Kono T, Koseki T, Chiba S, Ebisawa Y, Chisato N, Iwamoto J, Kasai S. Colonic vascular conductance increased by Daikenchuto via calcitonin gene-related peptide and receptor-activity modifying protein 1.
J Surg Res 2008;
150:78-84. [PMID:
18561951 DOI:
10.1016/j.jss.2008.02.057]
[Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 02/21/2008] [Accepted: 02/25/2008] [Indexed: 01/17/2023]
Abstract
BACKGROUND
Daikencyuto (DKT) is a traditional Japanese medicine (Kampo) and is a mixture of extract powders from dried Japanese pepper, processed ginger, ginseng radix, and maltose powder and has been used as the treatment of paralytic ileus. DKT may increase gastrointestinal motility by an up-regulation of the calcitonin gene-related peptide (CGRP). CGRP is also the most powerful vasoactive substance. In the present study, we investigated whether DKT has any effect on the colonic blood flow in rats.
MATERIALS AND METHODS
Experiments were performed on fasted anesthetized and artificially ventilated Wistar rats. Systemic mean arterial blood pressure and heart rate were recorded. Red blood cell flux in colonic blood flow was measured using noncontact laser tissue blood flowmetry, and colonic vascular conductance (CVC) was calculated as the ratio of flux to mean arterial blood pressure. We examined four key physiological mechanisms underlying the response using blocker drugs: CGRP1 receptor blocker (CGRP(8-37)), nitric oxide synthase inhibitor, vasoactive intestinal polypeptide (VIP) receptor blocker ([4-Cl-DPhe6, Leu17]-VIP), and substance P receptor blocker (spantide). Reverse transcription-polymerase chain reaction was used for the detection of mRNA of calcitonin receptor-like receptor, receptor-activity modifying protein 1, the component of CGRP 1 receptor and CGRP. After laparotomy, a cannula was inserted into the proximal colon to administer the DKT and to measure CVC at the distal colon.
RESULTS
Intracolonal administration of DKT (10, 100, and 300 mg/kg) increased CVC (basal CVC, 0.10 mL/mmHg) from the first 15-min observation period (0.14, 0.17, and 0.17 mL/mmHg, respectively) and with peak response at either 45 min (0.17 mL/mmHg by 10 mg/kg), or 75 and 60 min (0.23 and 0.21 mL/mmHg by 100 and 300 mg/kg, respectively). CGRP(8-37) completely abolished the DKT-induced hyperemia, whereas nitric oxide synthase inhibitor partially attenuated the DKT-induced hyperemia. [4-Cl-DPhe6, Leu17]-VIP and spantide did not affect the hyperemia. Japanese pepper significantly increased CVC at 45 min or later, whereas ginseng radix only showed a significant increase at 15 min. Reverse transcription-polymerase chain reaction showed that mRNA for calcitonin receptor-like receptor, receptor-activity modifying protein 1, and CGRP were expressed in rat colon and up-regulated by DKT.
CONCLUSIONS
The present study demonstrated that DKT increased CVC, which was mainly mediated by CGRP and its receptor components.
Collapse