the vasoconstrictor and vasodilator responses of isolated perfused kidneys and aortic rings of rats with cirrhosis induced by bile duct ligation (BDL), and on the expression of renal and aortic phospho-extracellular regulated kinase 1/2 (p-ERK1/2). BDL induced a blunted renal vascular response to phenylephrine and ACh, while BDL aortic rings responded less to phenylephrine but normally to ACh. Cirrhotic rats had higher levels of oxidative stress-derived substances [measured as thiobarbituric acid-reactive substances (TBARS)] and NO (measured as urinary nitrite excretion) than controls. Vitamin E supplementation normalized the renal hyporesponse to phenylephrine and ACh in BDL, although failed to modify it in aortic rings. Furthermore, vitamin E decreased levels of TBARS, increased levels of NO, and normalized the increased kidney expression of p-ERK1/2 of the BDL rats. In conclusion, BDL rats showed a blunted vascular reactivity to phenylephrine and ACh, more pronounced in the kidney and reversed by vitamin E pretreatment, suggesting a role for oxidative stress in those abnormalities.
Collapse
Affiliation(s)
- A Alcaraz
- Departamento de Fisiología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | | | | | | | | |
Collapse
|
17
|
Polat A, Emre MH. Effects of melatonin or acetylsalicylic acid on gastric oxidative stress after bile duct ligation in rats. J Gastroenterol 2006; 41:433-9. [PMID: 16799884 DOI: 10.1007/s00535-006-1783-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 01/17/2006] [Indexed: 02/04/2023]
Abstract
BACKGROUND Antioxidant enzyme activities decrease after bile duct ligation. The aim of this study was to assess the effect of melatonin and acetylsalicylic acid on antioxidant enzyme activities in gastric oxidative stress induced by bile duct ligation. METHODS Sixty-four animals were divided into eight groups of eight rats each. Male Sprague-Dawley rats were subjected to either a sham operation or common bile duct ligation (BDL) before treatment with melatonin (MEL) or acetylsalicylic acid (ASA). Gastric superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities, and malondialdehyde (MDA) and nitric oxide (NO) levels were determined by spectrophotometers and evaluated. RESULTS Our results indicated that BDL caused a significant increase in lipid peroxidation, whereas coadministration of MEL with ASA significantly decreased MDA and NO levels in BDL rats. Moreover, coadministration of MEL and ASA increased antioxidant enzyme activities after the BDL, and these increases were statistically significant for CAT and GPx. On the other hand, the increase in SOD activity was not significant. CONCLUSIONS Melatonin administration, either alone or together with acetylsalicylic acid, decreases lipid peroxidation and increases antioxidant enzyme activities in gastric tissues of rats after bile duct ligation. ASA administration, however, either alone or with a vehicle, increases lipid peroxidation and decreases antioxidant enzyme activities.
Collapse
Affiliation(s)
- Alaaddin Polat
- Department of Physiology, Medical School, Inonu University, Malatya, Turkey
| | | |
Collapse
|
18
|
Muñoz-Casares FC, Padillo FJ, Briceño J, Collado JA, Muñoz-Castañeda JR, Ortega R, Cruz A, Túnez I, Montilla P, Pera C, Muntané J. Melatonin reduces apoptosis and necrosis induced by ischemia/reperfusion injury of the pancreas. J Pineal Res 2006; 40:195-203. [PMID: 16499554 DOI: 10.1111/j.1600-079x.2005.00291.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The pancreas is highly susceptible to the oxidative stress induced by ischemia/reperfusion (IR) injury leading to the generation of acute pancreatitis. Melatonin has been shown to be useful in the prevention of the damage by ischemia-reperfusion in liver, brain, myocardium, gut and kidney. The aim of the study was to evaluate the cytoprotective properties of melatonin against injury induced by IR in pancreas. The obstruction of gastro-duodenal and inferior splenic arteries induced pancreatic IR in male Wistar rats. Melatonin was intraperitoneally administered before or/and after IR injury. The animals were killed at 24 and 48 hr after reperfusion and there were evaluated parameters of oxidative stress (lipoperoxides, superoxide dismutase, catalase, glutathione peroxidase and reduced glutathione), glandular endocrine and exocrine function (lipase, amylase, insulin) and cell injury (apoptosis and necrosis). The IR induced a marked enhancement of oxidative stress and impaired pancreatic function. The histological analysis showed that IR induced acute pancreatitis with the accumulation of inflammatory infiltrate, disruption of tissue structure, cell necrosis and hemorrhage. Melatonin administration before or after pancreatic IR prevented all tissue markers of oxidative stress, biochemical and histological signs of apoptosis and necrosis, and restored glandular function. No histological signs of pancreatitis were observed 48 hr after reperfusion in 80% of the animals treated with melatonin, with only a mild edematous pancreatitis being observed in the remaining rats. Preventive or therapeutic administration of melatonin protected against the induction of oxidative stress and tissue injury, and restored cell function in experimental pancreatic IR in rats.
Collapse
|
19
|
Esrefoglu M, Gül M, Emre MH, Polat A, Selimoglu MA. Protective effect of low dose of melatonin against cholestatic oxidative stress after common bile duct ligation in rats. World J Gastroenterol 2005; 11:1951-6. [PMID: 15800985 PMCID: PMC4305716 DOI: 10.3748/wjg.v11.i13.1951] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of oxidative injury and the effect of exogenous melatonin administration on liver damage induced by bile duct ligation (BDL), and second, to evaluate the role of nitric oxide (NO), a free oxygen radical, in oxidative injury.
METHODS: Thirty-two Sprague-Dawley rats were assigned to four groups: sham operation (SO), BDL, BDL+melatonin, and BDL+vehicle. Cholestasis was achieved by double ligature of the common bile duct. Melatonin was injected intraperitoneally 500 µg/(kg·d) for 8 d. Hepatic oxidative stress markers were evaluated by changes in the amount of lipid peroxides, measured as malondialdehyde (MDA), and reduced GSH. Total nitrite (NOX) concentrations were determined in hepatic homogenates. Histopathological examination was performed using a histological scoring system.
RESULTS: The histopathological changes including portal inflammation, necrosis, apoptosis, focal inflammation and fibrosis were severe in the BDL and BDL+vehicle groups. There were numerous large areas of coagulation necrosis. Histological Activity Index scores of these groups were significantly higher than that of the SO group. Treatment with melatonin reduced these alterations significantly. The degree of necro-inflammation and fibrosis showed significant difference between the BDL and BDL+melatonin groups. BDL was accompanied by a significant increase in MDA and NOX, and a significant decrease in GSH levels. Mean±SE values of MDA, GSH and NOX levels of SO group were 147.47±6.69, 0.88±0.33 µmol/g and 180.70±6.58 nm/g, respectively. The values of BDL group were 200.14±21.30, 0.65±0.02 µmol/g, and 400.46±48.89 nm/g, respectively, whereas the values of BDL+melatonin group were 115.93±6.8, 0.74±0.02 µmol/g, and 290.38±32.32 nm/g, respectively. Melatonin treatment was associated with a significant recovery of MDA, GSH and NOX levels.
CONCLUSION: We have concluded that oxidative stress is associated with the pathogenesis of cholestatic liver damage and NO contributes to oxidative damage. Melatonin, even at low dose, is an efficient agent in reducing negative parameters of cholestasis.
Collapse
Affiliation(s)
- Mukaddes Esrefoglu
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey.
| | | | | | | | | |
Collapse
|
20
|
Tylicki L, Rutkowski B, Hörl WH. Antioxidants: a possible role in kidney protection. Kidney Blood Press Res 2004; 26:303-14. [PMID: 14610334 DOI: 10.1159/000073936] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2003] [Indexed: 11/19/2022] Open
Abstract
Oxidative stress contributes to the pathophysiology of kidney injury. Beneficial renal effects of some medications, such as angiotensin-converting enzyme inhibitors, angiotensin II type 1 receptor antagonists, calcium channel blockers, beta-blockers and lipid lowering agents depend at least partially on the ability to alleviate oxidative stress. The administration of various natural or synthetic antioxidants has been shown to be of benefit in prevention and attenuation of renal scaring in numerous animal models of kidney diseases. These include vitamins, N-acetylcysteine, alpha-lipoic acid, melatonin, dietary flavonoids and phytoestrogens, and many others. Human studies are limited in this regard. Under certain conditions, surprisingly, the antioxidant supplements may exhibit pro-oxidant properties and even worsen renal damage. To date, the evidence is insufficient to recommend antioxidant supplements in patients with kidney disease. Prospective, controlled clinical trials on safety and effectiveness of different therapeutic antioxidant strategies are indispensable.
Collapse
Affiliation(s)
- Leszek Tylicki
- Department of Nephrology, Transplantology and Internal Medicine, Medical University, Gdansk, Poland.
| | | | | |
Collapse
|
21
|
Cruz A, Padillo FJ, Granados J, Túnez I, Muñoz MC, Briceño J, Pera-Madrazo C, Montilla P. Effect of melatonin on cholestatic oxidative stress under constant light exposure. Cell Biochem Funct 2004; 21:377-80. [PMID: 14624477 DOI: 10.1002/cbf.1046] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study was designed to evaluate the effect of melatonin on cholestatic oxidative stress under constant light exposure. Cholestasis was induced by double ligature and section of the extra-hepatic bile duct. Melatonin was injected i.p.(1000 microg kg(-1) day(-1)). Malondialdehyde, reduced glutathione, catalase, superoxide dismutase, glutathione reductase, peroxidase and transferase were determined in liver. After bile-duct obstruction and under constant light exposure, an increase in malondialdehyde (p < 0.05) and a slight decrease in reduced glutathione were seen. Enzyme activity, with the exception of glutathione reductase, had significantly diminished. After melatonin administration, malondialdehyde fell (p < 0.001), whereas there was an increase in reduced glutathione (p < 0.0001) compared with untreated controls. Constant light exposure was associated with an increase in hepatic oxidative stress. Treatment with melatonin decreased lipid peroxide synthesis, and permitted a recovery of both reduced glutathione and scavenger enzyme activity.
Collapse
Affiliation(s)
- Adolfo Cruz
- Department of General Surgery, Reina Sofía University Hospital, Córdoba, Spain
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Túnez I, Muñoz MDC, Feijóo M, Muñoz-Castañeda JR, Bujalance I, Valdelvira ME, Montilla López P. Protective melatonin effect on oxidative stress induced by okadaic acid into rat brain. J Pineal Res 2003; 34:265-8. [PMID: 12662348 DOI: 10.1034/j.1600-079x.2003.00039.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We studied the effect of melatonin on the oxidative changes produced by the intracerebroventricular (i.c.v.) injection of okadaic acid (200 ng/kg BW) in the Wistar rat. The effects of okadaic acid were evaluated as changes in the quantity of lipid peroxides, reduced glutathione content (GSH) and activity of antioxidative enzymes. Okadaic acid caused lipid peroxidation (5.35 +/- 0.47 micro mol/g tissue in the i.c.v. vehicle group versus 10.14 +/- 0.88 micro mol/g tissue in the okadaic acid group, P < 0.001), GSH consumption (0.115 +/- 0.0065 micro mol/g tissue in the i.c.v. vehicle group versus 0.024 +/- 0.0021 micro mol/g tissue, P < 0.001), and a reduction in the activity of GSH-peroxidase, GSH-reductase and GSH-transferase between 60-80%. All these changes were prevented by pre-injection of 4.5 mg melatonin per kg BW 2 hr before okadaic acid. These findings indicate: (i) okadaic acid induces a status of oxidative stress in the brain, characterized by a high level of lipid peroxidation, decreases in GSH content and diminished activities of antioxidative enzymes, and (ii) melatonin prevents the deleterious effects induced by okadaic acid. In conclusion, the results show the ability of melatonin to modify the neural response to okadaic acid with the protective mechanism likely involving the antioxidative processes of melatonin.
Collapse
Affiliation(s)
- Isaac Túnez
- Department of Biochemistry and Molecular Biology, School of Medicine, Cordoba University, Córdoba, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Jaworek J, Leja-Szpak A, Bonior J, Nawrot K, Tomaszewska R, Stachura J, Sendur R, Pawlik W, Brzozowski T, Konturek SJ. Protective effect of melatonin and its precursor L-tryptophan on acute pancreatitis induced by caerulein overstimulation or ischemia/reperfusion. J Pineal Res 2003; 34:40-52. [PMID: 12485371 DOI: 10.1034/j.1600-079x.2003.02937.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Melatonin, a pineal secretory product, synthesized from l-tryptophan, has received increased attention because of its antioxidative and immunomodulatory properties. It has been detected in the gut and shown to protect the gastric mucosa, and liver from acute damage, but the role of melatonin in the protection of the pancreas against acute inflammation is not clear. The aim of this study was to investigate the effects of melatonin and its precursor, l-tryptophan, on caerulein-induced pancreatitis (CIP) and on ischemia/reperfusion (I/R)-provoked pancreatitis in rats. CIP was induced by subcutaneous infusion of caerulein to the rats (25 microg/kg). I/R was induced by clamping of the inferior splenic artery for 30 min followed by 2 hr of reperfusion. Melatonin (10, 25 or 50 mg/hr) or l-tryptophan (50, 100 or 250 mg/kg) was given as a bolus intraperitoneal (i.p.) injection 30 min prior to the onset of pancreatitis. CIP and I/R were confirmed by histologic examination and manifested by typical pancreatic edema, by an increase of plasma levels of amylase (by 500% in CIP and by 40% in I/R) and the pro-inflammatory tumor necrosis factor alpha (TNFalpha) (by 500%). Lipid peroxidation products such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), were increased several fold in the pancreas CIP and I/R, whereas pancreatic blood flow (PBF) was significantly reduced in these animals. Pretreatment of rats subjected to CIP or to I/R with melatonin (25 or 50 mg/kg i.p.) or l-tryptophan (100 or 250 mg/kg i.p.) significantly reduced pancreatic edema, plasma levels of amylase and TNFalpha and diminished pancreatic MDA + 4-HNE contents, while enhancing PBF, pancreatic integrity and plasma levels of the anti-inflammatory interleukin 10 (IL-10). This was accompanied by a marked and dose-dependent rise of plasma melatonin immunoreactivity. Gene expression of N-acetyl transferase, an enzyme involved in melatonin biosynthesis, was detected in the pancreas of normal rats and was significantly enhanced in the rats with CIP. We conclude that exogenous melatonin, and that produced from l-tryptophan, attenuates pancreatic damage induced by CIP or by I/R and this effect may be attributable to the reduction in lipid peroxidation and TNFalpha release combined with an increase of plasma anti-inflammatory IL-10 in rats with acute pancreatitis.
Collapse
|
24
|
Eşrefoğlu M, Kuruş M, Sahna E. The beneficial effect of melatonin on chronic cyclosporin A nephrotoxicity in rats. J Int Med Res 2003; 31:42-4. [PMID: 12635533 DOI: 10.1177/147323000303100107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cyclosporin A (CsA)-induced nephrotoxicity may be the consequence of oxidative stress. Anti-oxidant agents could be useful in reducing CsA toxicity. In this light microscopy study, tubular dilatation, atrophy, vacuolization and tubulointerstitial fibrosis were observed in rats given CsA, whereas in rats given CsA plus melatonin, no histological changes occurred. It is concluded that melatonin could be useful for reducing the nephrotoxic effects of CsA.
Collapse
Affiliation(s)
- M Eşrefoğlu
- Department of Histology and Embryology, Inönü University Medical Faculty, Malatya, Turkey.
| | | | | |
Collapse
|
25
|
Montilla-López P, Muñoz-Agueda MC, Feijóo López M, Muñoz-Castañeda JR, Bujalance-Arenas I, Túnez-Fiñana I. Comparison of melatonin versus vitamin C on oxidative stress and antioxidant enzyme activity in Alzheimer's disease induced by okadaic acid in neuroblastoma cells. Eur J Pharmacol 2002; 451:237-43. [PMID: 12242084 DOI: 10.1016/s0014-2999(02)02151-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We demonstrated that exposure of cells to 50 nM okadaic acid for 2 h induced a reduction in cellular glutathione transferase, glutathione reductase and catalase activity. Likewise, this acid prompted an increase in lipid peroxidation. Treatment of cells with 10(-5) M melatonin or 0.5 microg/ml vitamin C prevented the effects of okadaic acid. These results indicate that okadaic acid induces an oxidative stress imbalance, while melatonin and vitamin C prevent the oxidative stress induced by okadaic acid. Likewise, these data indicate the great importance of oxidative stress in both this experimental model and in the development and course of neurodegenerative disease, especially Alzheimer's disease. They show that melatonin is much more efficient than vitamin C in reducing the extent of oxidative stress. This phenomenon was demonstrated by the smaller dose of melatonin needed to obtain effects similar to those obtained with vitamin C on lipid peroxidation and by the protective effect of melatonin on antioxidant enzyme activity.
Collapse
Affiliation(s)
- Pedro Montilla-López
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Córdoba, Avda Menéndez Pidal s/n, 14004 Córdoba, Spain.
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Further insights into the molecular regulation of bile acid transport and metabolism have provided the basis for a better understanding of the pathogenesis of cholestatic liver diseases. Novel insights into the mechanisms of action of ursodeoxycholic acid should advance our understanding of the treatment of cholestatic liver diseases. Mutations of transporter genes can cause hereditary cholestatic syndromes in both infants and adults as well as cholesterol gallstone disease. Important studies have been published on the pathogenesis, clinical features, and treatment of primary biliary cirrhosis, drug-induced cholestasis, and cholestasis of pregnancy.
Collapse
Affiliation(s)
- Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Karl-Franzens University, School of Medicine, Graz, Austria
| | | |
Collapse
|