1
|
Ogasawara H, Noguchi M. Therapeutic Potential of MRGPRX2 Inhibitors on Mast Cells. Cells 2021; 10:cells10112906. [PMID: 34831128 PMCID: PMC8616451 DOI: 10.3390/cells10112906] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022] Open
Abstract
Mast cells (MCs) act as primary effectors in inflammatory and allergic reactions by releasing intracellularly-stored inflammatory mediators in diseases. The two major pathways for MC activation are known to be immunoglobulin E (IgE)-dependent and -independent. Although IgE-dependent signaling is the main pathway to MC activation, IgE-independent pathways have also been found to serve pivotal roles in the pathophysiology of various inflammatory conditions. Recent studies have shown that human and mouse MCs express several regulatory receptors such as toll-like receptors (TLRs), CD48, C300a, and GPCRs, including mas-related GPCR-X2 (MRGPRX2). MRGPRX2 has been reported as a novel GPCR that is expressed in MCs activated by basic secretagogues, neurokinin peptides, host defense antimicrobial peptides, and small molecule compounds (e.g., neuromuscular blocking agents) and leads to MC degranulation and eicosanoids release under in vitro experimental condition. Functional analyses of MRGPRX2 and Mrgprb2 (mouse ortholog) indicate that MRGPRX2 is involved in MC hypersensitivity reactions causing neuroinflammation such as postoperative pain, type 2 inflammation, non-histaminergic itch, and drug-induced anaphylactic-like reactions. In this review, we discuss the roles in innate immunity through functional studies on MRGPRX2-mediated IgE-independent MC activation and also the therapeutic potential of MRGPRX2 inhibitors on allergic and inflammatory diseases.
Collapse
Affiliation(s)
- Hiroyuki Ogasawara
- Pharmaceutical Frontier Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Yokohama 236-0004, Japan;
- Correspondence: ; Tel.: +81-45-786-7690
| | - Masato Noguchi
- Pharmaceutical Frontier Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Yokohama 236-0004, Japan;
- Office of Research Development and Sponsored Projects, Shinanomachi Campus, Keio University, Tokyo 160-8582, Japan
| |
Collapse
|
2
|
Hoyer D, Bartfai T. Neuropeptides and neuropeptide receptors: drug targets, and peptide and non-peptide ligands: a tribute to Prof. Dieter Seebach. Chem Biodivers 2013; 9:2367-87. [PMID: 23161624 DOI: 10.1002/cbdv.201200288] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Indexed: 11/06/2022]
Abstract
The number of neuropeptides and their corresponding receptors has increased steadily over the last fourty years: initially, peptides were isolated from gut or brain (e.g., Substance P, somatostatin), then by targeted mining in specific regions (e.g., cortistatin, orexin in the brain), or by deorphanization of G-protein-coupled receptors (GPCRs; orexin, ghrelin receptors) and through the completion the Human Genome Project. Neuropeptides (and their receptors) have regionally restricted distributions in the central and peripheral nervous system. The neuropeptide signaling is somewhat more distinct spatially than signaling with classical, low-molecular-weight neurotransmitters that are more widely expressed, and, therefore, one assumes that drugs acting at neuropeptide receptors may have more selective pharmacological actions with possibly fewer side effects than drugs acting on glutamatergic, GABAergic, monoaminergic, or cholinergic systems. Neuropeptide receptors, which may have a few or multiple subtypes and splice variants, belong almost exclusively to the GPCR family also known as seven-transmembrane receptors (7TM), a favorite class of drug targets in the pharmaceutical industry. Most neuropeptides are co-stored and co-released with classic neurotransmitters, albeit often only at higher frequencies of stimulation or at bursting activity, thus restricting the neuropeptide signaling to specific circumstances, another reason to assume that neuropeptide drug mimics may have less side effects. Neuropeptides possess a wide spectrum of functions from neurohormone, neurotransmitter to growth factor, but also as key inflammatory mediators. Neuropeptides become 'active' when the nervous system is challenged, e.g., by stress, injury, drug abuse, or neuropsychiatric disorders with genetic, epigenetic, and/or environmental components. The unsuspected number of true neuropeptides and their cognate receptors provides opportunities to identify novel targets for the treatment of both central and peripheral nervous system disorders. Both, receptor subtype-selective antagonists and agonists are being developed, as illustrated by the success of somatostatin agonists, angiotensin, and endothelin antagonists, and the expected clinical applications of NK-1/2/3 (substance P) receptor antagonists, CRF, vasopressin, NPY, neurotensin, orexin antagonists, or neuropeptide receptor modulators; such ligands have efficacy in preclinical or clinical models of pain and neuropsychiatric diseases, such as migraine, chronic/neuropathic pain, anxiety, sleep disorders, depression, and schizophrenia. In addition, both positive and negative allosteric modulators have been described with interesting in vivo activities (e.g., at galanin receptors). The field has become more complex now that an increasing number of heteromeric neuropeptide receptors are described, e.g., ghrelin receptors with 5-HT(2C) or dopamine D(1), D(2) receptors. At long last, structure-based drug discovery can now be envisaged with confidence, since crystal or solution structure of GPCRs and GPCR-ligand complexes, including peptide receptors, are published almost on a monthly basis. Finally, although most compounds acting at peptide receptors are still peptidomimetics, the last decade has seen the emergence of low-molecular-weight nonpeptide ligands (e.g., for orexin, ghrelin, or neurokinin receptors), and surprising progress has been made with β- and γ-peptides as very stable and potent mimetics of, e.g., somatostatin (SRIF), where the native SRIF has a half-life limited to 2-3 min. This last point will be illustrated more specifically, as we have had a long-standing collaboration with Prof. D. Seebach to whom this review is dedicated at the occasion of his 75th birthday.
Collapse
Affiliation(s)
- Daniel Hoyer
- Department of Pharmacology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | |
Collapse
|
3
|
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | | |
Collapse
|
4
|
Hurth K, Enz A, Floersheim P, Gentsch C, Hoyer D, Langenegger D, Neumann P, Pfäffli P, Sorg D, Swoboda R, Vassout A, Troxler T. SAR of the arylpiperazine moiety of obeline somatostatin sst1 receptor antagonists. Bioorg Med Chem Lett 2007; 17:3988-91. [PMID: 17512199 DOI: 10.1016/j.bmcl.2007.04.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 04/24/2007] [Accepted: 04/25/2007] [Indexed: 11/17/2022]
Abstract
The SAR of over 50 derivatives of octahydrobenzo[g]quinoline (obeline)-type somatostatin sst(1) receptor antagonist 1 is presented, focusing on the modification of its arylpiperazine moiety. Sst(1) affinities in this series cover a range of five orders of magnitude with the best derivatives displaying subnanomolar sst(1) affinities and >10,000-fold selectivities over the sst(2) receptor subtype as well as promising pharmacokinetic properties.
Collapse
Affiliation(s)
- Konstanze Hurth
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Durán-Prado M, Bucharles C, Gonzalez BJ, Vázquez-Martínez R, Martínez-Fuentes AJ, García-Navarro S, Rhodes SJ, Vaudry H, Malagón MM, Castaño JP. Porcine somatostatin receptor 2 displays typical pharmacological sst2 features but unique dynamics of homodimerization and internalization. Endocrinology 2007; 148:411-21. [PMID: 17053026 DOI: 10.1210/en.2006-0920] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Somatostatin (SRIF) exerts its multiple actions, including inhibition of GH secretion and of tumoral growth, through a family of five receptor subtypes (sst1-sst5). We recently reported that an sst2-selective agonist markedly decreases GH release from pig somatotropes, suggesting important roles for this scarcely explored receptor, psst2. Here, functional expression of psst2 in Chinese hamster ovary-K1 and human embryonic kidney-293-AD cell lines was employed to determine its pharmacological features and functional ability to reduce cAMP, and to examine its homodimerization and internalization dynamics in real time in single living cells. Results show that psst2 is a high-affinity receptor (dissociation constant = 0.27 nM) displaying a typical sst2 profile (nM affinity for SRIF-14> or =SRIF-28>cortistatin>MK678>octreotide) and high selectivity (EC(50) = 1.1 nM) for the sst2 agonist l-779,976, but millimolar or undetectable affinity to other sst-specific agonists (sst3>sst1>sst5>>>sst4). Accordingly, SRIF dose-dependently inhibited forskolin-stimulated cAMP with high potency (EC(50) = 6.55 pm) and modest efficacy (maximum 29.1%) via psst2. Cotransfection of human embryonic kidney-293 and Chinese hamster ovary-K1 cells with two receptor constructs modified with distinct fluorescent tags (psst2-YFP/psst2-CFP) enabled fluorescence resonance energy transfer measurement of physical interaction between psst2 receptors and also receptor internalization in single living cells. This revealed that under basal conditions, psst2 forms constitutive homodimers/homomultimers, which dissociate immediately (11 sec) upon SRIF binding. Interestingly, contrary to human sst2, psst2 rapidly reassociates (110.5 sec) during a subsequent process that temporally overlaps with receptor internalization (half-maximal = 95.1 sec). Therefore, psst2 is a potent inhibitory receptor displaying a unique set of interrelated dynamic features of agonist-dependent dimerization, dissociation, internalization, and reassociation, a cascade of events that might be critical for receptor function.
Collapse
Affiliation(s)
- Mario Durán-Prado
- Department of Cell Biology, University of Córdoba, E-14014 Córdoba, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Siehler S, Nunn C, Zupanc GKH, Hoyer D. Fish somatostatin sst3 receptor: comparison of radioligand and GTPgammaS binding, adenylate cyclase and phospholipase C activities reveals different agonist-dependent pharmacological signatures. ACTA ACUST UNITED AC 2005; 25:1-16. [PMID: 15659149 DOI: 10.1111/j.1474-8673.2004.00325.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1 The fish somatostatin receptor 3 (fsst3) is one of the few somatostatin (SRIF) receptors cloned from a non-mammalian species so far. Here we extended our earlier characterization of this receptor by investigating the guanine nucleotide sensitivity of agonist radioligand binding at the fsst3 receptor recombinantly expressed in CCL39 (Chinese hamster lung fibroblast) cells. Further, we measured somatostatin (SRIF) and cortistatin (CST) analogues stimulated GTPgammaS binding, inhibition of forskolin-stimulated adenylate cyclase (FSAC) and stimulation of phospholipase C (PLC) activities. The present transductional data were then compared with previous radioligand binding and/or second messenger features determined for fsst3 and/or human SRIF receptors (hsst2, hsst3 and hsst5). 2 The GTP analogue guanylylimidodiphosphate (GppNHp) inhibited binding of [125I]CGP 23996 and [125I][Tyr3octreotide by 72 and 83% suggesting preferential labelling of G-protein-coupled fsst3 receptors. By contrast, [125I]LTT-SRIF28 and [125I][Tyr10]CST14 binding was rather GppNHp insensitive (42 and 35% inhibition) suggesting labelling of both coupled and non-coupled receptor states. These results might explain the apparent higher receptor densities determined in saturation experiments with [125I]LTT-SRIF28 and [125I][Tyr10]CST14 (4470 and 4030 fmol mg(-1)) compared with [125I]CGP 23996 and [125I][Tyr3]octreotide (3420 and 1520 fmol mg(-1)). 3 SRIF14 (10 microm)-stimulated specific [35S]GTPgammaS binding by three-fold; SRIF28 and octreotide displayed full agonism, whereas most other ligands displayed 60-80% intrinsic activity compared with SRIF14. SRIF14 and SRIF28 inhibited forskolin-stimulated AC (FSAC) activity by 60%; all tested ligands except BIM 23056 inhibited FSAC with comparable high intrinsic activities. SRIF14 stimulated PLC activity five- to six-fold, as determined by measuring total [3H] IP(x) accumulation; it was rather insensitive to pertussis toxin (PTX, 100 ng ml(-1), 21% inhibition), which suggests the G(q)-family proteins couple to PLC activity. SRIF14, SRIF28 and [Tyr10]CST14 showed full agonism at PLC, whereas all other ligands behaved as partial agonists (20-70% intrinsic activity). BIM 23056, which showed weak partial or no agonism, antagonized SRIF14-induced total [3H]-IP(x) production (pK(B) = 6.83), but failed to block competitively agonist-stimulated [35S]GTPgammaS binding or agonist-induced inhibition of FSAC activity. 4 Comparison of the pharmacological profiles of fsst3 receptors established in GTPgammaS binding, FSAC inhibition and PLC stimulation resulted in low correlations (r = 0.410-0.594). Both rank orders of potency and rank orders of relative efficacy varied in the three second messenger experiments. Significant, although variable correlations were obtained comparing GTPgammaS binding and inhibition of FSAC activity with previously reported affinity profiles of [125I]LTT-SRIF28, [125I][Tyr10]CST14, [125I]CGP 23996, [125I][Tyr3]octreotide (r = 0.75-0.83; 0.68-0.89). By contrast, the PLC stimulation and radioligand-binding profiles did not correlate. 5 Comparison of the functional data (GTPgammaS binding, FSAC inhibition, PLC stimulation) of fsst3 receptors with those of human sst2, sst3, sst5 receptors expressed in CCL39 cells resulted in highest correlation with the hsst5 receptor (r = 0.94, 0.97, 0.49) > hsst2 (0.80, 0.50, n.d.) > hsst3 (0.25, 0.19, 0.17). 6 In summary, fsst3 receptors expressed in CCL39 cells are involved in signalling cascades similar to those reported for mammalian SRIF receptors, suggesting SRIF receptors to be highly conserved in evolution. Binding and functional data showed highest similarity of fsst3 receptors with the human sst5 receptor subtype. Different affinities, receptor densities and GppNHp-sensitivities determined with the four radioligands (agonists) are assumed to results from ligand-specific states of the fsst3-ligand complex. The differences in the rank orders of potency and relative efficacy in the various signalling cascades may be explained by agonist-induced receptor trafficking.
Collapse
Affiliation(s)
- S Siehler
- Discovery Technologies, Novartis Institutes for Biomedical Research, WSJ 386/745, Novartis Pharma AG, CH 4002 Basel, Switzerland
| | | | | | | |
Collapse
|
7
|
|
8
|
Nunn C, Cervia D, Langenegger D, Tenaillon L, Bouhelal R, Hoyer D. Comparison of functional profiles at human recombinant somatostatin sst2 receptor: simultaneous determination of intracellular Ca2+ and luciferase expression in CHO-K1 cells. Br J Pharmacol 2004; 142:150-60. [PMID: 15037513 PMCID: PMC1574925 DOI: 10.1038/sj.bjp.0705735] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Somatostatin (somatotropin release inhibiting factor; SRIF) acts via five G protein-coupled receptors (sst(1)-sst(5)) that modulate multiple cellular effectors. The aim of this study was to compare two functional effects of the human sst(2) receptor stably expressed in CHO-K1 cells in a single experiment using a duplex assay for intracellular calcium and serum response element (SRE)-driven luciferase expression. 2. Intracellular calcium was measured using a fluorometric imaging plate reader II (FLIPR II). SRIF-14 rapidly and transiently increased intracellular calcium with a pEC(50) of 8.74+/-0.03 (n=52). At 5 h after FLIPR II measurements, luciferase expression was determined. SRIF-14 concentration-dependently increased luciferase expression (pEC(50)=9.06+/-0.03, n=52). 3. Natural and synthetic agonist/antagonist ligands for SRIF receptors were tested in the duplex assay. Correlation of agonist potencies and efficacies between the two responses were significant (r(2)=0.83 and 0.90, pEC(50) and E(max), respectively). 4. Pertussis toxin pretreatment reduced SRIF-14/octreotide-mediated intracellular calcium increases by 45-47% and luciferase expression by 95-98%. 5. Thapsigargin pretreatment abolished the SRIF-14/octreotide-mediated intracellular calcium increase but had no effect on luciferase expression. 6. In conclusion, SRIF stimulates an increase in intracellular calcium and SRE-luciferase expression via human sst(2) receptors in CHO-K1 cells. The increase in luciferase is mediated via G(i)/G(o) while intracellular calcium increase is mediated by both G(i)/G(o) proteins and pertussis toxin-insensitive G proteins, and is mainly via release of calcium from intracellular stores. SRIF ligands display a similar recognition profile suggesting that the ligand/receptor/G protein/effector interaction is similar for the two parameters.
Collapse
Affiliation(s)
- Caroline Nunn
- Neuroscience Research, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4002, Basel, Switzerland
| | - Davide Cervia
- Neuroscience Research, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4002, Basel, Switzerland
| | - Daniel Langenegger
- Neuroscience Research, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4002, Basel, Switzerland
| | - Laurent Tenaillon
- Novartis Lead Discovery Centre, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4002, Basel, Switzerland
| | - Rochdi Bouhelal
- Novartis Lead Discovery Centre, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4002, Basel, Switzerland
| | - Daniel Hoyer
- Neuroscience Research, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4002, Basel, Switzerland
- Author for correspondence:
| |
Collapse
|
9
|
Cervia D, Fehlmann D, Hoyer D. Native somatostatin sst2 and sst5 receptors functionally coupled to Gi/o-protein, but not to the serum response element in AtT-20 mouse tumour corticotrophs. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2003; 367:578-87. [PMID: 12750875 DOI: 10.1007/s00210-003-0752-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2003] [Accepted: 03/17/2003] [Indexed: 10/25/2022]
Abstract
Of the five cloned somatostatin (SRIF: somatotropin release inhibitory factor) receptors (sst1-5), only sst2 and sst5 receptors appear to be endogenously expressed and functionally active in AtT-20 mouse anterior pituitary tumour cells. In this study, the presence and the functional coupling of SRIF receptors to G-protein in AtT-20 cells was evaluated by receptor autoradiography and guanosine-5'-Omicron-(3-[35S]thio)-triphosphate ([35S]GTPgammaS) binding, respectively. In addition, transcriptional effects via the serum response element (SRE) were assessed in AtT-20-SRE-luci cells, engineered to express constitutively SRE upstream of the luciferase reporter gene. [125I]LTT-SRIF-28, [125I]CGP 23996 and [125I]Tyr3-octreotide binding illustrates the high level of sst2/5 receptor in AtT-20 cell membranes. SRIF-14 and SRIF-28 produced a concentration-dependent increase in [35S]GTPgammaS binding (pEC50=6.72 and 7.45; Emax=79 and 74.9, respectively) which was completely abolished by pertussis toxin. sst2/5 receptor-selective ligands caused a concentration-dependent increase in [35S]GTPgammaS binding (pEC50=7.74-5.84; Emax=76.6-20.2) while sst1/3/4 receptor-selective ligands were devoid of activity. The binding profiles of [125I]LTT-SRIF-28 and the inhibition of cAMP accumulation correlated highly significantly with their corresponding [35S]GTPgammaS binding profiles (r=0.862 and 0.874, respectively). The effects of the sst2 receptor-preferring agonists Tyr3-octreotide and BIM 23027 on [35S]GTPgammaS binding, but not those of SRIF-14 and the sst5/1 receptor selective-agonist L-817,818, were competitively antagonised by the sst2 receptor antagonist d-Tyr8-CYN 154806 (pKB=7.36 and 7.72, respectively; slope factors not significantly different from unity). In AtT-20-SRE-luci cells, which carry a SRE-luciferase construct functioning in a very efficient manner, SRIF and its analogues did not affect luciferase activity. Taken together, these results demonstrate that in AtT-20 cells the expression of sst2 and sst5 receptors fit with their functional coupling to G(i/o)-proteins. The pharmacological implications of the existence of different ligand/receptor complexes are discussed. However, the intracellular pathways coupled to the activation of sst2 and sst5 receptors appear not to modulate the SRE-mediated transcriptional activity, suggesting that SRIF effects on gene expression coupled to mechanisms that have promoters other than SRE.
Collapse
Affiliation(s)
- Davide Cervia
- Dipartimento di Fisiologia e Biochimica G. Moruzzi, Università di Pisa, 56127 Pisa, Italy.
| | | | | |
Collapse
|
10
|
Cervia D, Nunn C, Fehlmann D, Langenegger D, Schuepbach E, Hoyer D. Pharmacological characterisation of native somatostatin receptors in AtT-20 mouse tumour corticotrophs. Br J Pharmacol 2003; 139:109-21. [PMID: 12746229 PMCID: PMC1573832 DOI: 10.1038/sj.bjp.0705235] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
1. The mouse corticotroph tumour cell line AtT-20 is a useful model to investigate the physiological role of native somatostatin (SRIF, Somatotropin release inhibitory factor) receptor subtypes (sst(1) - sst(5)). The objective of this study was to characterise the pharmacological features and the functional effects of SRIF receptors expressed by AtT-20 cells using radioligand binding and cAMP accumulation. 2. [(125)I]LTT-SRIF-28, [(125)I]CGP 23996, [(125)I]Tyr(10)-cortistatin-14 and [(125)I]Tyr(3)-octreotide labelled SRIF receptor binding sites with high affinity and in a saturable manner (B(max)=315, 274, 239 and 206 fmol mg(-1), respectively). [(125)I]LTT-SRIF-28 labels significantly more sites than [(125)I]Tyr(10) -cortistatin-14 and [(125)I]Tyr(3) -octreotide as seen previously in cells expressing pure populations of sst(2) or sst(5) receptors. 3. SRIF analogues displaced the binding of the four radioligands. sst(2/5) receptor-selective ligands showed much higher affinity than sst(1/3/4) receptor-selective ligands. The binding profile of [(125)I]Tyr(3)-octreotide was different from that of [(125)I]LTT-SRIF-28, [(125)I]CGP 23996 and [(125)I]Tyr(10)-cortistatin-14. The sst(5/1) receptor-selective ligand L-817,818 identified two binding sites, one with subnanomolar affinity (sst(5) receptors) and one with micromolar affinity (sst(2) receptors); however, the proportions were different: 70 - 80% high affinity with [(125)I]LTT-SRIF-28, [(125)I]CGP 23996, [(125)I]Tyr(10)-cortistatin-14, but only 20% with [(125)I]Tyr(3)-octreotide. 4. SRIF analogues inhibited the forskolin-stimulated cAMP levels depending on concentration. sst(2/5) receptor-selective ligands were highly potent, whereas sst(1/3/4) receptor-selective ligands had no significant effects. The sst(2) receptor antagonist D-Tyr(8)-CYN 154806 competitively antagonised the effects of SRIF-14 and sst(2) receptor-preferring agonists, but not those of L-817,818. 5. The complex binding properties of SRIF receptor analogues indicate that sst(2) and sst(5) receptors are the predominant SRIF receptors expressed on AtT-20 cell membranes with no or only negligible presence of sst(1), sst(3) and sst(4) receptors. In the functional studies using cAMP accumulation, only sst(2) and sst(5) receptors appear to play a role. However, the "predominant" receptor appears to be the sst(2) receptor, although sst(5) receptors can also mediate the effect, when the ligand is not able to activate sst(2) receptors. This clearly adds flexibility to SRIF-mediated functional effects and suggests that the physiological role of SRIF and its analogues may be mediated preferentially via one subtype over another.
Collapse
Affiliation(s)
- Davide Cervia
- Dipartimento di Fisiologia e Biochimica ‘G. Moruzzi', Università di Pisa, 56127 Pisa, Italy
- Nervous System Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Caroline Nunn
- Nervous System Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | | | | | - Edi Schuepbach
- Nervous System Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Daniel Hoyer
- Nervous System Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
- Author for correspondence:
| |
Collapse
|