1
|
Çarçak N, Onat F, Sitnikova E. Astrocytes as a target for therapeutic strategies in epilepsy: current insights. Front Mol Neurosci 2023; 16:1183775. [PMID: 37583518 PMCID: PMC10423940 DOI: 10.3389/fnmol.2023.1183775] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
Astrocytes are specialized non-neuronal glial cells of the central nervous system, contributing to neuronal excitability and synaptic transmission (gliotransmission). Astrocytes play a key roles in epileptogenesis and seizure generation. Epilepsy, as a chronic disorder characterized by neuronal hyperexcitation and hypersynchronization, is accompanied by substantial disturbances of glial cells and impairment of astrocytic functions and neuronal signaling. Anti-seizure drugs that provide symptomatic control of seizures primarily target neural activity. In epileptic patients with inadequate control of seizures with available anti-seizure drugs, novel therapeutic candidates are needed. These candidates should treat epilepsy with anti-epileptogenic and disease-modifying effects. Evidence from human and animal studies shows that astrocytes have value for developing new anti-seizure and anti-epileptogenic drugs. In this review, we present the key functions of astrocytes contributing to neuronal hyperexcitability and synaptic activity following an etiology-based approach. We analyze the role of astrocytes in both development (epileptogenesis) and generation of seizures (ictogenesis). Several promising new strategies that attempted to modify astroglial functions for treating epilepsy are being developed: (1) selective targeting of glia-related molecular mechanisms of glutamate transport; (2) modulation of tonic GABA release from astrocytes; (3) gliotransmission; (4) targeting the astrocytic Kir4.1-BDNF system; (5) astrocytic Na+/K+/ATPase activity; (6) targeting DNA hypo- or hypermethylation of candidate genes in astrocytes; (7) targeting astrocytic gap junction regulators; (8) targeting astrocytic adenosine kinase (the major adenosine-metabolizing enzyme); and (9) targeting microglia-astrocyte communication and inflammatory pathways. Novel disease-modifying therapeutic strategies have now been developed, such as astroglia-targeted gene therapy with a broad spectrum of genetic constructs to target astroglial cells.
Collapse
Affiliation(s)
- Nihan Çarçak
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Filiz Onat
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Evgenia Sitnikova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Escobar AP, Bonansco C, Cruz G, Dagnino-Subiabre A, Fuenzalida M, Negrón I, Sotomayor-Zárate R, Martínez-Pinto J, Jorquera G. Central and Peripheral Inflammation: A Common Factor Causing Addictive and Neurological Disorders and Aging-Related Pathologies. Int J Mol Sci 2023; 24:10083. [PMID: 37373230 PMCID: PMC10298583 DOI: 10.3390/ijms241210083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Many diseases and degenerative processes affecting the nervous system and peripheral organs trigger the activation of inflammatory cascades. Inflammation can be triggered by different environmental conditions or risk factors, including drug and food addiction, stress, and aging, among others. Several pieces of evidence show that the modern lifestyle and, more recently, the confinement associated with the COVID-19 pandemic have contributed to increasing the incidence of addictive and neuropsychiatric disorders, plus cardiometabolic diseases. Here, we gather evidence on how some of these risk factors are implicated in activating central and peripheral inflammation contributing to some neuropathologies and behaviors associated with poor health. We discuss the current understanding of the cellular and molecular mechanisms involved in the generation of inflammation and how these processes occur in different cells and tissues to promote ill health and diseases. Concomitantly, we discuss how some pathology-associated and addictive behaviors contribute to worsening these inflammation mechanisms, leading to a vicious cycle that promotes disease progression. Finally, we list some drugs targeting inflammation-related pathways that may have beneficial effects on the pathological processes associated with addictive, mental, and cardiometabolic illnesses.
Collapse
Affiliation(s)
- Angélica P. Escobar
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Christian Bonansco
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Alexies Dagnino-Subiabre
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Marco Fuenzalida
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Ignacio Negrón
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Jonathan Martínez-Pinto
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gonzalo Jorquera
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile
| |
Collapse
|
3
|
Binder DK, Steinhäuser C. Astrocytes and Epilepsy. Neurochem Res 2021; 46:2687-2695. [PMID: 33661442 DOI: 10.1007/s11064-021-03236-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
Changes in astrocyte channels, transporters, and metabolism play a critical role in seizure generation and epilepsy. In particular, alterations in astrocyte potassium, glutamate, water and adenosine homeostasis and gap junctional coupling have all been associated with hyperexcitability and epileptogenesis (largely in temporal lobe epilepsy). Distinct astrocytic changes have also been identified in other types of epilepsy, such as tuberous sclerosis, tumor-associated epilepsy and post-traumatic epilepsy. Together, the emerging literature on astrocytes and epilepsy provides powerful rationale for distinct new therapeutic targets that are astrocyte-specific.
Collapse
Affiliation(s)
- Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA.
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Vila Verde D, Zimmer T, Cattalini A, Pereira MF, van Vliet EA, Testa G, Gnatkovsky V, Aronica E, de Curtis M. Seizure activity and brain damage in a model of focal non-convulsive status epilepticus. Neuropathol Appl Neurobiol 2021; 47:679-693. [PMID: 33421166 DOI: 10.1111/nan.12693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022]
Abstract
AIMS Focal non-convulsive status epilepticus (FncSE) is a common emergency condition that may present as the first epileptic manifestation. In recent years, it has become increasingly clear that de novo FncSE should be promptly treated to improve post-status outcome. Whether seizure activity occurring during the course of the FncSE contributes to ensuing brain damage has not been demonstrated unequivocally and is here addressed. METHODS We used continuous video-EEG monitoring to characterise an acute experimental FncSE model induced by unilateral intrahippocampal injection of kainic acid (KA) in guinea pigs. Immunohistochemistry and mRNA expression analysis were utilised to detect and quantify brain injury, 3-days and 1-month after FncSE. RESULTS Seizure activity occurring during the course of FncSE involved both hippocampi equally. Neuronal loss, blood-brain barrier permeability changes, gliosis and up-regulation of inflammation, activity-induced and astrocyte-specific genes were observed in the KA-injected hippocampus. Diazepam treatment reduced FncSE duration and KA-induced neuropathological damage. In the contralateral hippocampus, transient and possibly reversible gliosis with increase of aquaporin-4 and Kir4.1 genes were observed 3 days post-KA. No tissue injury and gene expression changes were found 1-month after FncSE. CONCLUSIONS In our model, focal seizures occurring during FncSE worsen ipsilateral KA-induced tissue damage. FncSE only transiently activated glia in regions remote from KA-injection, suggesting that seizure activity during FncSE without local pathogenic co-factors does not promote long-lasting detrimental changes in the brain. These findings demonstrate that in our experimental model, brain damage remains circumscribed to the area where the primary cause (KA) of the FncSE acts. Our study emphasises the need to use antiepileptic drugs to contain local damage induced by focal seizures that occur during FncSE.
Collapse
Affiliation(s)
- Diogo Vila Verde
- Epilepsy Unit, Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Till Zimmer
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | | | - Marlene F Pereira
- Department of Oncology and Hematooncology, University of Milan, Milan, Italy.,Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Erwin A van Vliet
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Giuseppe Testa
- Department of Oncology and Hematooncology, University of Milan, Milan, Italy.,Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Vadym Gnatkovsky
- Epilepsy Unit, Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Marco de Curtis
- Epilepsy Unit, Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
5
|
Ko A, Lee JS. Factors associated with seizure and cognitive outcomes after epilepsy surgery for low-grade epilepsy-associated neuroepithelial tumors in children. Clin Exp Pediatr 2020; 63:171-177. [PMID: 32024326 PMCID: PMC7254172 DOI: 10.3345/kjp.2019.01151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022] Open
Abstract
Low-grade epilepsy-associated neuroepithelial tumors (LEATs) are responsible for drug-resistant chronic focal epilepsy, and are the second-most common reason for epilepsy surgery in children. LEATs are extremely responsive to surgical treatment, and therefore epilepsy surgery should be considered as a treatment option for LEATs. However, the optimal time for surgery remains controversial, and surgeries are often delayed. In this review, we reviewed published article on the factors associated with seizure and cognitive outcomes after epilepsy surgery for LEATs in children to help clinicians in their decision whether to pursue epilepsy surgery for LEATs. The achievement of gross total resection may be the most important prognostic factor for seizure freedom. A shorter duration of epilepsy, a younger age at surgery, and extended resection of temporal lobe tumors have also been suggested as favorable prognostic factors in terms of seizure control. Poor cognitive function in children with LEATs is associated with a longer duration of epilepsy and a younger age at seizure onset.
Collapse
Affiliation(s)
- Ara Ko
- Division of Pediatric Neurology, Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University College of Medicine, Yangsan, Korea
| | - Joon Soo Lee
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Epileptiform Neuronal Discharges Impair Astrocyte Syncytial Isopotentiality in Acute Hippocampal Slices. Brain Sci 2020; 10:brainsci10040208. [PMID: 32252295 PMCID: PMC7226063 DOI: 10.3390/brainsci10040208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/21/2020] [Accepted: 03/31/2020] [Indexed: 12/25/2022] Open
Abstract
Astrocyte syncytial isopotentiality is a physiological mechanism resulting from a strong electrical coupling among astrocytes. We have previously shown that syncytial isopotentiality exists as a system-wide feature that coordinates astrocytes into a system for high efficient regulation of brain homeostasis. Neuronal activity is known to regulate gap junction coupling through alteration of extracellular ions and neurotransmitters. However, the extent to which epileptic neuronal activity impairs the syncytial isopotentiality is unknown. Here, the neuronal epileptiform bursts were induced in acute hippocampal slices by removal of Mg2+ (Mg2+ free) from bath solution and inhibition of γ-aminobutyric acid A (GABAA) receptors by 100 µM picrotoxin (PTX). The change in syncytial coupling was monitored by using a K+ free-Na+-containing electrode solution ([Na+]p) in the electrophysiological recording where the substitution of intracellular K+ by Na+ ions dissipates the physiological membrane potential (VM) to ~0 mV in the recorded astrocyte. However, in a syncytial coupled astrocyte, the [Na+]p induced VM loss can be compensated by the coupled astrocytes to a quasi-physiological membrane potential of ~73 mV. After short-term exposure to this experimental epileptic condition, a significant closure of syncytial coupling was indicated by a shift of the quasi-physiological membrane potential to −60 mV, corresponding to a 90% reduction of syncytial coupling strength. Consequently, the closure of syncytial coupling significantly decreased the ability of the syncytium for spatial redistribution of K+ ions. Altogether, our results show that epileptiform neuronal discharges weaken the strength of syncytial coupling and that in turn impairs the capacity of a syncytium for spatial redistribution of K+ ions.
Collapse
|
7
|
Vargas-Sánchez K, Mogilevskaya M, Rodríguez-Pérez J, Rubiano MG, Javela JJ, González-Reyes RE. Astroglial role in the pathophysiology of status epilepticus: an overview. Oncotarget 2018; 9:26954-26976. [PMID: 29928494 PMCID: PMC6003549 DOI: 10.18632/oncotarget.25485] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/09/2018] [Indexed: 12/11/2022] Open
Abstract
Status epilepticus is a medical emergency with elevated morbidity and mortality rates, and represents a leading cause of epilepsy-related deaths. Though status epilepticus can occur at any age, it manifests more likely in children and elderly people. Despite the common prevalence of epileptic disorders, a complete explanation for the mechanisms leading to development of self-limited or long lasting seizures (as in status epilepticus) are still lacking. Apart from neurons, research evidence suggests the involvement of immune and glial cells in epileptogenesis. Among glial cells, astrocytes represent an ideal target for the study of the pathophysiology of status epilepticus, due to their key role in homeostatic balance of the central nervous system. During status epilepticus, astroglial cells are activated by the presence of cytokines, damage associated molecular patterns and reactive oxygen species. The persistent activation of astrocytes leads to a decrease in glutamate clearance with a corresponding accumulation in the synaptic extracellular space, increasing the chance of neuronal excitotoxicity. Moreover, major alterations in astrocytic gap junction coupling, inflammation and receptor expression, facilitate the generation of seizures. Astrocytes are also involved in dysregulation of inhibitory transmission in the central nervous system and directly participate in ionic homeostatic alterations during status epilepticus. In the present review, we focus on the functional and structural changes in astrocytic activity that participate in the development and maintenance of status epilepticus, with special attention on concurrent inflammatory alterations. We also include potential astrocytic treatment targets for status epilepticus.
Collapse
Affiliation(s)
- Karina Vargas-Sánchez
- Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | | | - John Rodríguez-Pérez
- Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - María G Rubiano
- Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - José J Javela
- Grupo de Clínica y Salud Mental, Programa de Psicología, Universidad Católica de Pereira, Pereira, Colombia
| | - Rodrigo E González-Reyes
- Universidad del Rosario, Escuela de Medicina y Ciencias de la Salud, GI en Neurociencias-NeURos, Bogotá, Colombia
| |
Collapse
|
8
|
|
9
|
Khaspekov LG, Frumkina LE. Molecular mechanisms mediating involvement of glial cells in brain plastic remodeling in epilepsy. BIOCHEMISTRY (MOSCOW) 2017; 82:380-391. [DOI: 10.1134/s0006297917030178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Yang J, Zhang X, Wu Y, Zhao B, Liu X, Pan Y, Liu Y, Ding Y, Qiu M, Wang YZ, Zhao G. Wnt/β-catenin signaling mediates the seizure-facilitating effect of postischemic reactive astrocytes after pentylenetetrazole-kindling. Glia 2016; 64:1083-91. [PMID: 27003605 DOI: 10.1002/glia.22984] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/23/2016] [Accepted: 03/02/2016] [Indexed: 12/19/2022]
Abstract
Ischemia not only leads to tissue damage, but also induces seizures, which in turn worsens the outcome of ischemia. Recent studies have revealed the impaired homeostatic functions of reactive astrocytes, which were thought to facilitate the development of seizures. However, how this phenotype of reactive astrocytes is regulated remains unclear. Here, using pentylenetetrazole (PTZ)-kindling model, we investigated the roles of reactive astrocytes and their intracellular Wnt/β-catenin signaling in the ischemia-increased seizure susceptibility. Our data showed that somatosensory cortical ischemia significantly increased the susceptibility to PTZ-induced seizure. Genetic ablation of Nestin-positive reactive astrocytes significantly decreased the incidence and severity of seizures. By using a Wnt signaling reporter mice line Topgal mice, we found that Wnt/β-catenin signaling was upregulated in reactive astrocytes after ischemia. Depletion of β-catenin in reactive astrocytes significantly decreased the susceptibility of seizures and the expression of c-Fos induced by PTZ in the ischemic cortex. Overexpression of β-catenin in reactive astrocytes, in contrast, significantly increased seizure susceptibility and the expression of c-Fos. Furthermore, the expression of aquaporin-4 (AQP-4) and inwardly rectifying K(+) channel 4.1 (Kir4.1), two molecules reportedly associated with seizure development, was oppositely affected in reactive astrocytes with β-catenin depletion or overexpression. Taken together, these data indicated that astrocytic Wnt/β-catenin signaling accounts, at least partially, for the ischemia-increased seizure susceptibility. Inhibiting Wnt/β-catenin signaling may be utilized in the future for preventing postischemic seizures.
Collapse
Affiliation(s)
- Jialei Yang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Neurobiology and Collaborative Innovation Center for Brain Science, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiufen Zhang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yin Wu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bo Zhao
- Department of Neurology, Anning Branch of Lanzhou General Hospital of Lanzhou Military Region, Lanzhou, China
| | - Xunyuan Liu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuanhang Pan
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yonghong Liu
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuqiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, China.,Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, China
| | - Mengsheng Qiu
- Institute of Developmental and Regenerative Biology, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ya-Zhou Wang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
11
|
Plasticity of Hippocampal Excitatory-Inhibitory Balance: Missing the Synaptic Control in the Epileptic Brain. Neural Plast 2016; 2016:8607038. [PMID: 27006834 PMCID: PMC4783563 DOI: 10.1155/2016/8607038] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/20/2016] [Accepted: 01/31/2016] [Indexed: 11/24/2022] Open
Abstract
Synaptic plasticity is the capacity generated by experience to modify the neural function and, thereby, adapt our behaviour. Long-term plasticity of glutamatergic and GABAergic transmission occurs in a concerted manner, finely adjusting the excitatory-inhibitory (E/I) balance. Imbalances of E/I function are related to several neurological diseases including epilepsy. Several evidences have demonstrated that astrocytes are able to control the synaptic plasticity, with astrocytes being active partners in synaptic physiology and E/I balance. Here, we revise molecular evidences showing the epileptic stage as an abnormal form of long-term brain plasticity and propose the possible participation of astrocytes to the abnormal increase of glutamatergic and decrease of GABAergic neurotransmission in epileptic networks.
Collapse
|
12
|
Chever O, Dossi E, Pannasch U, Derangeon M, Rouach N. Astroglial networks promote neuronal coordination. Sci Signal 2016; 9:ra6. [DOI: 10.1126/scisignal.aad3066] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Abstract
Andersen-Tawil syndrome (ATS) is a rare autosomal dominant potassium channelopathy characterized by a triad of periodic paralysis, ventricular arrhythmias, and distinctive dysmorphic abnormalities. We present a 19-year-old man with characteristic skeletal dysmorphic features of ATS, early nonfluctuating proximal lower limb weakness from childhood, and neonatal focal seizures. He later developed fluctuating weakness in addition to a fixed proximal myopathy. A 12-lead electrocardiogram showed prominent "U" waves, and McManis protocol prolonged exercise test showed an unusually early decline in the compound motor action potential amplitude by 51%. Genetic testing revealed a de novo heterozygous mutation (R218W) in KCNJ2 associated with ATS. This is the first reported case of ATS in an Irish population with an unusual fixed myopathy from early childhood.
Collapse
|
14
|
Raimondo JV, Burman RJ, Katz AA, Akerman CJ. Ion dynamics during seizures. Front Cell Neurosci 2015; 9:419. [PMID: 26539081 PMCID: PMC4612498 DOI: 10.3389/fncel.2015.00419] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/04/2015] [Indexed: 12/14/2022] Open
Abstract
Changes in membrane voltage brought about by ion fluxes through voltage and transmitter-gated channels represent the basis of neural activity. As such, electrochemical gradients across the membrane determine the direction and driving force for the flow of ions and are therefore crucial in setting the properties of synaptic transmission and signal propagation. Ion concentration gradients are established by a variety of mechanisms, including specialized transporter proteins. However, transmembrane gradients can be affected by ionic fluxes through channels during periods of elevated neural activity, which in turn are predicted to influence the properties of on-going synaptic transmission. Such activity-induced changes to ion concentration gradients are a feature of both physiological and pathological neural processes. An epileptic seizure is an example of severely perturbed neural activity, which is accompanied by pronounced changes in intracellular and extracellular ion concentrations. Appreciating the factors that contribute to these ion dynamics is critical if we are to understand how a seizure event evolves and is sustained and terminated by neural tissue. Indeed, this issue is of significant clinical importance as status epilepticus—a type of seizure that does not stop of its own accord—is a life-threatening medical emergency. In this review we explore how the transmembrane concentration gradient of the six major ions (K+, Na+, Cl−, Ca2+, H+and HCO3−) is altered during an epileptic seizure. We will first examine each ion individually, before describing how multiple interacting mechanisms between ions might contribute to concentration changes and whether these act to prolong or terminate epileptic activity. In doing so, we will consider how the availability of experimental techniques has both advanced and restricted our ability to study these phenomena.
Collapse
Affiliation(s)
- Joseph V Raimondo
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town Cape Town, South Africa ; UCT/MRC Receptor Biology Unit, Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town Cape Town, South Africa
| | - Richard J Burman
- UCT/MRC Receptor Biology Unit, Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town Cape Town, South Africa
| | - Arieh A Katz
- UCT/MRC Receptor Biology Unit, Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town Cape Town, South Africa
| | | |
Collapse
|
15
|
Rivera-Aponte DE, Méndez-González MP, Rivera-Pagán AF, Kucheryavykh YV, Kucheryavykh LY, Skatchkov SN, Eaton MJ. Hyperglycemia reduces functional expression of astrocytic Kir4.1 channels and glial glutamate uptake. Neuroscience 2015; 310:216-23. [PMID: 26404875 DOI: 10.1016/j.neuroscience.2015.09.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/11/2015] [Accepted: 09/18/2015] [Indexed: 11/24/2022]
Abstract
Diabetics are at risk for a number of serious health complications including an increased incidence of epilepsy and poorer recovery after ischemic stroke. Astrocytes play a critical role in protecting neurons by maintaining extracellular homeostasis and preventing neurotoxicity through glutamate uptake and potassium buffering. These functions are aided by the presence of potassium channels, such as Kir4.1 inwardly rectifying potassium channels, in the membranes of astrocytic glial cells. The purpose of the present study was to determine if hyperglycemia alters Kir4.1 potassium channel expression and homeostatic functions of astrocytes. We used q-PCR, Western blot, patch-clamp electrophysiology studying voltage and potassium step responses and a colorimetric glutamate clearance assay to assess Kir4.1 channel levels and homeostatic functions of rat astrocytes grown in normal and high glucose conditions. We found that astrocytes grown in high glucose (25 mM) had an approximately 50% reduction in Kir4.1 mRNA and protein expression as compared with those grown in normal glucose (5mM). These reductions occurred within 4-7 days of exposure to hyperglycemia, whereas reversal occurred between 7 and 14 days after return to normal glucose. The decrease in functional Kir channels in the astrocytic membrane was confirmed using barium to block Kir channels. In the presence of 100-μM barium, the currents recorded from astrocytes in response to voltage steps were reduced by 45%. Furthermore, inward currents induced by stepping extracellular [K(+)]o from 3 to 10mM (reflecting potassium uptake) were 50% reduced in astrocytes grown in high glucose. In addition, glutamate clearance by astrocytes grown in high glucose was significantly impaired. Taken together, our results suggest that down-regulation of astrocytic Kir4.1 channels by elevated glucose may contribute to the underlying pathophysiology of diabetes-induced CNS disorders and contribute to the poor prognosis after stroke.
Collapse
Affiliation(s)
- D E Rivera-Aponte
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, USA.
| | - M P Méndez-González
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, USA.
| | - A F Rivera-Pagán
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, USA.
| | - Y V Kucheryavykh
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, USA.
| | - L Y Kucheryavykh
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, USA.
| | - S N Skatchkov
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, USA; Department of Physiology, Universidad Central del Caribe, Bayamón, PR, USA.
| | - M J Eaton
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, USA.
| |
Collapse
|
16
|
Flow- and voltage-dependent blocking effect of ethosuximide on the inward rectifier K⁺ (Kir2.1) channel. Pflugers Arch 2014; 467:1733-46. [PMID: 25220134 DOI: 10.1007/s00424-014-1611-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/21/2014] [Accepted: 09/05/2014] [Indexed: 12/31/2022]
Abstract
Absence seizures are manifestations of abnormal thalamocortical oscillations characterized by spike-and-wave complexes in EEG. Ethosuximide (ETX) is one of the principal medications against absence seizures. We investigate the effect of ETX on the Kir2.1 channel, a prototypical inward rectifier K(+) channel possibly playing an important role in the setting of neuronal membrane potential. We demonstrate that the outward currents of Kir2.1 channels are significantly inhibited by intracellular ETX. We further show that the movement of neutral molecule ETX in the Kir2.1 channel is accompanied by ∼1.2 K(+), giving rise to the vivid voltage dependence of ETX unbinding rate. Moreover, the apparent affinity (K d ) of ETX in the channels are decreased by single-point mutations involving M183, E224, and S165, and especially by double mutations involving T141/S165, which always also disrupt the flux-coupling feature of ETX block. Molecular dynamics simulation demonstrates narrowing of the pore at ∼D172 by binding of ETX to S165 or T141. ETX block of the Kir2.1 channels may cause a modest but critical depolarization of the relevant neurons, decreasing available T-type Ca(2+) channels and consequently lessening pathological thalamocortical burst discharges.
Collapse
|
17
|
Expression of astrocyte-related receptors in cortical dysplasia with intractable epilepsy. J Neuropathol Exp Neurol 2014; 73:798-806. [PMID: 25003238 DOI: 10.1097/nen.0000000000000099] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Epilepsy is one of the major neurologic diseases, and astrocytes play important roles in epileptogenesis. To investigate possible roles of astrocyte-related receptors in patients with intractable epilepsy associated with focal cortical dysplasia (FCD) and other conditions, we examined resected epileptic foci from 31 patients, including 23 with FCD type I, IIa, or IIb, 5 with tuberous sclerosis complex, and 3 with low-grade astrocytoma. Control samples were from 21 autopsied brains of patients without epilepsy or neurologic deficits and 5 patients with pathologic gliosis without epilepsy. Immunohistochemical and immunoblot analyses with antibodies against purinergic receptor subtypes P2RY1, P2RY2, P2RY4, potassium channels Kv4.2 and Kir4.1, and metabotropic receptor subtypes mGluR1 and mGluR5 were performed. Anti-glial fibrillary acidic protein, anti-NeuN, and anti-CD68 immunostaining was used to identify astrocytes, neurons, and microglia, respectively. Most glial fibrillary acidic protein-immunopositive astrocyte cells in the brain samples from patients with epilepsy were P2RY1-, P2RY2-, P2RY4-, Kv4.2-, Kir4.1-, mGluR1-, and mGluR5-positive, whereas samples from controls and pathologic gliosis showed lower expression levels of these astrocyte-related receptors. Our findings suggest that, although these receptors are necessary for astrocyte transmission, formation of the neuron-glia network, and other physiologic functions, overexpression in the brains of patients with intractable epilepsy may be associated with activation of intracellular and glio-neuronal signaling pathways that contribute to epileptogenesis.
Collapse
|
18
|
Ceccariglia S, D’altocolle A, Del Fa’ A, Silvestrini A, Barba M, Pizzolante F, Repele A, Michetti F, Gangitano C. Increased expression of Aquaporin 4 in the rat hippocampus and cortex during trimethyltin-induced neurodegeneration. Neuroscience 2014; 274:273-88. [DOI: 10.1016/j.neuroscience.2014.05.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/21/2014] [Accepted: 05/21/2014] [Indexed: 12/12/2022]
|
19
|
Widespread activation of microglial cells in the hippocampus of chronic epileptic rats correlates only partially with neurodegeneration. Brain Struct Funct 2014; 220:2423-39. [PMID: 24878824 DOI: 10.1007/s00429-014-0802-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/14/2014] [Indexed: 12/30/2022]
Abstract
Activation of microglial cells (brain macrophages) soon after status epilepticus has been suggested to be critical for the pathogenesis of mesial temporal lobe epilepsy (MTLE). However, microglial activation in the chronic phase of experimental MTLE has been scarcely addressed. In this study, we questioned whether microglial activation persists in the hippocampus of pilocarpine-treated, epileptic Wistar rats and to which extent it is associated with segmental neurodegeneration. Microglial cells were immunostained for the universal microglial marker, ionized calcium-binding adapter molecule-1 and the activation marker, CD11b (also known as OX42, Mac-1). Using quantitative morphology, i.e., stereology and Neurolucida-based reconstructions, we investigated morphological correlates of microglial activation such as cell number, ramification, somatic size and shape. We find that microglial cells in epileptic rats feature widespread, activation-related morphological changes such as increase in cell number density, massive up-regulation of CD11b and de-ramification. The parameters show heterogeneity in different hippocampal subregions. For instance, de-ramification is most prominent in the outer molecular layer of the dentate gyrus, whereas CD11b expression dominates in hilus. Interestingly, microglial activation only partially correlates with segmental neurodegeneration. Major neuronal death in the hilus, CA3 and CA1 coincides with strong up-regulation of CD11b. However, microglial activation is also observed in subregions that do not feature neurodegeneration, such as the molecular and granular layer of the dentate gyrus. This in vivo study provides solid experimental evidence that microglial cells feature widespread heterogeneous activation that only partially correlates with hippocampal segmental neuronal loss in experimental MTLE.
Collapse
|
20
|
Mylvaganam S, Ramani M, Krawczyk M, Carlen PL. Roles of gap junctions, connexins, and pannexins in epilepsy. Front Physiol 2014; 5:172. [PMID: 24847276 PMCID: PMC4019879 DOI: 10.3389/fphys.2014.00172] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/13/2014] [Indexed: 12/19/2022] Open
Abstract
Enhanced gap junctional communication (GJC) between neurons is considered a major factor underlying the neuronal synchrony driving seizure activity. In addition, the hippocampal sharp wave ripple complexes, associated with learning and seizures, are diminished by GJC blocking agents. Although gap junctional blocking drugs inhibit experimental seizures, they all have other non-specific actions. Besides interneuronal GJC between dendrites, inter-axonal and inter-glial GJC is also considered important for seizure generation. Interestingly, in most studies of cerebral tissue from animal seizure models and from human patients with epilepsy, there is up-regulation of glial, but not neuronal gap junctional mRNA and protein. Significant changes in the expression and post-translational modification of the astrocytic connexin Cx43, and Panx1 were observed in an in vitro Co++ seizure model, further supporting a role for glia in seizure-genesis, although the reasons for this remain unclear. Further suggesting an involvement of astrocytic GJC in epilepsy, is the fact that the expression of astrocytic Cx mRNAs (Cxs 30 and 43) is several fold higher than that of neuronal Cx mRNAs (Cxs 36 and 45), and the number of glial cells outnumber neuronal cells in mammalian hippocampal and cortical tissue. Pannexin expression is also increased in both animal and human epileptic tissues. Specific Cx43 mimetic peptides, Gap 27 and SLS, inhibit the docking of astrocytic connexin Cx43 proteins from forming intercellular gap junctions (GJs), diminishing spontaneous seizures. Besides GJs, Cx membrane hemichannels in glia and Panx membrane channels in neurons and glia are also inhibited by traditional gap junctional pharmacological blockers. Although there is no doubt that connexin-based GJs and hemichannels, and pannexin-based membrane channels are related to epilepsy, the specific details of how they are involved and how we can modulate their function for therapeutic purposes remain to be elucidated.
Collapse
Affiliation(s)
- Shanthini Mylvaganam
- Neurobiology, Toronto Western Research Institute, University Health Network and University of Toronto Toronto, ON, Canada
| | - Meera Ramani
- Neurobiology, Toronto Western Research Institute, University Health Network and University of Toronto Toronto, ON, Canada
| | - Michal Krawczyk
- Neurobiology, Toronto Western Research Institute, University Health Network and University of Toronto Toronto, ON, Canada
| | - Peter L Carlen
- Neurobiology, Toronto Western Research Institute, University Health Network and University of Toronto Toronto, ON, Canada
| |
Collapse
|
21
|
DiNuzzo M, Mangia S, Maraviglia B, Giove F. Physiological bases of the K+ and the glutamate/GABA hypotheses of epilepsy. Epilepsy Res 2014; 108:995-1012. [PMID: 24818957 DOI: 10.1016/j.eplepsyres.2014.04.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/20/2014] [Accepted: 04/01/2014] [Indexed: 01/19/2023]
Abstract
Epilepsy is a heterogeneous family of neurological disorders that manifest as seizures, i.e. the hypersynchronous activity of large population of neurons. About 30% of epileptic patients do not respond to currently available antiepileptic drugs. Decades of intense research have elucidated the involvement of a number of possible signaling pathways, however, at present we do not have a fundamental understanding of epileptogenesis. In this paper, we review the literature on epilepsy under a wide-angle perspective, a mandatory choice that responds to the recurrent and unanswered question about what is epiphenomenal and what is causal to the disease. While focusing on the involvement of K+ and glutamate/GABA in determining neuronal hyperexcitability, emphasis is given to astrocytic contribution to epileptogenesis, and especially to loss-of-function of astrocytic glutamine synthetase following reactive astrogliosis, a hallmark of epileptic syndromes. We finally introduce the potential involvement of abnormal glycogen synthesis induced by excess glutamate in increasing susceptibility to seizures.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- MARBILab, Museo storico della fisica e Centro di studi e ricerche "Enrico Fermi", Rome, Italy.
| | - Silvia Mangia
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Bruno Maraviglia
- Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy; Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Federico Giove
- MARBILab, Museo storico della fisica e Centro di studi e ricerche "Enrico Fermi", Rome, Italy; Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
22
|
Aronica E, Crino PB. Epilepsy related to developmental tumors and malformations of cortical development. Neurotherapeutics 2014; 11:251-68. [PMID: 24481729 PMCID: PMC3996119 DOI: 10.1007/s13311-013-0251-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Structural abnormalities of the brain are increasingly recognized in patients with neurodevelopmental delay and intractable focal epilepsies. The access to clinically well-characterized neurosurgical material has provided a unique opportunity to better define the neuropathological, neurochemical, and molecular features of epilepsy-associated focal developmental lesions. These studies help to further understand the epileptogenic mechanisms of these lesions. Neuropathological evaluation of surgical specimens from patients with epilepsy-associated developmental lesions reveals two major pathologies: focal cortical dysplasia and low-grade developmental tumors (glioneuronal tumors). In the last few years there have been major advances in the recognition of a wide spectrum of developmental lesions associated with a intractable epilepsy, including cortical tubers in patients with tuberous sclerosis complex and hemimegalencephaly. As an increasing number of entities are identified, the development of a unified and comprehensive classification represents a great challenge and requires continuous updates. The present article reviews current knowledge of molecular pathogenesis and the pathophysiological mechanisms of epileptogenesis in this group of developmental disorders. Both emerging neuropathological and basic science evidence will be analyzed, highlighting the involvement of different, but often converging, pathogenetic and epileptogenic mechanisms, which may create the basis for new therapeutic strategies in these disorders.
Collapse
Affiliation(s)
- Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands,
| | | |
Collapse
|
23
|
Xu L, Hao Y, Wu X, Yu P, Zhu G, Hong Z. Tenidap, an agonist of the inwardly rectifying K+channel Kir2·3, delays the onset of cortical epileptiform activity in a model of chronic temporal lobe epilepsy. Neurol Res 2013; 35:561-7. [PMID: 23561319 DOI: 10.1179/1743132813y.0000000157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Lan Xu
- Department of NeurologyHuashan Hospital, Fudan University, Shanghai, China
| | - Yong Hao
- Department of NeurologyChanghai Hospital, Second Military Medical University, Shanghai, China
| | - Xunyi Wu
- Department of NeurologyHuashan Hospital, Fudan University, Shanghai, China
| | - Peimin Yu
- Department of NeurologyHuashan Hospital, Fudan University, Shanghai, China
| | - Guoxing Zhu
- Department of NeurologyHuashan Hospital, Fudan University, Shanghai, China
| | - Zhen Hong
- Department of NeurologyHuashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Hubbard JA, Hsu MS, Fiacco TA, Binder DK. Glial cell changes in epilepsy: Overview of the clinical problem and therapeutic opportunities. Neurochem Int 2013; 63:638-51. [DOI: 10.1016/j.neuint.2013.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/14/2013] [Accepted: 01/18/2013] [Indexed: 12/20/2022]
|
25
|
|
26
|
Caulder EH, Riegle MA, Godwin DW. Activation of group 2 metabotropic glutamate receptors reduces behavioral and electrographic correlates of pilocarpine induced status epilepticus. Epilepsy Res 2013; 108:171-81. [PMID: 24305700 DOI: 10.1016/j.eplepsyres.2013.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 09/25/2013] [Accepted: 10/18/2013] [Indexed: 12/11/2022]
Abstract
Novel treatments for epilepsy are necessary because many epilepsy patients are resistant to medication. Metabotropic glutamate receptors (mGluRs), specifically mGluR 2 and 3, may serve as antiepileptic drug targets because of their role in controlling synaptic release. In this study, we administered a Group 2 mGluR agonist, LY379268, one of two mGluR2-specific positive allosteric modulators, BINA or CBiPES, or a cocktail of both BINA and LY379268 in a series of experiments using the pilocarpine model of SE. In one study, groups received treatments 15 min prior to pilocarpine, while in a second study groups received treatments after SE had been initiated to determine whether the drugs could reduce development and progression of SE. We measured bouts of stage 5 seizures, latency to the first seizure, and the maximum Racine score to characterize the seizure severity. We analyzed mouse EEG with implanted electrodes using a power analysis. We found that pretreatment and posttreatment with LY379268 was effective at reducing both behavioral correlates and power in EEG bandwidths associated with seizure, while CBiPES was less effective and BINA was ineffective. These data generally support continued development of mGluR2 pharmacology for novel antiepileptic drugs, though further study with additional drugs and concentrations will be necessary.
Collapse
Affiliation(s)
- Erin H Caulder
- Wake Forest University Graduate School of Arts and Sciences, Department of Neurobiology and Anatomy, 1 Medical Center Boulevard, Winston Salem, NC 27157, USA.
| | - Melissa A Riegle
- Wake Forest University Graduate School of Arts and Sciences, Department of Neurobiology and Anatomy, 1 Medical Center Boulevard, Winston Salem, NC 27157, USA; Wake Forest University Graduate School of Arts and Sciences, Neuroscience Program, 1 Medical Center Boulevard, Winston Salem, NC 27157, USA.
| | - Dwayne W Godwin
- Wake Forest University Graduate School of Arts and Sciences, Department of Neurobiology and Anatomy, 1 Medical Center Boulevard, Winston Salem, NC 27157, USA; Wake Forest University Graduate School of Arts and Sciences, Neuroscience Program, 1 Medical Center Boulevard, Winston Salem, NC 27157, USA.
| |
Collapse
|
27
|
Liu Y, Li C. Stochastic resonance in feedforward-loop neuronal network motifs in astrocyte field. J Theor Biol 2013; 335:265-75. [DOI: 10.1016/j.jtbi.2013.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/02/2013] [Accepted: 07/07/2013] [Indexed: 10/26/2022]
|
28
|
Qiao X, Werkman TR, Gorter JA, Wadman WJ, van Vliet EA. Expression of sodium channel α subunits 1.1, 1.2 and 1.6 in rat hippocampus after kainic acid-induced epilepsy. Epilepsy Res 2013; 106:17-28. [PMID: 23886654 DOI: 10.1016/j.eplepsyres.2013.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 05/30/2013] [Accepted: 06/25/2013] [Indexed: 12/19/2022]
Abstract
Voltage-gated Na(+) channels control neuronal excitability and are the primary target for the majority of anti-epileptic drugs. This study investigates the (sub)cellular expression patterns of three important brain-associated Na(+) channel α subunits: NaV1.1, NaV1.2 and NaV1.6 during epileptogenesis (induced by kainic acid) using time points that cover the period from induction to the chronic phase of epilepsy. NaV1.1 immunoreactivity was persistently reduced at 1 day, 3 weeks and 2 months after SE in CA1 and CA3. About 50% of the NaV1.1-positive interneurons was lost at one day after SE in all regions investigated. In the hilus a similar reduction in NeuN-positive neurons was found, while in the CA1 and CA3 region the loss in NeuN-positive neurons only reached 15% in the chronic phase of epilepsy. This implies a stronger shift in the balance between excitation and inhibition toward excitation in the CA1 and CA3 region than in the hilus. NaV1.2 immunoreactivity in the inner molecular layer of the dentate gyrus was lower than control at 1 day after SE. It increased at 3 weeks and 2 months after SE in the inner molecular layer and overlapped with sprouted mossy fibers. NaV1.6 immunoreactivity in the dendritic region of CA1 and CA3 was persistently reduced at all time-points during epileptogenesis. Some astrocytes expressed NaV1.1 and NaV1.6 at 3 weeks after SE. Expression data alone are not sufficient to explain changes in network stability, or infer causality in epileptogenesis. These results demonstrate that hippocampal sub-regional expression of NaV1.1, NaV1.2 and NaV1.6 Na(+) channel α subunits is altered during epileptogenesis in a time and location specific way. This implies that understanding epileptogenesis has to take into account several distinct and type-specific changes in sodium channel expression.
Collapse
Affiliation(s)
- Xin Qiao
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
29
|
Seifert G, Steinhäuser C. Neuron–astrocyte signaling and epilepsy. Exp Neurol 2013; 244:4-10. [DOI: 10.1016/j.expneurol.2011.08.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/16/2011] [Accepted: 08/25/2011] [Indexed: 12/30/2022]
|
30
|
Zurolo E, de Groot M, Iyer A, Anink J, van Vliet EA, Heimans JJ, Reijneveld JC, Gorter JA, Aronica E. Regulation of Kir4.1 expression in astrocytes and astrocytic tumors: a role for interleukin-1 β. J Neuroinflammation 2012; 9:280. [PMID: 23270518 PMCID: PMC3538650 DOI: 10.1186/1742-2094-9-280] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/09/2012] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Decreased expression of inwardly rectifying potassium (Kir) channels in astrocytes and glioma cells may contribute to impaired K⁺ buffering and increased propensity for seizures. Here, we evaluated the potential effect of inflammatory molecules, such as interleukin-1β (IL-1β) on Kir4.1 mRNA and protein expression. METHODS We investigated Kir4.1 (Kcnj10) and IL-1β mRNA expression in the temporal cortex in a rat model of temporal lobe epilepsy 24 h and 1 week after induction of status epilepticus (SE), using real-time PCR and western blot analysis. The U373 glioblastoma cell line and human fetal astrocytes were used to study the regulation of Kir4.1 expression in response to pro-inflammatory cytokines. Expression of Kir4.1 protein was also evaluated by means of immunohistochemistry in surgical specimens of patients with astrocytic tumors (n = 64), comparing the expression in tumor patients with (n = 38) and without epilepsy (n = 26). RESULTS Twenty-four hours after onset of SE, Kir4.1 mRNA and protein were significantly down-regulated in temporal cortex of epileptic rats. This decrease in expression was followed by a return to control level at 1 week after SE. The transient downregulation of Kir4.1 corresponded to the time of prominent upregulation of IL-1β mRNA. Expression of Kir4.1 mRNA and protein in glial cells in culture was downregulated after exposure to IL-1β. Evaluation of Kir4.1 in tumor specimens showed a significantly lower Kir4.1 expression in the specimens of patients with epilepsy compared to patients without epilepsy. This paralleled the increased presence of activated microglial cells, as well as the increased expression of IL-1β and the cytoplasmic translocation of high mobility group box 1 (HMGB1). CONCLUSIONS Taken together, these findings indicate that alterations in expression of Kir4.1 occurring in epilepsy-associated lesions are possibly influenced by the local inflammatory environment and in particular by the inflammatory cytokine IL-1β.
Collapse
Affiliation(s)
- Emanuele Zurolo
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, AZ 1105, The Netherlands
| | - Marjolein de Groot
- Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | - Anand Iyer
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, AZ 1105, The Netherlands
| | - Jasper Anink
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, AZ 1105, The Netherlands
| | - Erwin A van Vliet
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan J Heimans
- Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jaap C Reijneveld
- Department of Neurology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- Epilepsy Institute in The Netherlands Foundation (Stichting Epilepsie Instellingen Nederland, SEIN), Heemstede, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, AZ 1105, The Netherlands
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- Epilepsy Institute in The Netherlands Foundation (Stichting Epilepsie Instellingen Nederland, SEIN), Heemstede, The Netherlands
| |
Collapse
|
31
|
Abstract
The term long-term epilepsy associated tumor (LEAT) encompasses lesions identified in patients investigated for long histories (often 2 years or more) of drug-resistant epilepsy. They are generally slowly growing, low grade, cortically based tumors, more often arising in younger age groups and in many cases exhibit neuronal in addition to glial differentiation. Gangliogliomas and dysembryoplastic neuroepithelial tumors predominate in this group. LEATs are further united by cyto-architectural changes that may be present in the adjacent cortex which have some similarities to developmental focal cortical dysplasias (FCD); these are now grouped as FCD type IIIb in the updated International League Against Epilepsy (ILAE) classification. In the majority of cases, surgical treatments are beneficial from both perspectives of managing the seizures and the tumor. However, in a minority, seizures may recur, tumors may show regrowth or recurrence, and rarely undergo anaplastic progression. Predicting and identifying tumors likely to behave less favorably are key objectives of the neuropathologist. With immunohistochemistry and modern molecular pathology, it is becoming increasingly possible to refine diagnostic groups. Despite this, some LEATs remain difficult to classify, particularly tumors with "non-specific" or diffuse growth patterns. Modification of LEAT classification is inevitable with the goal of unifying terminological criteria applied between centers for accurate clinico-pathological-molecular correlative data to emerge. Finally, establishing the epileptogenic components of LEAT, either within the lesion or perilesional cortex, will elucidate the cellular mechanisms of epileptogenesis, which in turn will guide optimal surgical management of these lesions.
Collapse
Affiliation(s)
- Maria Thom
- Department of Clinical and Experimental Epilepsy, UCL, Institute of Neurology, Queen Square, London, UK.
| | | | | |
Collapse
|
32
|
Bradley SJ, Challiss RJ. G protein-coupled receptor signalling in astrocytes in health and disease: A focus on metabotropic glutamate receptors. Biochem Pharmacol 2012; 84:249-59. [DOI: 10.1016/j.bcp.2012.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/02/2012] [Accepted: 04/09/2012] [Indexed: 02/03/2023]
|
33
|
Theis M, Giaume C. Connexin-based intercellular communication and astrocyte heterogeneity. Brain Res 2012; 1487:88-98. [PMID: 22789907 DOI: 10.1016/j.brainres.2012.06.045] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 06/10/2012] [Accepted: 06/13/2012] [Indexed: 12/21/2022]
Abstract
This review gives an overview of the current knowledge on connexin-mediated communication in astrocytes, covering gap junction and hemichannel functions mediated by connexins. Astroglia is the main brain cell type that expresses the largest amount of connexin and exhibits high level of gap junctional communication compared to neurons and oligodendrocytes. However, in certain developmental and regional situations, astrocytes are also coupled with oligodendrocytes and neurons. This heterotypic coupling is infrequent and minor in terms of extent of the coupling area, which does not mean that it is not important in terms of cell interaction. Here, we present an update on heterogeneity of connexin expression and function at the molecular, subcellular, cellular and networking levels. Interestingly, while astrocytes were initially considered as a homogenous population, there is now increasing evidence for morphological, developmental, molecular and physiological heterogeneity of astrocytes. Consequently, the specificity of gap junction channel- and hemichannel-mediated communication, which tends to synchronize cell populations, is also a parameter to take into account when neuroglial interactions are investigated. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- Martin Theis
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Sigmund-Freud-Straße 25, D-53105 Bonn, Germany.
| | | |
Collapse
|
34
|
Wang Y, Goodfellow M, Taylor PN, Baier G. Phase space approach for modeling of epileptic dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:061918. [PMID: 23005138 DOI: 10.1103/physreve.85.061918] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/13/2012] [Indexed: 06/01/2023]
Abstract
Epileptic electroencephalography recordings can be described in terms of four prototypic wave forms: fast sinusoidal oscillations, large slow waves, fast spiking, and spike waves. On the macroscopic level, these wave forms have been modeled by different mechanistic models which share canonical features. Here we derive a minimal model of excitatory and inhibitory processes with features common to all previous models. We can infer that at least three interacting processes are required to support the prototypic epileptic dynamics. Based on a separation of time scales we analyze the model in terms of interacting manifolds in phase space. This allows qualitative reverse engineering of all epileptic wave forms and transitions between them. We propose this method as a complement to traditional approaches to modeling epileptiform rhythms.
Collapse
Affiliation(s)
- Yujiang Wang
- Doctoral Training Centre Integrative Systems Biology, Manchester Interdisciplinary Biocentre, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| | | | | | | |
Collapse
|
35
|
Binder DK, Nagelhus EA, Ottersen OP. Aquaporin-4 and epilepsy. Glia 2012; 60:1203-14. [DOI: 10.1002/glia.22317] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/09/2012] [Indexed: 12/17/2022]
|
36
|
Lee DJ, Hsu MS, Seldin MM, Arellano JL, Binder DK. Decreased expression of the glial water channel aquaporin-4 in the intrahippocampal kainic acid model of epileptogenesis. Exp Neurol 2012; 235:246-55. [PMID: 22361023 DOI: 10.1016/j.expneurol.2012.02.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 12/24/2011] [Accepted: 02/06/2012] [Indexed: 01/28/2023]
Abstract
Recent evidence suggests that astrocytes may be a potential new target for the treatment of epilepsy. The glial water channel aquaporin-4 (AQP4) is expressed in astrocytes, and along with the inwardly-rectifying K(+) channel K(ir)4.1 is thought to underlie the reuptake of H(2)O and K(+) into glial cells during neural activity. Previous studies have demonstrated increased seizure duration and slowed potassium kinetics in AQP4(-/-) mice, and redistribution of AQP4 in hippocampal specimens from patients with chronic epilepsy. However, the regulation and role of AQP4 during epileptogenesis remain to be defined. In this study, we examined the expression of AQP4 and other glial molecules (GFAP, K(ir)4.1, glutamine synthetase) in the intrahippocampal kainic acid (KA) model of epilepsy and compared behavioral and histologic outcomes in wild-type mice vs. AQP4(-/-) mice. Marked and prolonged reduction in AQP4 immunoreactivity on both astrocytic fine processes and endfeet was observed following KA status epilepticus in multiple hippocampal layers. In addition, AQP4(-/-) mice had more spontaneous recurrent seizures than wild-type mice during the first week after KA SE as assessed by chronic video-EEG monitoring and blinded EEG analysis. While both genotypes exhibited similar reactive astrocytic changes, granule cell dispersion and CA1 pyramidal neuron loss, there were an increased number of fluorojade-positive cells early after KA SE in AQP4(-/-) mice. These results indicate a marked reduction of AQP4 following KA SE and suggest that dysregulation of water and potassium homeostasis occurs during early epileptogenesis. Restoration of astrocytic water and ion homeostasis may represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Darrin J Lee
- Department of Neurological Surgery, University of California, Davis, CA, USA
| | | | | | | | | |
Collapse
|
37
|
Astrocyte dysfunction in temporal lobe epilepsy: K+ channels and gap junction coupling. Glia 2012; 60:1192-202. [DOI: 10.1002/glia.22313] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 12/11/2022]
|
38
|
Andreasen M, Nedergaard S. Heterogeneous firing behavior during ictal-like epileptiform activity in vitro. J Neurophysiol 2011; 107:1379-92. [PMID: 22157126 DOI: 10.1152/jn.00309.2011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Seizure activity in vivo is caused by populations of neurons displaying a high degree of variability in activity pattern during the attack. The reason for this variability is not well understood. Here we show in an in vitro preparation that hippocampal CA1 pyramidal cells display four types of afterdischarge behavior during stimulus-induced ictal-like events in the presence of Cs(+) (5 mM): type I (43.7%) consisting of high-frequency firing riding on a plateau potential; type II (28.2%) consisting of low-frequency firing with no plateau potential; type III (18.3%) consisting of high-frequency firing with each action potential preceded by a transient hyperpolarization and time-locked to population activity, no plateau potential; "passive" (9.9%) typified by no afterdischarge. Type I behavior was blocked by TTX (0.2 μM) and intracellular injection of QX314 (12.5-25 mM). TTX (0.2 μM) or phenytoin (50 μM) terminated ictal-like events, suggesting that the persistent Na(+) current (I(NaP)) is pivotal for type I behavior. Type I behavior was not correlated to intrinsic bursting capability. Blockade of the M current (I(M)) with linopirdine (10 μM) increased the ratio of type I neurons to 100%, whereas enhancing I(M) with retigabine (50-100 μM) greatly reduced the epileptiform activity. These results suggest an important role of I(M) in determining afterdischarge behavior through control of I(NaP) expression. We propose that type I neurons act as pacemakers, which, through synchronization, leads to recruitment of type III neurons. Together, they provide the "critical mass" necessary for ictogenesis to become regenerative.
Collapse
|
39
|
O'Brien JE, Drews VL, Jones JM, Dugas JC, Barres BA, Meisler MH. Rbfox proteins regulate alternative splicing of neuronal sodium channel SCN8A. Mol Cell Neurosci 2011; 49:120-6. [PMID: 22044765 DOI: 10.1016/j.mcn.2011.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/10/2011] [Accepted: 10/14/2011] [Indexed: 12/17/2022] Open
Abstract
The SCN8A gene encodes the voltage-gated sodium channel Na(v)1.6, a major channel in neurons of the CNS and PNS. SCN8A contains two alternative exons,18N and 18A, that exhibit tissue specific splicing. In brain, the major SCN8A transcript contains exon 18A and encodes the full-length sodium channel. In other tissues, the major transcript contains exon 18N and encodes a truncated protein, due to the presence of an in-frame stop codon. Selection of exon 18A is therefore essential for generation of a functional channel protein, but the proteins involved in this selection have not been identified. Using a 2.6 kb Scn8a minigene containing exons 18N and 18A, we demonstrate that co-transfection with Fox-1 or Fox-2 initiates inclusion of exon 18A. This effect is dependent on the consensus Fox binding site located 28 bp downstream of exon 18A. We examined the alternative splicing of human SCN8A and found that the postnatal switch to exon 18A is completed later than 10 months of age. In purified cell populations, transcripts containing exon 18A predominate in neurons but are not present in oligodendrocytes or astrocytes. Transcripts containing exon 18N appear to be degraded by nonsense-mediated decay in HEK cells. Our data indicate that RBFOX proteins contribute to the cell-specific expression of Na(v)1.6 channels in mature neurons.
Collapse
Affiliation(s)
- Janelle E O'Brien
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA
| | | | | | | | | | | |
Collapse
|
40
|
Vargova L, Homola A, Cicanic M, Kuncova K, Krsek P, Marusic P, Sykova E, Zamecnik J. The diffusion parameters of the extracellular space are altered in focal cortical dysplasias. Neurosci Lett 2011; 499:19-23. [PMID: 21620932 DOI: 10.1016/j.neulet.2011.05.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/05/2011] [Accepted: 05/12/2011] [Indexed: 11/15/2022]
Abstract
Most hypotheses concerning the mechanisms underlying seizure activity in focal cortical dysplasia (FCD) are based on alterations in synaptic transmission and glial dysfunction. However, neurons may also communicate by extrasynaptic transmission, which was recently found to affect epileptiform activity under experimental conditions and which is mediated by the diffusion of neuroactive substances in the extracellular space (ECS). The ECS diffusion parameters were therefore determined using the real-time iontophoretic method in human neocortical tissue samples obtained from surgically treated epileptic patients. The obtained values of the extracellular space volume fraction and tortuosity were then correlated with the histologicaly assessed type of cortical malformation (FCD type I or II). While the extracellular volume remained unchanged (FCD I) or larger (FCD II) than in normal/control tissue, tortuosity was significantly increased in both types of dysplasia, indicating the presence of additional diffusion barriers and compromised diffusion, which might be another factor contributing to the epileptogenicity of FCD.
Collapse
Affiliation(s)
- L Vargova
- Department of Neuroscience and Center for Cell Therapy and Tissue Repair, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
de Lanerolle NC, Lee TS, Spencer DD. Astrocytes and epilepsy. Neurotherapeutics 2010; 7:424-38. [PMID: 20880506 PMCID: PMC5084304 DOI: 10.1016/j.nurt.2010.08.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 07/28/2010] [Accepted: 08/04/2010] [Indexed: 01/07/2023] Open
Abstract
Astrocytes form a significant constituent of seizure foci in the human brain. For a long time it was believed that astrocytes play a significant role in the causation of seizures. With the increase in our understanding of the unique biology of these cells, their precise role in seizure foci is receiving renewed attention. This article reviews the information now available on the role of astrocytes in the hippocampal seizure focus in patients with temporal lobe epilepsy with hippocampal sclerosis. Our intent is to try to integrate the available data. Astrocytes at seizure foci seem to not be a homogeneous population of cells, and in addition to typical glial fibrillary acidic protein, positive reactive astrocytes also include a population of neuron glia-2-like cells The astrocytes in sclerotic hippocampi differ from those in nonsclerotic hippocampi in their membrane physiology, having elevated Na+ channels and reduced inwardly rectifying potassium ion channels, and some having the capacity to generate action potentials. They also have reduced glutamine synthetase and increased glutamate dehydrogenase activity. The molecular interface between the astrocyte and microvasculature is also changed. The astrocytes are also associated with increased expression of many molecules normally concerned with immune and inflammatory functions. A speculative mechanism postulates that neuron glia-2-like cells may be involved in creating a high glutamate environment, whereas the function of more typical reactive astrocytes contribute to maintain high extracellular K+ levels; both factors contributing to the hyperexcitability of subicular neurons to generate epileptiform activity. The functions of the astrocyte vascular interface may be more critical to the processes involved in epileptogenesis.
Collapse
Affiliation(s)
- Nihal C de Lanerolle
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | |
Collapse
|
42
|
Amygdala gene expression of NMDA and GABAA receptors in patients with mesial temporal lobe epilepsy. Hippocampus 2010; 22:92-7. [DOI: 10.1002/hipo.20863] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2010] [Indexed: 01/05/2023]
|
43
|
Astrocyte dysfunction in epilepsy. ACTA ACUST UNITED AC 2010; 63:212-21. [DOI: 10.1016/j.brainresrev.2009.10.004] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 10/23/2009] [Accepted: 10/27/2009] [Indexed: 12/18/2022]
|
44
|
Mantegazza M, Curia G, Biagini G, Ragsdale DS, Avoli M. Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol 2010; 9:413-24. [PMID: 20298965 DOI: 10.1016/s1474-4422(10)70059-4] [Citation(s) in RCA: 334] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Voltage-gated sodium channels (VGSCs) are key mediators of intrinsic neuronal and muscle excitability. Abnormal VGSC activity is central to the pathophysiology of epileptic seizures, and many of the most widely used antiepileptic drugs, including phenytoin, carbamazepine, and lamotrigine, are inhibitors of VGSC function. These antiepileptic drugs might also be efficacious in the treatment of other nervous system disorders, such as migraine, multiple sclerosis, neurodegenerative diseases, and neuropathic pain. In this Review, we summarise the structure and function of VGSCs and their involvement in the pathophysiology of several neurological disorders. We also describe the biophysical and molecular bases for the mechanisms of action of antiepileptic VGSC blockers and discuss the efficacy of these drugs in the treatment of epileptic and non-epileptic disorders. Overall, clinical and experimental data indicate that these drugs are efficacious for a range of diseases, and that the development of drugs with enhanced selectivity for specific VGSC isoforms might be an effective and novel approach for the treatment of several neurological diseases.
Collapse
Affiliation(s)
- Massimo Mantegazza
- Dipartimento di Neurofisiopatologia, Fondazione Istituto Neurologico C Besta, Milano, Italy
| | | | | | | | | |
Collapse
|
45
|
Zeng JW, Liu XH, Zhao YD, Xiao Z, He WJ, Hu ZA, Ruan HZ. Role of P2Y1 receptor in astroglia-to-neuron signaling at dorsal spinal cord. J Neurosci Res 2010; 87:2667-76. [PMID: 19396875 DOI: 10.1002/jnr.22108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Several studies have shown that astrocytes release neurotransmitters into the extracellular space that may then activate receptors on nearby neurons. In the present study, the actions of adenosine 5'-O-(2-thiodiphosphate) (ADPbetaS)-activated astrocyte conditioned medium (ADPbetaS-ACM) on cultured dorsal spinal cord neurons were evaluated by using confocal laser scanning microscopy and whole-cell patch-clamp recording. ADPbetaS caused astrocytic glutamate efflux (43 microM), which in turn induced inward currents in dorsal horn neurons with short time in culture. The inward currents were abolished by 2-amino-5-phosphonlanoicacid (AP-5; NMDAR antagonist) plus 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; non-NMDAR antagonist) but were unaffected by MRS2179 (selective P2Y(1) receptor antagonist). Furthermore, N6-methyl-2'-deoxyadenosine-3',5'-bisphosphate (MRS2179) was used to block glutamate release from astrocytes. As a result, ADPbetaS-ACM-induced inward currents in neurons were significantly blocked. On the other hand, both NMDAR and non-NMDAR were involved in ADPbetaS-ACM (concentration was diluted to one-tenth)-evoked small [Ca(2+)](i) transients in neurons. Under this condition, the values of glutamate concentrations in the medium are close to values for extracellular glutamate concentrations under physiological conditions. For this reason, it is possible that astrocyte-derived glutamate is important for distant neuron under physiological conditions at dorsal spinal cord. These observations indicate that astrocytic P2Y(1) receptor activation triggered glutamate efflux, which acts on distant neurons to elevate calcium levels or acts on nearby neurons to evoke inward current. Finally, our results support the conclusion that the astrocytic P2Y(1) receptor plays an important role in bidirectional communication between astrocytes and neurons.
Collapse
Affiliation(s)
- Jun-Wei Zeng
- Department of Neurobiology, College of Medicine, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Hosoi R, Kitano D, Momosaki S, Kuse K, Gee A, Inoue O. Remarkable increase in 14C-acetate uptake in an epilepsy model rat brain induced by lithium-pilocarpine. Brain Res 2009; 1311:158-65. [PMID: 19909730 DOI: 10.1016/j.brainres.2009.10.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 10/20/2022]
Abstract
The present study demonstrates changes in rat brain glial metabolism during the acute phase of epilepsy. Status epilepticus (SE) was induced using the lithium-pilocarpine model. Glial metabolism was measured with (14)C-acetate. Local cerebral blood flow and glucose metabolism were also measured using (14)C-N-isopropyl-p-iodoamphetamine (IMP) and (14)C-2-deoxyglucose (2DG), respectively. At the initiation of the seizure, (14)C-acetate uptake did not change significantly. However, a marked increase was observed 2 h after the pilocarpine injection in all brain regions studied. The increase of brain uptake was transient, and the maximum enhancement was seen at 2 h after the pilocarpine injection. The increase of (14)C-acetate uptake was almost to the same degree in all regions, whereas (14)C-IMP and (14)C-2DG uptakes showed a heterogeneous increase. In the case of (14)C-IMP, the highest increase was observed in the thalamus (280%), and a moderate increase (120 to 150%) was seen in the orbital cortex, cingulate cortex and pyriform cortex. (14)C-2DG uptake increased by 130 to 240% in most regions of the brain, however, an increase of only 40 and 20% was observed in the cerebellum and pons-medulla, respectively. These results demonstrated that glial energy metabolism was markedly enhanced during a prolonged seizure. To our knowledge, this study is the first observation showing large and widespread glial metabolic increases in the rat brain during status epilepticus.
Collapse
Affiliation(s)
- Rie Hosoi
- Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
Xu L, Zeng LH, Wong M. Impaired astrocytic gap junction coupling and potassium buffering in a mouse model of tuberous sclerosis complex. Neurobiol Dis 2009; 34:291-9. [PMID: 19385061 DOI: 10.1016/j.nbd.2009.01.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Abnormalities in astrocytes occur in the brains of patients with Tuberous Sclerosis Complex (TSC) and may contribute to the pathogenesis of neurological dysfunction in this disease. Here, we report that knock-out mice with Tsc1 gene inactivation in glia (Tsc1(GFAP)CKO mice) exhibit decreased expression of the astrocytic connexin protein, Cx43, and an associated impairment in gap junction coupling between astrocytes. Correspondingly, hippocampal slices from Tsc1(GFAP)CKO mice have increased extracellular potassium concentration in response to stimulation. This impaired potassium buffering can be attributed to abnormal gap junction coupling, as a gap junction inhibitor elicits an additional increase in potassium concentration in control, but not Tsc1(GFAP)CKO slices. Furthermore, treatment with a mammalian target of rapamycin inhibitor reverses the deficient Cx43 expression and impaired potassium buffering. These findings suggest that Tsc1 inactivation in astrocytes causes defects in astrocytic gap junction coupling and potassium clearance, which may contribute to epilepsy in Tsc1(GFAP)CKO mice.
Collapse
Affiliation(s)
- Lin Xu
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
48
|
Abstract
Seizures are the result of a sudden and temporary synchronization of neuronal activity, the reason for which is not clearly understood. Astrocytes participate in the control of neurotransmitter storage and neurotransmission efficacy. They provide fuel to neurons, which need a high level of energy to sustain normal and pathological neuronal activities, such as during epilepsy. Various genetic or induced animal models have been developed and used to study epileptogenic mechanisms. Methionine sulfoximine induces both seizures and the accumulation of brain glycogen, which might be considered as a putative energy store to neurons in various animals. Animals subjected to methionine sulfoximine develop seizures similar to the most striking form of human epilepsy, with a long pre-convulsive period of several hours, a long convulsive period during up to 48 hours and a post convulsive period during which they recover normal behavior. The accumulation of brain glycogen has been demonstrated in both the cortex and cerebellum as early as the pre-convulsive period, indicating that this accumulation is not a consequence of seizures. The accumulation results from an activation of gluconeogenesis specifically localized to astrocytes, both in vivo and in vitro. Both seizures and brain glycogen accumulation vary when using different inbred strains of mice. C57BL/6J is the most "resistant" strain to methionine sulfoximine, while CBA/J is the most "sensitive" one. The present review describes the data obtained on methionine sulfoximine dependent seizures and brain glycogen in the light of neurotransmission, highlighting the relevance of brain glycogen content in epilepsies.
Collapse
Affiliation(s)
- Jean-François Cloix
- Laboratoire de Neurobiologie, Université d'Orléans, BP 6759, 45067 Orléans Cedex 2, France.
| | | |
Collapse
|
49
|
Rosati A, Marconi S, Pollo B, Tomassini A, Lovato L, Maderna E, Maier K, Schwartz A, Rizzuto N, Padovani A, Bonetti B. Epilepsy in glioblastoma multiforme: correlation with glutamine synthetase levels. J Neurooncol 2009; 93:319-24. [DOI: 10.1007/s11060-008-9794-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 12/30/2008] [Indexed: 10/21/2022]
|
50
|
Neural-activity-dependent release of S100B from astrocytes enhances kainate-induced gamma oscillations in vivo. J Neurosci 2008; 28:10928-36. [PMID: 18945900 DOI: 10.1523/jneurosci.3693-08.2008] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
S100B is the principal calcium-binding protein of astrocytes and known to be secreted to extracellular space. Although secreted S100B has been reported to promote neurite extension and cell survival via its receptor [receptor for advanced glycation end products (RAGE)], effects of extracellular S100B on neural activity have been mostly unexplored. Here, we demonstrate that secreted S100B enhances kainate-induced gamma oscillations. Local infusion of S100B in S100B(-/-) mice enhanced hippocampal kainate-induced gamma oscillations in vivo. In a complementary set of experiments, local application of anti-S100B antibody in wild-type mice attenuated the gamma oscillations. Both results indicate that the presence of extracellular S100B enhances the kainate-induced gamma oscillations. In acutely isolated hippocampal slices, kainate application increased S100B secretion in a neural-activity-dependent manner. Further pharmacological experiments revealed that S100B secretion was critically dependent on presynaptic release of neurotransmitter and activation of metabotropic glutamate receptor 3. Moreover, the kainate-induced gamma oscillations were attenuated by the genetic deletion or antibody blockade of RAGE in vivo. These results suggest RAGE activation by S100B enhances the gamma oscillations. Together, we propose a novel pathway of neuron-glia communications--astrocytic release of S100B modulates neural network activity through RAGE activation.
Collapse
|