1
|
Jafari-Sabet M, Amiri S, Sheibani M, Fatahi N, Aghamiri H. Cross state-dependent memory retrieval between tramadol and ethanol: involvement of dorsal hippocampal GABAA receptors. Psychopharmacology (Berl) 2024; 241:139-152. [PMID: 37758936 DOI: 10.1007/s00213-023-06469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
RATIONALE Tramadol and ethanol, as psychoactive agents, are often abused. Discovering the molecular pathways of drug-induced memory creation may contribute to preventing drug addiction and relapse. OBJECTIVE The tramadol- and ethanol-induced state-dependent memory (SDM) and cross-SDM retrieval between tramadol and ethanol were examined in this study. Moreover, because of the confirmed involvement of GABAA receptors and GABAergic neurotransmission in memory retrieval impairment, we assessed cross-SDM retrieval between tramadol and ethanol with a specific emphasis on the role of the GABAA receptors. The first hypothesis of this study was the presence of cross-SDM between tramadol and ethanol, and the second hypothesis was related to possible role of GABAA receptors in memory retrieval impairment within the dorsal hippocampus. The cannulae were inserted into the hippocampal CA1 area of NMRI mice, and a step-down inhibitory avoidance test was used to evaluate state dependence and memory recovery. RESULTS The post-training and/or pre-test administration of tramadol (2.5 and 5 mg/kg, i.p.) and/or ethanol (0.5 and 1 g/kg, i.p.) induced amnesia, which was restored after the administration of the drugs 24 h later during the pre-test period, proposing ethanol and tramadol SDM. The pre-test injection of ethanol (0.25 and 0.5 g/kg, i.p.) with tramadol at an ineffective dose (1.25 mg/kg) enhanced tramadol SDM. Moreover, tramadol injection (1.25 and 2.5 mg/kg) with ethanol at the ineffective dose (0.25 g/kg) promoted ethanol SDM. Furthermore, the pre-test intra-CA1 injection of bicuculline (0.0625, 0.125, and 0.25 μg/mouse), a GABAA receptor antagonist, 5 min before the injection of tramadol (5 mg/kg) or ethanol (1 g/kg) inhibited tramadol- and ethanol-induced SDM dose-dependently. CONCLUSION The findings strongly confirmed cross-SDM between tramadol and ethanol and the critical role of dorsal hippocampal GABAA receptors in the cross-SDM between tramadol and ethanol.
Collapse
Affiliation(s)
- Majid Jafari-Sabet
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Shiva Amiri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Navid Fatahi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Helia Aghamiri
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Pereira AG, Poli A, Matheus FC, de Bortoli da Silva L, Fadanni GP, Izídio GS, Latini A, Prediger RD. Temporal development of neurochemical and cognitive impairments following reserpine administration in rats. Behav Brain Res 2020; 383:112517. [DOI: 10.1016/j.bbr.2020.112517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/28/2022]
|
3
|
Sun W, Li X, Tang C, An L. Acute Low Alcohol Disrupts Hippocampus-Striatum Neural Correlate of Learning Strategy by Inhibition of PKA/CREB Pathway in Rats. Front Pharmacol 2018; 9:1439. [PMID: 30574089 PMCID: PMC6291496 DOI: 10.3389/fphar.2018.01439] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/22/2018] [Indexed: 11/30/2022] Open
Abstract
The hippocampus and striatum guide place-strategy and response-strategy learning, respectively, and they have dissociable roles in memory systems, which could compensate in case of temporary or permanent damage. Although acute alcohol (AA) treatment had been shown to have adverse effects on hippocampal function, whether it causes the functional compensation and the underlying mechanisms is unknown. In this study, rats treated with a low dose of AA avoided a hippocampus-dependent spatial strategy, instead preferring a striatum-dependent response strategy. Consistently, the learning-induced increase in hippocampal, but not striatal, pCREB was rendered less pronounced due to diminished activity of pPKA, but not pERK or pCaMKII. As rats approached the turn-decision area, Sp-cAMP, a PKA activator, was found to mitigate the inhibitory effect of AA on intra- and cross-structure synchronized neuronal oscillations, and rescue response-strategy bias and spatial learning deficits. Our study provides strong evidence of the critical link between neural couplings and strategy selection. Moreover, the PKA/CREB-signaling pathway is involved in the suppressive effect of AA on neural correlates of place-learning strategy. The novel important evidence provided here shows the functional couplings between the hippocampus and striatum in spatial learning processing and suggests possible avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Wei Sun
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoliang Li
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunzhi Tang
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei An
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.,College of Acupuncture-Moxibustion and Orthopedics, Guiyang University of Chinese Medicine, Guiyang, China.,Department of Physiology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
4
|
Ofogh SN, Rezayof A, Sardari M, Ghasemzadeh Z. Basolateral amygdala CB1 cannabinoid receptors are involved in cross state-dependent memory retrieval between morphine and ethanol. Pharmacol Biochem Behav 2016; 148:92-8. [DOI: 10.1016/j.pbb.2016.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/01/2016] [Accepted: 06/17/2016] [Indexed: 11/30/2022]
|
5
|
Oliveira AC, Pereira MC, Santana LNDS, Fernandes RM, Teixeira FB, Oliveira GB, Fernandes LM, Fontes-Júnior EA, Prediger RD, Crespo-López ME, Gomes-Leal W, Lima RR, Maia CDSF. Chronic ethanol exposure during adolescence through early adulthood in female rats induces emotional and memory deficits associated with morphological and molecular alterations in hippocampus. J Psychopharmacol 2015; 29:712-24. [PMID: 25922423 DOI: 10.1177/0269881115581960] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
There is increasing evidence that heavy ethanol exposure in early life may produce long-lasting neurobehavioral consequences, since brain structural maturation continues until adolescence. It is well established that females are more susceptible to alcohol-induced neurotoxicity and that ethanol consumption is increasing among women, especially during adolescence. In the present study, we investigated whether chronic ethanol exposure during adolescence through early adulthood in female rats may induce hippocampal histological damage and neurobehavioral impairments. Female rats were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) by gavage from the 35(th)-90(th) day of life. Ethanol-exposed animals displayed reduced exploration of the central area and increased number of fecal boluses in the open field test indicative of anxiogenic responses. Moreover, chronic high ethanol exposure during adolescence induced marked impairments on short-term memory of female rats addressed on social recognition and step-down inhibitory avoidance tasks. These neurobehavioral deficits induced by ethanol exposure during adolescence through early adulthood were accompanied by the reduction of hippocampal formation volume as well as the loss of neurons, astrocytes and microglia cells in the hippocampus. These results indicate that chronic high ethanol exposure during adolescence through early adulthood in female rats induces long-lasting emotional and memory deficits associated with morphological and molecular alterations in the hippocampus.
Collapse
Affiliation(s)
- Ana Ca Oliveira
- Laboratory of Functional and Structural Biology, Federal University of Pará, Belém-Pará, Brazil Laboratory of Experimental Neuroprotection and Neuroregeneration, Federal University of Pará, Belém-Pará, Brazil
| | - Maria Cs Pereira
- Laboratory of Pharmacology of Inflammation and Behavior, Federal University of Pará, Belém-Pará, Brazil
| | | | - Rafael M Fernandes
- Laboratory of Functional and Structural Biology, Federal University of Pará, Belém-Pará, Brazil
| | - Francisco B Teixeira
- Laboratory of Functional and Structural Biology, Federal University of Pará, Belém-Pará, Brazil
| | - Gedeão B Oliveira
- Laboratory of Pharmacology of Inflammation and Behavior, Federal University of Pará, Belém-Pará, Brazil
| | - Luanna Mp Fernandes
- Laboratory of Functional and Structural Biology, Federal University of Pará, Belém-Pará, Brazil Laboratory of Pharmacology of Inflammation and Behavior, Federal University of Pará, Belém-Pará, Brazil
| | - Enéas A Fontes-Júnior
- Laboratory of Pharmacology of Inflammation and Behavior, Federal University of Pará, Belém-Pará, Brazil Laboratory of Molecular Pharmacology, Federal University of Pará, Belém-Pará, Brazil
| | - Rui D Prediger
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis-Santa Catarina, Brazil
| | - Maria E Crespo-López
- Laboratory of Molecular Pharmacology, Federal University of Pará, Belém-Pará, Brazil
| | - Walace Gomes-Leal
- Laboratory of Experimental Neuroprotection and Neuroregeneration, Federal University of Pará, Belém-Pará, Brazil
| | - Rafael R Lima
- Laboratory of Functional and Structural Biology, Federal University of Pará, Belém-Pará, Brazil
| | | |
Collapse
|
6
|
Lucena GM, Prediger RD, Silva MV, Santos SN, Silva JFB, Santos ARS, Azevedo MS, Ferreira VM. Ethanolic extract from bulbs of Cipura paludosa reduced long-lasting learning and memory deficits induced by prenatal methylmercury exposure in rats. Dev Cogn Neurosci 2012; 3:1-10. [PMID: 23245215 DOI: 10.1016/j.dcn.2012.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 01/12/2023] Open
Abstract
Previous studies from our group have indicated important biological properties of the ethanolic extract (EE) and isolated compounds from the bulbs of Cipura paludosa (Iridaceae), a native plant widely distributed in northern Brazil. In the present study, the effects of chronic treatment with the EE on the memory of adult rats exposed to methylmercury (MeHg) during early development were assessed. Pregnant rats were treated by gavage with a single dose of MeHg (8 mg/kg) on gestational day 15, the developmental stage critical for cortical neuron proliferation. Adult offspring were administered orally with the EE of C. paludosa (1, 10 or 100mg/kg) over 14 consecutive days. EE improved short-term social memory in a specific manner and facilitated the step-down inhibitory avoidance of short- and long-term memory. MeHg exposure induced pronounced long-lasting impairments in social recognition memory that were improved by EE. Moreover, EE significantly increased the step-down latencies specifically during the short-term session in prenatal MeHg-exposed rats. These results demonstrate that EE reduced the long-lasting short-term learning and memory deficits induced by MeHg exposure. These findings may encourage further studies evaluating the cognitive enhancing properties of C. paludosa and its components on neuropathological conditions associated with exposure to environmental contaminants.
Collapse
|
7
|
Transport of animals between rooms: A little-noted aspect of laboratory procedure that may interfere with memory. Behav Processes 2011; 88:12-9. [DOI: 10.1016/j.beproc.2011.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 05/31/2011] [Accepted: 06/20/2011] [Indexed: 11/19/2022]
|
8
|
Mathiasen JR, DiCamillo A. Social recognition assay in the rat. CURRENT PROTOCOLS IN NEUROSCIENCE 2011; Chapter 8:Unit 8.5I. [PMID: 20938925 DOI: 10.1002/0471142301.ns0805is53] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neuropsychiatric disorders encompass a broad patient population in a variety of disease states across all age groups and are often accompanied by deficits in short-term/working memory. However, most preclinical models that allow for an assessment of cognitive enhancement do not provide robust behavioral readouts with a level of throughput sufficient to support modern drug discovery efforts. The rat social recognition assay presented in this unit is one exception that has been increasingly employed to test new chemical entities for enhancing cognitive activity. The test is simple in design and takes advantage of the spontaneous behavior of rats to investigate conspecifics. The protocol in this unit is designed to evaluate the effects of a test substance on the short-term/working memory of adult male rats employing 30-min or 2-hr pretreatment times.
Collapse
|
9
|
Robinson L, Platt B, Riedel G. Involvement of the cholinergic system in conditioning and perceptual memory. Behav Brain Res 2011; 221:443-65. [PMID: 21315109 DOI: 10.1016/j.bbr.2011.01.055] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 01/29/2011] [Indexed: 01/07/2023]
Abstract
The cholinergic systems play a pivotal role in learning and memory, and have been the centre of attention when it comes to diseases containing cognitive deficits. It is therefore not surprising, that the cholinergic transmitter system has experienced detailed examination of its role in numerous behavioural situations not least with the perspective that cognition may be rescued with appropriate cholinergic 'boosters'. Here we reviewed the literature on (i) cholinergic lesions, (ii) pharmacological intervention of muscarinic or nicotinic system, or (iii) genetic deletion of selective receptor subtypes with respect to sensory discrimination and conditioning procedures. We consider visual, auditory, olfactory and somatosensory processing first before discussing more complex tasks such as startle responses, latent inhibition, negative patterning, eye blink and fear conditioning, and passive avoidance paradigms. An overarching reoccurring theme is that lesions of the cholinergic projection neurones of the basal forebrain impact negatively on acquisition learning in these paradigms and blockade of muscarinic (and to a lesser extent nicotinic) receptors in the target structures produce similar behavioural deficits. While these pertain mainly to impairments in acquisition learning, some rare cases extend to memory consolidation. Such single case observations warranted replication and more in-depth studies. Intriguingly, receptor blockade or receptor gene knockout repeatedly produced contradictory results (for example in fear conditioning) and combined studies, in which genetically altered mice are pharmacological manipulated, are so far missing. However, they are desperately needed to clarify underlying reasons for these contradictions. Consistently, stimulation of either muscarinic (mainly M(1)) or nicotinic (predominantly α7) receptors was beneficial for learning and memory formation across all paradigms supporting the notion that research into the development and mechanisms of novel and better cholinomimetics may prove useful in the treatment of neurodegenerative or psychiatric disorders with cognitive endophenotypes.
Collapse
Affiliation(s)
- Lianne Robinson
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | | | | |
Collapse
|
10
|
Tadaiesky MT, Dombrowski PA, Da Cunha C, Takahashi RN. Effects of SR141716A on Cognitive and Depression-Related Behavior in an Animal Model of Premotor Parkinson's Disease. PARKINSONS DISEASE 2010; 2010:238491. [PMID: 20976080 PMCID: PMC2957172 DOI: 10.4061/2010/238491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 07/16/2010] [Accepted: 08/31/2010] [Indexed: 11/20/2022]
Abstract
A previous study from our laboratory revealed that moderate nigral dopaminergic degeneration caused emotional and cognitive deficits in rats, paralleling early signs of Parkinson's disease. Recent evidence suggests that the blockade of cannabinoid CB1 receptors might be beneficial to alleviate motor inhibition typical of Parkinson's disease. Here, we investigated whether antagonism of CB1 receptors would improve emotional and cognitive deficits in a rat model of premotor Parkinson's disease. Depression-like behavior and cognition were assessed with the forced swim test and the social recognition test, respectively. Confirming our previous study, rats injected with 6-hydroxydopamine in striatum presented emotional and cognitive alterations which were improved by acute injection of SR141716A. HPLC analysis of monoamine levels demonstrated alterations in the striatum and prefrontal cortex after SR141716A injection. These findings suggest a role for CB1 receptors in the early symptoms caused by degeneration of dopaminergic neurons in the striatum, as observed in Parkinson's disease.
Collapse
Affiliation(s)
- M T Tadaiesky
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Trindade, Bloco D/CCB, P.O. Box 476, 88040-970 Florianópolis, SC, Brazil
| | | | | | | |
Collapse
|
11
|
Moura PJ, Meirelles ST, Xavier GF. Long-term social recognition memory in adult male rats: factor analysis of the social and non-social behaviors. Braz J Med Biol Res 2010; 43:663-76. [PMID: 20512300 DOI: 10.1590/s0100-879x2010007500047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 05/12/2010] [Indexed: 11/22/2022] Open
Abstract
A modified version of the intruder-resident paradigm was used to investigate if social recognition memory lasts at least 24 h. One hundred and forty-six adult male Wistar rats were used. Independent groups of rats were exposed to an intruder for 0.083, 0.5, 2, 24, or 168 h and tested 24 h after the first encounter with the familiar or a different conspecific. Factor analysis was employed to identify associations between behaviors and treatments. Resident rats exhibited a 24-h social recognition memory, as indicated by a 3- to 5-fold decrease in social behaviors in the second encounter with the same conspecific compared to those observed for a different conspecific, when the duration of the first encounter was 2 h or longer. It was possible to distinguish between two different categories of social behaviors and their expression depended on the duration of the first encounter. Sniffing the anogenital area (49.9% of the social behaviors), sniffing the body (17.9%), sniffing the head (3%), and following the conspecific (3.1%), exhibited mostly by resident rats, characterized social investigation and revealed long-term social recognition memory. However, dominance (23.8%) and mild aggression (2.3%), exhibited by both resident and intruders, characterized social agonistic behaviors and were not affected by memory. Differently, sniffing the environment (76.8% of the non-social behaviors) and rearing (14.3%), both exhibited mostly by adult intruder rats, characterized non-social behaviors. Together, these results show that social recognition memory in rats may last at least 24 h after a 2-h or longer exposure to the conspecific.
Collapse
Affiliation(s)
- P J Moura
- Departamento de Fisiologia, Universidade de São Paulo, SP, Brasil
| | | | | |
Collapse
|
12
|
Kouvelas D, Pourzitaki C, Papazisis G, Tsilkos K, Chourdakis M, Kraus MM. Chronic aortic denervation decreases anxiety and impairs social memory in rats. Life Sci 2009; 85:602-8. [PMID: 19751745 DOI: 10.1016/j.lfs.2009.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 08/31/2009] [Accepted: 09/02/2009] [Indexed: 11/16/2022]
Abstract
AIMS The present study investigates anxiety-like behaviour and social cognitive performance in rats with chronic aortic denervation. MAIN METHODS The aortic depressor nerve was bilaterally transected in Wistar rats, causing an almost complete disruption of baroreceptors. Bilateral aortic denervated (bAD), sham-operated (SHAM), and intact (CTRL) rats performed an elevated plus-maze test and an olfactory social memory test, one and three months after operation. Blood pressure and heart rate were monitored in all animals. KEY FINDINGS Systolic blood pressure, blood pressure lability and heart rate were elevated in bAD rats compared to SHAM and CTRL rats. In the elevated plus-maze test, bAD rats spent clearly more time in investigating open arms and performed more open arm entries than SHAM and CTRL rats during both testing sessions. The olfactory social memory test revealed that acquisition time during first contact with a juvenile rat did not differ between the groups of rats. The recognition time spent by SHAM and CTRL group of rats was distinctly decreased in comparison to the acquisition time, an indication of social memory. bAD rats investigated the juvenile rat during the second contact to a similar extent than during the first contact, both one and three months after denervation. SIGNIFICANCE These results suggest that bilateral aortic denervation induces chronic neurogenic hypertension and elevated blood pressure lability, decreases anxiety-like behaviour and deteriorates social memory in rats while acquiring of social information is not affected.
Collapse
Affiliation(s)
- Dimitrios Kouvelas
- Department of Pharmacology, Aristotle University of Thessaloniki, GR-54006, Thessaloniki, Greece.
| | | | | | | | | | | |
Collapse
|
13
|
Enhancing effect of heroin on social recognition learning in male Sprague-Dawley rats: modulation by heroin pre-exposure. Psychopharmacology (Berl) 2009; 204:413-21. [PMID: 19183963 DOI: 10.1007/s00213-009-1473-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 01/14/2009] [Indexed: 10/21/2022]
Abstract
RATIONALE There is evidence that pre-exposure to drugs of abuse can induce sensitization to several of their effects. OBJECTIVE Four experiments were conducted to investigate the effect of heroin pre-exposure on modulation of memory consolidation as indexed by heroin's action on rate of learning. MATERIALS AND METHODS Male Sprague-Dawley rats were tested on a social recognition learning task which assesses changes in investigation during repeated exposure to the same rat (habituation training: four sessions) and during exposure to a novel rat (dishabituation test). In the first experiment, rats received 0, 0.3, or 1 mg/kg heroin s.c. immediately following each training session, or 1 mg/kg heroin 2 h post-training. In experiments 2 and 3, rats received 1 mg/kg heroin post-training after a 7-day drug-free period from heroin pre-exposure achieved through conditioned place preference (1 mg/kg s.c., 1 injection/day x 4 days) or intravenous self-administration (0.05 mg/kg/infusion i.v., 3 h/day x 9 days) training. In experiment 4, rats received 0, 0.03, 0.3, or 3 mg/kg heroin post-training after a 7-day drug-free period from a regimen of heroin administration (i.e., 1 mg/kg heroin/day s.c. x 7 days) that induced locomotor sensitization. RESULTS Post-training administration of heroin enhanced social recognition learning in a dose- and time-dependent manner. Importantly, no regimen of heroin pre-exposure significantly altered this effect of heroin. CONCLUSIONS These results do not support the hypothesis that heroin pre-exposure leads to sensitization to its effect on memory consolidation of non-drug-related learning. However, this requires further testing using alternative heroin pre-exposure regimens, a wider range of post-training heroin doses, as well as other types of learning tasks.
Collapse
|
14
|
Prediger RDS, Fernandes MS, Rial D, Wopereis S, Pereira VS, Bosse TS, Da Silva CB, Carradore RS, Machado MS, Cechinel-Filho V, Costa-Campos L. Effects of acute administration of the hydroalcoholic extract of mate tea leaves (Ilex paraguariensis) in animal models of learning and memory. JOURNAL OF ETHNOPHARMACOLOGY 2008; 120:465-473. [PMID: 18948179 DOI: 10.1016/j.jep.2008.09.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 08/15/2008] [Accepted: 09/21/2008] [Indexed: 05/27/2023]
Abstract
AIM OF THE STUDY Ilex paraguariensis St. Hilaire (Aquifoliaceae) is a plant widely cultivated in South America that is used to prepare a tea-like beverage with a reputation to improve cognitive function, a response that has been attributed to the constituents of the leaves, especially caffeine. Our previous study indicated that the hydroalcoholic extract of Ilex paraguariensis presents an antiparkinsonian profile in reserpine- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP)-treated rodents. MATERIALS AND METHODS In the present study, the effects of the hydroalcoholic extract of Ilex paraguariensis on the short- and long-term learning and memory of rats were assessed with the social recognition, Morris water maze, and step-down inhibitory avoidance tasks. RESULTS A preliminary HPLC fingerprint of the plant extract confirmed the presence of caffeine (the major compound), rutin and kaemperol, and revealed the absence of detectable concentrations of caffeic acid, quercetin and ursolic acid. Acute pre-training intraperitoneal (i.p.) or oral administration of the extract of Ilex paraguariensis improved the short-term social memory in a specific manner as well as facilitated the step-down inhibitory avoidance short-term memory evaluated 1.5h after training. Moreover, a synergistic response was observed following the co-administration of 'non-effective' doses of caffeine and Ilex paraguariensis in the social memory. In contrast, pre-training administration of hydroalcoholic extract of Ilex paraguariensis did not alter the step-down inhibitory avoidance long-term memory evaluated 24h after training, while the highest dose tested (250 mg/kg, i.p.) disrupted the animals' performance in a cued version of the Morris water maze. CONCLUSION These results partly substantiate the traditional use of mate tea for improvement of cognition indicating that acute administration of hydroalcoholic extract of Ilex paraguariensis differentially modulates short- and long-term learning and memory in rats probably through its antagonist's action on adenosine receptors.
Collapse
Affiliation(s)
- Rui D S Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Trindade, Florianópolis-SC 88049-900, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Alcohol-induced retrograde memory impairment in rats: prevention by caffeine. Psychopharmacology (Berl) 2008; 201:361-71. [PMID: 18758756 DOI: 10.1007/s00213-008-1294-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 07/30/2008] [Indexed: 01/12/2023]
Abstract
RATIONALE Ethanol and caffeine are two of the most widely consumed drugs in the world, often used in the same setting. Animal models may help to understand the conditions under which incidental memories formed just before ethanol intoxication might be lost or become difficult to retrieve. OBJECTIVES Ethanol-induced retrograde amnesia was investigated using a new odor-recognition test. MATERIALS AND METHODS Rats thoroughly explored a wood bead taken from the cage of another rat, and habituated to this novel odor (N1) over three trials. Immediately following habituation, rats received saline, 25 mg/kg pentylenetetrazol (a seizure-producing agent known to cause retrograde amnesia) to validate the test, 1.0 g/kg ethanol, or 3.0 g/kg ethanol. The next day, they were presented again with N1 and also a bead from a new rat's cage (N2). RESULTS Rats receiving saline or the lower dose of ethanol showed overnight memory for N1, indicated by preferential exploration of N2 over N1. Rats receiving pentylenetetrazol or the higher dose of ethanol appeared not to remember N1, in that they showed equal exploration of N1 and N2. Caffeine (5 mg/kg), delivered either 1 h after the higher dose of ethanol or 20 min prior to habituation to N1, negated ethanol-induced impairment of memory for N1. A combination of a phosphodiesterase-5 inhibitor and an adenosine A(2A) antagonist, mimicking two major mechanisms of action of caffeine, likewise prevented the memory impairment, though either drug alone had no such effect. Binge alcohol can induce retrograde, caffeine-reversible disruption of social odor memory storage or recall.
Collapse
|
16
|
Abstract
Although ethanol has been shown to impair acquisition of memory, its effect on consolidated memories is not clear. Recent reports revealed that memory retrieval converted consolidated memory into a labile state and initiated the reconsolidation process. In the present study, we have demonstrated the effect of ethanol on reactivated fear memory. We used contextual fear conditioning where rats were conditioned with mild footshock, re-exposed to the training context for 2 min, immediately injected with ethanol or saline, and finally tested 48 h after re-exposure. Ethanol-treated groups demonstrated longer freezing and the effect lasted for 2 weeks. Reactivation is necessary for this effect. Injection of ethanol itself did not induce a fearful response. Reactivated and ethanol-treated rats exhibited longer freezing than non-reactivated controls, suggesting that ethanol does not inhibit the memory decline but facilitates the fear memory. Two minute re-exposures induced no or little extinction. The effect of ethanol was specific for 2-min reactivation, which induces reconsolidation. Moreover, we found that picrotoxin inhibited the memory enhancement that was produced by ethanol administered just after the reactivation. These studies demonstrate that ethanol enhances reactivated contextual fear memories via activation of GABA(A) receptors.
Collapse
|
17
|
Nandrolone abuse decreases anxiety and impairs memory in rats via central androgenic receptors. Int J Neuropsychopharmacol 2008; 11:925-34. [PMID: 18405416 DOI: 10.1017/s1461145708008754] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Anabolic androgenic steroids (AASs) affect areas of the central nervous system, which are involved in emotional and cognitive responses such as sexuality, anxiety, and memory. In the present study we imitated the abuse of AASs by administering high doses of the AAS nandrolone decanoate (ND) to rats. Thereafter rats were exposed to an elevated plus-maze and an olfactory social memory test to evaluate their anxiety-like and cognitive behaviour. To reveal whether these emotional and cognitive changes evoked by ND were caused via direct activation of androgenic receptors (ARs) in the brain, the AR antagonist flutamide (FL) was administered intracerebroventricularly (i.c.v.). Male rats were randomly divided in four groups, one group received 15 mg/kg ND subcutaneously, once daily for 6 wk (ND group). In the second group, in addition to ND, a daily dose of 5 microg FL was injected i.c.v. also for 6 wk (ND+FL group). The third group of rats received only FL and in the control group the vehicle was injected. The ND group clearly spent more time investigating the open arms in the maze test and recognizing the juvenile during the olfactory social memory test in comparison to the control group. In the ND+FL group rats showed similar emotional behaviour and cognitive ability to that of the control group. Injection of FL alone did not affect either anxiety or memory. These results indicate that repeated, high-dose administration of ND decreases anxiety and impairs memory in rats via direct activation of central ARs.
Collapse
|
18
|
Jones N, Messenger MJ, O'Neill MJ, Oldershaw A, Gilmour G, Simmons RMA, Iyengar S, Libri V, Tricklebank M, Williams SCR. AMPA receptor potentiation can prevent ethanol-induced intoxication. Neuropsychopharmacology 2008; 33:1713-23. [PMID: 17851540 DOI: 10.1038/sj.npp.1301562] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We present a substantial series of behavioral and imaging experiments, which demonstrate, for the first time, that increasing AMPA receptor-mediated neurotransmission via administration of potent and selective biarylsulfonamide AMPA potentiators LY404187 and LY451395 reverses the central effects of an acutely intoxicating dose of ethanol in the rat. Using pharmacological magnetic resonance imaging (phMRI), we observed that LY404187 attenuated ethanol-induced reductions in blood oxygenation level dependent (BOLD) in the anesthetized rat brain. A similar attenuation was apparent when measuring local cerebral glucose utilization (LCGU) via C14-2-deoxyglucose autoradiography in freely moving conscious rats. Both LY404187 and LY451395 significantly and dose-dependently reversed ethanol-induced deficits in both motor coordination and disruptions in an operant task where animals were trained to press a lever for food reward. Both prophylactic and acute intervention treatment with LY404187 reversed ethanol-induced deficits in motor coordination. Given that LY451395 and related AMPA receptor potentiators/ampakines are tolerated in both healthy volunteers and elderly patients, these data suggest that such compounds may form a potential management strategy for acute alcohol intoxication.
Collapse
Affiliation(s)
- Nicholas Jones
- Neuroimaging Research Group, Institute of Psychiatry, Kings College London, London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Loiseau F, Dekeyne A, Millan MJ. Pro-cognitive effects of 5-HT6 receptor antagonists in the social recognition procedure in rats: implication of the frontal cortex. Psychopharmacology (Berl) 2008; 196:93-104. [PMID: 17922111 DOI: 10.1007/s00213-007-0934-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 08/29/2007] [Indexed: 10/22/2022]
Abstract
RATIONALE 5-HT6 receptor antagonists improve cognitive processes in rodents. However, their site(s) of action remains unexplored and their influence upon social memory has been little investigated. OBJECTIVES We examined the influence of 5-HT6 receptor ligands upon social memory in rats by use of systemic or local administration into the frontal cortex (FCX), striatum, or nucleus basalis magnocellularis (NBM). MATERIALS AND METHODS The social recognition test is based upon the ability of an adult rat to recognize a younger conspecific during the second of two 5-min sessions. In a procedure without an inter-session interval, the actions of drugs alone and the ability to reverse "amnesia" induced by the muscarinic antagonist, scopolamine (1.25 mg/kg, s.c.), were examined. The potential promnesic effect of drugs was also investigated in another procedure where a spontaneous deficit of recognition was induced by a 120-min inter-session interval. RESULTS The 5-HT6 receptor agonist, WAY-181187 (10.0 mg/kg, i.p.), significantly impaired social recognition. This effect was abolished by the 5-HT6 receptor antagonists, SB-271046 (20.0 mg/kg, i.p.) and SB-258585 (10.0 mg/kg, i.p.). These agents also abolished scopolamine-induced amnesia (10.0 and 2.5 mg/kg, i.p., respectively) and reversed the delay-induced deficit (10.0-20.0 and 2.5-10.0 mg/kg, i.p., respectively). WAY-181187 into the FCX significantly impaired social recognition (0.16-0.63 microg/side). Conversely, SB-271046 into the FCX (2.5-5.0 microg/side), but neither into the striatum nor the NBM, significantly reversed spontaneous deficit. CONCLUSION These results indicate that 5-HT6 receptors modulate social recognition by actions in the FCX and underpin their pertinence as targets for the treatment of psychiatric disorders in which cognitive function is compromised.
Collapse
Affiliation(s)
- Florence Loiseau
- Department of Psychopharmacology, Institut de Recherches Servier, 125 Chemin de ronde, 78290, Croissy-sur-Seine, Paris, France
| | | | | |
Collapse
|
20
|
Rizhova L, Klementiev B, Cambon K, Venero C, Sandi C, Vershinina E, Vaudano E, Berezin V, Bock E. Effects of P2, a peptide derived from a homophilic binding site in the neural cell adhesion molecule on learning and memory in rats. Neuroscience 2007; 149:931-42. [DOI: 10.1016/j.neuroscience.2007.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 08/02/2007] [Accepted: 08/28/2007] [Indexed: 10/23/2022]
|
21
|
Kameda SR, Frussa-Filho R, Carvalho RC, Takatsu-Coleman AL, Ricardo VP, Patti CL, Calzavara MB, Lopez GB, Araujo NP, Abílio VC, Ribeiro RDA, D'Almeida V, Silva RH. Dissociation of the effects of ethanol on memory, anxiety, and motor behavior in mice tested in the plus-maze discriminative avoidance task. Psychopharmacology (Berl) 2007; 192:39-48. [PMID: 17242924 DOI: 10.1007/s00213-006-0684-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 12/18/2006] [Indexed: 10/23/2022]
Abstract
RATIONALE Several studies have shown the amnestic effects of ethanol (ETOH). However, while memory tasks in rodents can be markedly influenced by anxiety-like behavior and motor function, ETOH induces anxiolysis and different effects on locomotion, depending on the dose. OBJECTIVE Verify the effects of ETOH in mice tested in the plus-maze discriminative avoidance task (PMDAT) concomitantly evaluating memory, anxiety-like behavior, and motor behavior. METHODS ETOH acutely or repeatedly treated mice were submitted to the training session in a modified elevated plus-maze with two open and two enclosed arms, aversive stimuli in one of the enclosed arms, and tested 24 h later without aversive stimuli. Learning/memory, locomotion, and anxiety-related behavior were evaluated by aversive arm exploration, number of entries in all the arms and open arms exploration, respectively. RESULTS Acute ETOH: (1) either increased (1.2-1.8 g/kg) or decreased (3.0 g/kg) locomotion; (2) decreased anxiety levels (1.2-3.0 g/kg); and (3) induced learning deficits (1.2-3.0 g/kg) and memory deficits (0.3-3.0 g/kg). After repeated treatment, sensitization and tolerance to hyperlocomotion and anxiolysis induced by 1.8 g/kg ETOH were observed, respectively, and tolerance to the amnestic effect of 0.6 (but not 1.8) g/kg ETOH occurred. CONCLUSION Neither the anxiolytic nor the locomotor effects of ETOH seem to be related to its amnestic effect in the PMDAT. Additionally, data give support to the effectiveness of the PMDAT in simultaneously evaluating learning, memory, anxiety-like behavior, and motor activity by different parameters. Possible relationships between the behavioral alterations found are discussed.
Collapse
Affiliation(s)
- S R Kameda
- Departamento de Pediatria, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rezayof A, Motevasseli T, Rassouli Y, Zarrindast MR. Dorsal hippocampal dopamine receptors are involved in mediating ethanol state-dependent memory. Life Sci 2007; 80:285-92. [PMID: 17046026 DOI: 10.1016/j.lfs.2006.09.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2006] [Revised: 09/11/2006] [Accepted: 09/13/2006] [Indexed: 10/24/2022]
Abstract
In the present study, the effects of bilateral injections of dopaminergic agents into the hippocampal CA1 regions (intra-CA1) on ethanol (EtOH) state-dependent memory were examined in mice. A single-trial step-down passive avoidance task was used for the assessment of memory retention in adult male NMRI mice. Pre-training intra-peritoneal (i.p.) administration of EtOH (0.25, 0.5 and 1 g/kg) dose dependently induced impairment of memory retention. Pre-test administration of EtOH (0.5 g/kg)-induced state-dependent retrieval of the memory acquired under pre-training EtOH (0.5 g/kg) influence. Intra-CA1 administration of the dopamine D(1) receptor agonist, SKF 38393 (0.5, 1 and 2 g/mouse) or the dopamine D(2) receptor agonist, quinpirole (0.25, 0.5 and 1 microg/mouse) alone cannot affect memory retention. While, pre-test intra-CA1 injection of SKF 38393 (2 microg/mouse, intra-CA1) or quinpirole (0.25, 0.5 and 1 microg/mouse, intra-CA1) improved pre-training EtOH (0.5 g/kg)-induced retrieval impairment. Moreover, pre-test administration of SKF 38393 (0.5, 1 and 2 microg/mouse, intra-CA1) or quinpirole (0.5 and 1 microg/mouse, intra-CA1) with an ineffective dose of EtOH (0.25 g/kg) significantly restored the retrieval and induced EtOH state-dependent memory. Furthermore, pre-training injection of the dopamine D(1) receptor antagonist, SCH 23390 (4 microg/mouse), but not the dopamine D(2) receptor antagonist, sulpiride, into the CA1 regions suppressed the learning of a single-trial passive avoidance task. Pre-test intra-CA1 injection of SCH 23390 (2 and 4 microg/mouse, intra-CA1) or sulpiride (2.5 and 5 microg/mouse, intra-CA1) 5 min before the administration of EtOH (0.5 g/kg, i.p.) dose dependently inhibited EtOH state-dependent memory. These findings implicate the involvement of a dorsal hippocampal dopaminergic mechanism in EtOH state-dependent memory and also it can be concluded that there may be a cross-state dependency between EtOH and dopamine.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Avoidance Learning/drug effects
- Central Nervous System Depressants/pharmacology
- Dose-Response Relationship, Drug
- Drug Synergism
- Ethanol/pharmacology
- Hippocampus/drug effects
- Hippocampus/metabolism
- Injections, Intraperitoneal
- Injections, Intraventricular
- Male
- Memory/drug effects
- Mice
- Mice, Inbred Strains
- Quinpirole/pharmacology
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/metabolism
- Sulpiride/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Ameneh Rezayof
- School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | | | | | | |
Collapse
|
23
|
Gotoh N, Watanabe H, Osato R, Inagaki K, Iwasawa A, Wada S. Novel approach on the risk assessment of oxidized fats and oils for perspectives of food safety and quality. I. Oxidized fats and oils induces neurotoxicity relating pica behavior and hypoactivity. Food Chem Toxicol 2006; 44:493-8. [PMID: 16253412 DOI: 10.1016/j.fct.2005.08.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 07/21/2005] [Accepted: 08/29/2005] [Indexed: 11/27/2022]
Abstract
Food poisoning caused by deteriorated fat and oil in instant noodles was first reported in Japan approximately 40 years ago. In these cases, many people developed neurotoxic symptoms such as emesis and discomfort. The degree of oxidation of the fat and oil in the instant noodles that induced food poisoning was at least 100 meq/kg in peroxide value (PV). No general toxicity studies with animals, however, have examined the toxicity of fat and oil oxidized to that extent. In this study, pica behavior, a behavior characterized by eating a nonfood material such as kaolin and that relates to the degree of discomfort in animals, and alterations of locomotor activity of rats eating deteriorated fat and oil were measured. The groups fed fat and oil with at least 138.5 meq/kg PV consumed significantly more kaolin compared to the control group. Furthermore, rats that ate deteriorated fat and oil with at least 107.2 meq/kg PV had significantly decreased locomotor activity compared to control rats. These phenomena suggest that oxidized fat and oil with at least 100 meq/kg PV induce neurotoxicity. The toxicity of oxidized fat and oil has only been addressed using general toxicity tests, but the present results reveal the importance of evaluating toxicity by using other measures.
Collapse
Affiliation(s)
- N Gotoh
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Sanchis-Segura C, Spanagel R. Behavioural assessment of drug reinforcement and addictive features in rodents: an overview. Addict Biol 2006; 11:2-38. [PMID: 16759333 DOI: 10.1111/j.1369-1600.2006.00012.x] [Citation(s) in RCA: 445] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Some psychoactive drugs are abused because of their ability to act as reinforcers. As a consequence behavioural patterns (such as drug-seeking/drug-taking behaviours) are promoted that ensure further drug consumption. After prolonged drug self-administration, some individuals lose control over their behaviour so that these drug-seeking/taking behaviours become compulsive, pervading almost all life activities and precipitating the loss of social compatibility. Thus, the syndrome of addictive behaviour is qualitatively different from controlled drug consumption. Drug-induced reinforcement can be assessed directly in laboratory animals by either operant or non-operant self-administration methods, by classical conditioning-based paradigms such as conditioned place preference or sign tracking, by facilitation of intracranial electric self-stimulation, or, alternatively by drug-induced memory enhancement. In contrast, addiction cannot be modelled in animals, at least as a whole, within the constraints of the laboratory. However, various procedures have been proposed as possible rodent analogues of addiction's major elements including compulsive drug seeking, relapse, loss of control/impulsivity, and continued drug consumption despite negative consequences. This review provides an extensive overview and a critical evaluation of the methods currently used for studying drug-induced reinforcement as well as specific features of addictive behaviour. In addition, comic strips that illustrate behavioural methods used in the drug abuse field are provided given for free download under http://www.zi-mannheim/psychopharmacology.de.
Collapse
|
25
|
Prediger RDS, De-Mello N, Takahashi RN. Pilocarpine improves olfactory discrimination and social recognition memory deficits in 24 month-old rats. Eur J Pharmacol 2006; 531:176-82. [PMID: 16438956 DOI: 10.1016/j.ejphar.2005.12.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 11/30/2005] [Accepted: 12/19/2005] [Indexed: 10/25/2022]
Abstract
Muscarinic receptor agonists have been suggested as potential drugs to counteract age-related cognitive decline since critical changes in cholinergic system occur with aging. Recently, we demonstrated that single administration of the non-selective muscarinic receptor agonist pilocarpine prevents age-related spatial learning impairments in rats. In addition, increasing evidence suggests that areas in the central nervous system processing olfactory information are affected at the early stages of age-related diseases, such as Alzheimer's disease, and that specific olfactory testing may represent an important tool in the diagnosis of these diseases. In the present study, olfactory discrimination and short-term social memory of 3 and 24 month-old rats were assessed with the olfactory discrimination and social recognition memory tasks, respectively. The actions of the repeated treatment with pilocarpine (30 mg/kg, i.p.; once per day for 21 days) in relation to age-related effects on olfactory and cognitive functions were also studied. The 24 month-old rats exhibited significantly impaired performance in both models, demonstrating deficits in their odour discrimination and in their ability to recognize a juvenile rat after a short period of time. The treatment with pilocarpine improved in a specific manner these age-related deficits in 24 month-old rats without altering their motor performance. The present results extend the notion of the participation of muscarinic receptors in control of olfactory functions and reinforce the potential of muscarinic receptor agonists for the treatment of age-related cognitive decline.
Collapse
Affiliation(s)
- Rui D S Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, UFSC, Campus Trindade, 88049-900, Florianópolis-SC, Brazil
| | | | | |
Collapse
|
26
|
Prediger RDS, Da Cunha C, Takahashi RN. Antagonistic interaction between adenosine A2A and dopamine D2 receptors modulates the social recognition memory in reserpine-treated rats. Behav Pharmacol 2005; 16:209-18. [PMID: 15961960 DOI: 10.1097/01.fbp.0000166825.62130.9a] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Increasing evidence suggests that antagonistic interactions between specific subtypes of adenosine and dopamine receptors in the basal ganglia are involved in the control of motor activity. However, there are few studies investigating this interaction in other brain regions and its role in additional functions. In the present study, we evaluated whether reserpine-treated rats (1.0 mg/kg, i.p.) exhibit altered social recognition memory abilities. The effects of acute administration of the dopamine receptor agonists 7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3 benzazepine (SKF 38393, dopamine D(1) receptor agonist) and quinpirole (dopamine D(2) receptor agonist), together with the adenosine receptor antagonists caffeine (non-selective), 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, adenosine A(1) receptor antagonist) and 4-(2-[7-amino-2-{2-furyl}{1,2,4}triazolo-{2,3-a}{1,3,5}triazin-5-yl-amino]ethyl)phenol (ZM241385, adenosine A(2A) receptor antagonist), were also investigated. Twenty-four hours after treatment, reserpine-treated rats exhibited a significant disruption in the ability to recognize a juvenile rat after a short period of time. These animals did not show any motor deficit. The social recognition disruption induced by reserpine was reversed by acute treatment with quinpirole (0.05-0.1 mg/kg, i.p.), caffeine (10.0-30.0 mg/kg, i.p.) or ZM241385 (0.5-1.0 mg/kg, i.p.), but not with SKF 38393 (0.5-3.0 mg/kg, i.p.) or DPCPX (0.5-3.0 mg/kg, i.p.). Moreover, a synergistic response was observed following the co-administration of 'non-effective' doses of ZM241385 (0.1 mg/kg, i.p.) and quinpirole (0.01 mg/kg, i.p.). These results reinforce and extend the notion of antagonistic interactions between adenosine and dopamine receptors, and demonstrate, for the first time, that the blockade of adenosine A(2A) receptors and the activation of dopamine D(2) receptors can reverse the social recognition deficits induced by reserpine in rats.
Collapse
Affiliation(s)
- R D S Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, UFSC, Florianópolis-SC, Brazil
| | | | | |
Collapse
|
27
|
Manrique HM, Miquel M, Aragon CMG. Brain catalase mediates potentiation of social recognition memory produced by ethanol in mice. Drug Alcohol Depend 2005; 79:343-50. [PMID: 16102377 DOI: 10.1016/j.drugalcdep.2005.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 02/10/2005] [Accepted: 02/20/2005] [Indexed: 11/20/2022]
Abstract
The involvement of catalase in ethanol-induced locomotion has been clearly proven. However, studies addressing the role of this enzyme in the effects that ethanol exerts on memory are lacking. In the present study, the social recognition test (SRT) was used to evaluate ethanol effects on memory. In this test, the reduction in investigation time of a juvenile conspecific, when this social stimulus is presented for the second time, is considered a reliable index of memory. Exploration ratios (ER) were calculated to evaluate the recognition capacity of mice. Ethanol (0.0, 0.5, 1.0 or 1.5g/kg, i.p.) was administered immediately after the first juvenile presentation, and 2h later the juvenile was re-exposed to the adult. Additionally, adult mice received aminotriazole (AT) or sodium azide (two catalase inhibitors) 5h or 30 min before juvenile presentation, respectively. Ethanol (1.0 and 1.5g/kg) was able to reduce ER, indicating an improving effect on memory. This improvement was prevented by either AT or sodium azide pre-treatment. However, neither AT nor sodium azide attenuated the memory-enhancing capacity of NMDA or nicotine, suggesting a specific interaction between catalase inhibitors and ethanol in their effects on memory. The present results suggest that brain catalase activity could mediate the memory-enhancing capacity of ethanol and add further support to the idea that this enzyme mediates some of the psychopharmacological effects produced by ethanol.
Collapse
Affiliation(s)
- Héctor M Manrique
- Area de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, 12071 Castelló, Spain
| | | | | |
Collapse
|
28
|
Prediger RDS, Batista LC, Takahashi RN. Caffeine reverses age-related deficits in olfactory discrimination and social recognition memory in rats. Neurobiol Aging 2005; 26:957-64. [PMID: 15718055 DOI: 10.1016/j.neurobiolaging.2004.08.012] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 07/16/2004] [Accepted: 08/12/2004] [Indexed: 11/20/2022]
Abstract
Caffeine, a non-selective adenosine receptor antagonist, has been suggested as a potential drug to counteract age-related cognitive decline since critical changes in adenosinergic neurotransmission occur with aging. In the present study, olfactory discrimination and short-term social memory of 3, 6, 12 and 18 month-old rats were assessed with the olfactory discrimination and social recognition tasks, respectively. The actions of caffeine (3.0, 10.0 and 30.0 mg/kg, i.p.), the A1 receptor antagonist DPCPX (1.0 and 3.0 mg/kg, i.p.) and the A2A receptor antagonist ZM241385 (0.5 and 1.0 mg/kg, i.p.) in relation to age-related effects on olfactory functions were also studied. The 12 and 18 month-old rats exhibited significantly impaired performance in both models, demonstrating deficits in their odor discrimination and in their ability to recognize a juvenile rat after a short period of time. Acute treatment with caffeine or ZM241385, but not with DPCPX, reversed these age-related olfactory deficits. The present results suggest the participation of adenosine receptors in the control of olfactory functions and confirm the potential of caffeine for the treatment of aged-related cognitive decline.
Collapse
Affiliation(s)
- Rui D S Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, UFSC, Campus Trindade, 88049-900 Florianópolis, SC, Brazil
| | | | | |
Collapse
|
29
|
Moulton PL, Petros TV, Apostal KJ, Park RV, Ronning EA, King BM, Penland JG. Alcohol-induced impairment and enhancement of memory: A test of the interference theory. Physiol Behav 2005; 85:240-5. [PMID: 15907955 DOI: 10.1016/j.physbeh.2005.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Revised: 03/03/2005] [Accepted: 03/08/2005] [Indexed: 11/28/2022]
Abstract
Many studies have found cognitive deficits related to alcohol consumption. However, few studies have studied cognitive performance when alcohol was administered after the to-be-remembered information was presented with memory testing occurring when participants are once again sober. The present study examined effects of alcohol on cognitive performance using a prose recall task during acute intoxication and a post-trial recall task for prose passages that had been presented before intoxication. Fifty-one men were given either 2.0 g/kg of 100 proof (50% absolute ethanol) vodka or a placebo. In the present study, evidence was found of acute alcohol impairment in prose memory, along with alcohol facilitation of memory on a post-trial task.
Collapse
Affiliation(s)
- Patricia L Moulton
- School of Medicine and Health Sciences, University of North Dakota, 501 North Columbia, P.O. Box 9037, Grand Forks, ND 58202-9037, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Tayebi Meybodi K, Vakili Zarch A, Zarrindast MR, Djahanguiri B. Effects of ultra-low doses of morphine, naloxone and ethanol on morphine state-dependent memory of passive avoidance in mice. Behav Pharmacol 2005; 16:139-45. [PMID: 15864068 DOI: 10.1097/00008877-200505000-00002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This experiment examined and compared the effects of pre-test administration of morphine, naloxone and ethanol, at doses in the range of milligram/kg to those of nanogram/kg, on morphine state-dependent learning in a step-down passive avoidance task in mice. Morphine (5 mg/kg) administered before training impaired retention tested 24 hours later, but when the same dose of morphine was also administered before the test, the retention was significantly restored. Pre-training administration of 10 or 20 ng/kg (i.p.) of morphine had no effect, but when co-administered with the same drug at 5 mg/kg (s.c.), it prevented significantly the memory recall improvement after the administration of morphine (5 mg/kg, s.c.) alone. In a parallel experiment, naloxone (5 mg/kg) prevented the memory recall improvement by morphine. However, the effects of naloxone at doses in the range of ng/kg were opposite to those of milligram doses of the same drug. Pre-test administration of ethanol (1 mg/kg) improved memory recall and mimicked the effects of pre-test morphine administration. At doses in the nanogram range, the effects of ethanol were opposite those of mg/kg of the drug. A review of the literature indicates that, for several drugs and chemicals, the effects of nanogram doses are the opposite of the effects of milligrams, because different doses have different sites as well as mechanisms of actions. In conclusion, from the above results one may suggest that, in determination of the dose-response of at least some drugs, the study of the effects of doses much lower than two orders of magnitude of the minimum effective dose are warranted.
Collapse
Affiliation(s)
- K Tayebi Meybodi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
31
|
Prediger RDS, Fernandes D, Takahashi RN. Blockade of adenosine A2A receptors reverses short-term social memory impairments in spontaneously hypertensive rats. Behav Brain Res 2005; 159:197-205. [PMID: 15817183 DOI: 10.1016/j.bbr.2004.10.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2004] [Revised: 10/25/2004] [Accepted: 10/28/2004] [Indexed: 11/27/2022]
Abstract
Spontaneously hypertensive rats (SHR) exhibit impairment across several cognitive domains such as attention, short-term memory and spatial reference memory. These cognitive deficits have been variously attributed to disrupted dopaminergic, cholinergic and adenosinergic neurotransmitter function. However, social memory in SHR has not been investigated. In the present study, we therefore evaluated whether SHR exhibit altered short-term social memory abilities compared to normotensive Wistar rats (WIS) through two experimental paradigms (social recognition and habituation-dishabituation tests). We also compared the performance of SHR and WIS rats in the object recognition test. SHR exhibited significantly impaired performance in both models of social memory, but not in the object recognition test, demonstrating a selective deficit in the ability to recognize a juvenile rat after a short period of time. The administration of acute doses of the non-selective adenosine receptor antagonist caffeine (3.0 or 10.0 mg/kg, i.p.) and the adenosine A2A receptor antagonist 4-(2-[7-amino-2-[2-furyl][1,2,4]triazolo-[2,3-a][1,3,5]triazin-5-yl-amino]ethyl) phenol (ZM241385, 0.5 or 1.0 mg/kg, i.p.) but not the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 1.0 or 3.0 mg/kg, i.p.) reversed this social memory impairment in SHR, but these treatments did not alter the hypertension state. These results demonstrate an impairment of short-term social memory in SHR and the involvement of the adenosine A2A receptors in this alteration.
Collapse
Affiliation(s)
- Rui D S Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, UFSC, Campus Trindade, 88049-900 Florianópolis, SC, Brazil
| | | | | |
Collapse
|
32
|
Prediger RDS, Takahashi RN. Modulation of short-term social memory in rats by adenosine A1 and A(2A) receptors. Neurosci Lett 2004; 376:160-5. [PMID: 15721214 DOI: 10.1016/j.neulet.2004.11.049] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 11/03/2004] [Accepted: 11/16/2004] [Indexed: 11/25/2022]
Abstract
The recognition of an unfamiliar juvenile rat by an adult rat has been shown to imply short-term memory processes. The present study was designed to examine the role of adenosine receptors in the short-term social memory of rats using the social recognition paradigm. Adenosine (5.0-10.0 mg/kg), the selective adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA, 0.025-0.05 mg/kg) and the selective adenosine A(2A) receptor agonist N6-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]adenosine (DPMA, 1.0-5.0 mg/kg), given by i.p. route 30 min before the test, disrupted the juvenile recognition ability of adult rats. This negative effect of adenosine (5.0 mg/kg, i.p.) on social memory was prevented by pretreatment with the non-selective adenosine receptor antagonist caffeine (10.0 mg/kg, i.p.), the adenosine A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 1.0 mg/kg, i.p.) and the adenosine A(2A) antagonist 4-(2-[7-amino-2-{2-furyl}{1,2,4}triazolo-{2,3-a}{1,3,5}triazin-5-yl-amino]ethyl)phenol (ZM241385, 1.0 mg/kg, i.p.). Furthermore, acute administration of caffeine (10.0-30.0 mg/kg, i.p.), DPCPX (1.0-3.0 mg/kg, i.p.) or ZM241385 (0.5-1.0 mg/kg, i.p.) improved the short-term social memory in a specific manner. These results indicate that adenosine modulates the short-term social memory in rats by acting on both A1 and A(2A) receptors, with adenosine receptor agonists and antagonists, respectively, disrupting and enhancing the social memory.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Adenosine/pharmacology
- Animals
- Behavior, Animal/physiology
- Brain/drug effects
- Brain/metabolism
- Caffeine/pharmacology
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Injections, Intraperitoneal
- Male
- Memory, Short-Term/drug effects
- Memory, Short-Term/physiology
- Rats
- Rats, Wistar
- Receptor, Adenosine A1/drug effects
- Receptor, Adenosine A1/metabolism
- Receptor, Adenosine A2A/drug effects
- Receptor, Adenosine A2A/metabolism
- Social Behavior
- Triazines/pharmacology
- Triazoles/pharmacology
- Xanthines/pharmacology
Collapse
Affiliation(s)
- Rui D S Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, UFSC, Florianópolis, SC 88049-900, Brazil
| | | |
Collapse
|
33
|
Prediger RDS, Batista LC, Miyoshi E, Takahashi RN. Facilitation of short-term social memory by ethanol in rats is mediated by dopaminergic receptors. Behav Brain Res 2004; 153:149-57. [PMID: 15219716 DOI: 10.1016/j.bbr.2003.11.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Revised: 11/19/2003] [Accepted: 11/19/2003] [Indexed: 11/24/2022]
Abstract
Ethanol is a drug that has apparently opposite effects on memory processes depending on when it is given relative to the task, as well as the nature of the task under study. Recently, we demonstrated that acute low doses of ethanol (0.5 and 1.0 g/kg, i.p.) improve the short-term social memory in rats in a specific and time-dependent manner, and that this action is, at least in part, related to opioid, but not to muscarinic receptors. In the present study, we evaluated whether this positive effect of ethanol on the short-term memory of rats is related to a reducing impact of interference during the task through two different procedures: the introduction of an unfamiliar juvenile rat or the placing of the adult rat in the open field during the inter-exposure interval. The actions of reserpine (0.4 and 0.8 mg/kg, s.c.), haloperidol (0.05 and 0.2 mg/kg, i.p.), the D2 receptor antagonist sulpiride (20.0 and 50.0 mg/kg, i.p.) and the D1 receptor antagonist SCH 23390 (0.01 and 0.03 mg/kg, s.c.) and their interaction with ethanol (1.0 g/kg, i.p.) in relation to short-term memory were also studied. The administration of ethanol (1.0 g/kg, i.p.), immediately after the end of the first presentation, did not reduce the effect on social memory of the introduction of an unfamiliar juvenile or placing the adult rat in the open field during the inter-exposure interval. The facilitatory effect of ethanol on social memory was inhibited by the pretreatment with reserpine and it was antagonized by the administration of haloperidol or sulpiride, but not by SCH 23390. These results indicate that the facilitation of short-term social memory by ethanol is not related to a reduction in the deleterious impact of interference and that this action of ethanol is mediated, at least in part, by D2 receptors, but not by D1 dopaminergic receptors.
Collapse
Affiliation(s)
- Rui D S Prediger
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Rua Ferreira Lima 82, 88015-420 Florianópolis, SC, Brazil
| | | | | | | |
Collapse
|
34
|
Vázquez-García M, Elías-Viñas D, Reyes-Guerrero G, Domínguez-González A, Verdugo-Díaz L, Guevara-Guzmán R. Exposure to extremely low-frequency electromagnetic fields improves social recognition in male rats. Physiol Behav 2004; 82:685-90. [PMID: 15327917 DOI: 10.1016/j.physbeh.2004.06.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Revised: 04/30/2004] [Accepted: 06/02/2004] [Indexed: 10/26/2022]
Abstract
The effect of exposure to low-frequency electromagnetic fields (ELF EMFs) on social recognition was studied. The test was based upon a comparison between two encounters of an adult rat and a conspecific juvenile, separated by an interexposure interval (IEI). The exposure to ELF EMF of 1 mT intensity during 2 h for 9 days increased the duration of short-term memory of adult male Wistar rats up to 300 min. These data indicate, for the first time, that ELF EMF improves social recognition memory in rats.
Collapse
Affiliation(s)
- Mario Vázquez-García
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70250, México, D.F., 04510, Mexico.
| | | | | | | | | | | |
Collapse
|
35
|
Vakili A, Tayebi K, Jafari MR, Zarrindast MR, Djahanguiri B. EFFECT OF ETHANOL ON MORPHINE STATE-DEPENDENT LEARNING IN THE MOUSE: INVOLVEMENT OF GABAERGIC, OPIOIDERGIC AND CHOLINERGIC SYSTEMS. Alcohol Alcohol 2004; 39:427-32. [PMID: 15289212 DOI: 10.1093/alcalc/agh084] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS We have studied the effect of acute administration of ethanol when it replaced morphine in step-down passive avoidance task on the test day and the effects of antagonists of GABAergic, opioidergic and cholinergic systems on ethanol actions. METHODS Morphine (5 mg/kg, s.c.) was administered as pre-training and 24 h later as pre-test drug, and the latencies were measured in mice. Ethanol (0.125, 0.25, 1 and 2 g/kg, i.p.) was administered instead of pre-test morphine. Antagonists of GABAergic (bicuculline 0.5, 1 and 2 mg/kg, i.p.), opioidergic (naloxone 0.06, 0.25 and 1 mg/kg, i.p.) and cholinergic (atropine 0.625 and 1.25 mg/kg, i.p. and mecamylamine 0.5, 1 and 2 mg/kg, i.p.) systems were co-administered with ethanol (0.25 g/kg, i.p.) on the test day. Locomotor activity was measured as well. RESULTS Pre-training morphine impaired the memory on the test day which was restored when the same dose of morphine was used as pre-test drug. All four doses of ethanol replaced pre-test morphine and enhanced the memory. This effect was prevented by all of the above antagonists. No significant changes were seen in the locomotor activity of the animals treated with ethanol or antagonists compared to the proper controls. CONCLUSIONS GABAergic, endogenous opioidergic and cholinergic systems are involved in the memory recall improvement by ethanol when it replaced morphine on the test day. A review of the literature suggests other possibilities such as the release of intermediate neurotransmitters.
Collapse
Affiliation(s)
- A Vakili
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|