1
|
de Amorim Ferreira M, Ferreira J. Role of Cav2.3 (R-type) Calcium Channel in Pain and Analgesia: A Scoping Review. Curr Neuropharmacol 2024; 22:1909-1922. [PMID: 37581322 PMCID: PMC11284728 DOI: 10.2174/1570159x21666230811102700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 02/15/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Voltage-gated calcium channels (VGCCs) play an important role in pain development and maintenance. As Cav2.2 and Cav3.2 channels have been identified as potential drug targets for analgesics, the participation of Cav2.3 (that gives rise to R-type calcium currents) in pain and analgesia remains incompletely understood. OBJECTIVE Identify the participation of Cav2.3 in pain and analgesia. METHODS To map research in this area as well as to identify any existing gaps in knowledge on the potential role of Cav2.3 in pain signalling, we conducted this scoping review. We searched PubMed and SCOPUS databases, and 40 articles were included in this study. Besides, we organized the studies into 5 types of categories within the broader context of the role of Cav2.3 in pain and analgesia. RESULTS Some studies revealed the expression of Cav2.3 in pain pathways, especially in nociceptive neurons at the sensory ganglia. Other studies demonstrated that Cav2.3-mediated currents could be inhibited by analgesic/antinociceptive drugs either indirectly or directly. Some articles indicated that Cav2.3 modulates nociceptive transmission, especially at the pre-synaptic level at spinal sites. There are studies using different rodent pain models and approaches to reduce Cav2.3 activity or expression and mostly demonstrated a pro-nociceptive role of Cav2.3, despite some contradictory findings and deficiencies in the description of study design quality. There are three studies that reported the association of single-nucleotide polymorphisms in the Cav2.3 gene (CACNA1E) with postoperative pain and opioid consumption as well as with the prevalence of migraine in patients. CONCLUSION Cav2.3 is a target for some analgesic drugs and has a pro-nociceptive role in pain.
Collapse
Affiliation(s)
| | - Juliano Ferreira
- Graduate Program of Pharmacology, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| |
Collapse
|
2
|
Miziak B, Błaszczyk B, Chrościńska-Krawczyk M, Czuczwar SJ. Caffeine and Its Interactions with Antiseizure Medications-Is There a Correlation between Preclinical and Clinical Data? Int J Mol Sci 2023; 24:17569. [PMID: 38139396 PMCID: PMC10744211 DOI: 10.3390/ijms242417569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Experimental studies reveal that caffeine (trimethylxanthine) at subconvulsive doses, distinctly reduced the anticonvulsant activity of numerous antiseizure medications (ASMs) in rodents, oxcarbazepine, tiagabine and lamotrigine being the exceptions. Clinical data based on low numbers of patients support the experimental results by showing that caffeine (ingested in high quantities) may sharply increase seizure frequency, considerably reducing the quality of patients' lives. In contrast, this obviously negative activity of caffeine was not found in clinical studies involving much higher numbers of patients. ASMs vulnerable to caffeine in experimental models of seizures encompass carbamazepine, phenobarbital, phenytoin, valproate, gabapentin, levetiracetam, pregabalin and topiramate. An inhibition of R-calcium channels by lamotrigine and oxcarbazepine may account for their resistance to the trimethylxanthine. This assumption, however, is complicated by the fact that topiramate also seems to be a blocker of R-calcium channels. A question arises why large clinical studies failed to confirm the results of experimental and case-report studies. A possibility exists that the proportion of patients taking ASMs resistant to caffeine may be significant and such patients may be sufficiently protected against the negative activity of caffeine.
Collapse
Affiliation(s)
- Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Barbara Błaszczyk
- Faculty of Medical Sciences, Lipinski University, 25-734 Kielce, Poland;
| | | | | |
Collapse
|
3
|
Gao Y, Xu S, Cui X, Xu H, Qiu Y, Wei Y, Dong Y, Zhu B, Peng C, Liu S, Zhang XC, Sun J, Huang Z, Zhao Y. Molecular insights into the gating mechanisms of voltage-gated calcium channel Ca V2.3. Nat Commun 2023; 14:516. [PMID: 36720859 PMCID: PMC9889812 DOI: 10.1038/s41467-023-36260-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/23/2023] [Indexed: 02/02/2023] Open
Abstract
High-voltage-activated R-type CaV2.3 channel plays pivotal roles in many physiological activities and is implicated in epilepsy, convulsions, and other neurodevelopmental impairments. Here, we determine the high-resolution cryo-electron microscopy (cryo-EM) structure of human CaV2.3 in complex with the α2δ1 and β1 subunits. The VSDII is stabilized in the resting state. Electrophysiological experiments elucidate that the VSDII is not required for channel activation, whereas the other VSDs are essential for channel opening. The intracellular gate is blocked by the W-helix. A pre-W-helix adjacent to the W-helix can significantly regulate closed-state inactivation (CSI) by modulating the association and dissociation of the W-helix with the gate. Electrostatic interactions formed between the negatively charged domain on S6II, which is exclusively conserved in the CaV2 family, and nearby regions at the alpha-interacting domain (AID) and S4-S5II helix are identified. Further functional analyses indicate that these interactions are critical for the open-state inactivation (OSI) of CaV2 channels.
Collapse
Affiliation(s)
- Yiwei Gao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoli Cui
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| | - Hao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunlong Qiu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yiqing Wei
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanli Dong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Boling Zhu
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chao Peng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Shiqi Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Xuejun Cai Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianyuan Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.,The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China. .,IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.
| | - Yan Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. .,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Yao X, Wang Y, Wang Z, Fan X, Wu D, Huang J, Mueller A, Gao S, Hu M, Robinson CV, Yu Y, Gao S, Yan N. Structures of the R-type human Ca v2.3 channel reveal conformational crosstalk of the intracellular segments. Nat Commun 2022; 13:7358. [PMID: 36446785 PMCID: PMC9708679 DOI: 10.1038/s41467-022-35026-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
The R-type voltage-gated Ca2+ (Cav) channels Cav2.3, widely expressed in neuronal and neuroendocrine cells, represent potential drug targets for pain, seizures, epilepsy, and Parkinson's disease. Despite their physiological importance, there have lacked selective small-molecule inhibitors targeting these channels. High-resolution structures may aid rational drug design. Here, we report the cryo-EM structure of human Cav2.3 in complex with α2δ-1 and β3 subunits at an overall resolution of 3.1 Å. The structure is nearly identical to that of Cav2.2, with VSDII in the down state and the other three VSDs up. A phosphatidylinositol 4,5-bisphosphate (PIP2) molecule binds to the interface of VSDII and the tightly closed pore domain. We also determined the cryo-EM structure of a Cav2.3 mutant in which a Cav2-unique cytosolic helix in repeat II (designated the CH2II helix) is deleted. This mutant, named ΔCH2, still reserves a down VSDII, but PIP2 is invisible and the juxtamembrane region on the cytosolic side is barely discernible. Our structural and electrophysiological characterizations of the wild type and ΔCH2 Cav2.3 show that the CH2II helix stabilizes the inactivated conformation of the channel by tightening the cytosolic juxtamembrane segments, while CH2II helix is not necessary for locking the down state of VSDII.
Collapse
Affiliation(s)
- Xia Yao
- grid.16750.350000 0001 2097 5006Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA
| | - Yan Wang
- grid.264091.80000 0001 1954 7928Department of Biological Sciences, St. John’s University, Queens, NY 11439 USA
| | - Zhifei Wang
- grid.264091.80000 0001 1954 7928Department of Biological Sciences, St. John’s University, Queens, NY 11439 USA
| | - Xiao Fan
- grid.16750.350000 0001 2097 5006Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA
| | - Di Wu
- grid.4991.50000 0004 1936 8948Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QZ UK ,grid.4991.50000 0004 1936 8948Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU UK
| | - Jian Huang
- grid.16750.350000 0001 2097 5006Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA
| | - Alexander Mueller
- grid.16750.350000 0001 2097 5006Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA
| | - Sarah Gao
- grid.16750.350000 0001 2097 5006Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA
| | - Miaohui Hu
- grid.16750.350000 0001 2097 5006Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA
| | - Carol V. Robinson
- grid.4991.50000 0004 1936 8948Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QZ UK ,grid.4991.50000 0004 1936 8948Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU UK
| | - Yong Yu
- grid.264091.80000 0001 1954 7928Department of Biological Sciences, St. John’s University, Queens, NY 11439 USA
| | - Shuai Gao
- grid.16750.350000 0001 2097 5006Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA ,grid.49470.3e0000 0001 2331 6153Present Address: Department of Radiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071 China
| | - Nieng Yan
- grid.16750.350000 0001 2097 5006Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA
| |
Collapse
|
5
|
Papazoglou A, Arshaad MI, Henseler C, Daubner J, Broich K, Hescheler J, Ehninger D, Haenisch B, Weiergräber M. Ca v3 T-Type Voltage-Gated Ca 2+ Channels and the Amyloidogenic Environment: Pathophysiology and Implications on Pharmacotherapy and Pharmacovigilance. Int J Mol Sci 2022; 23:3457. [PMID: 35408817 PMCID: PMC8998330 DOI: 10.3390/ijms23073457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/07/2022] Open
Abstract
Voltage-gated Ca2+ channels (VGCCs) were reported to play a crucial role in neurotransmitter release, dendritic resonance phenomena and integration, and the regulation of gene expression. In the septohippocampal system, high- and low-voltage-activated (HVA, LVA) Ca2+ channels were shown to be involved in theta genesis, learning, and memory processes. In particular, HVA Cav2.3 R-type and LVA Cav3 T-type Ca2+ channels are expressed in the medial septum-diagonal band of Broca (MS-DBB), hippocampal interneurons, and pyramidal cells, and ablation of both channels was proven to severely modulate theta activity. Importantly, Cav3 Ca2+ channels contribute to rebound burst firing in septal interneurons. Consequently, functional impairment of T-type Ca2+ channels, e.g., in null mutant mouse models, caused tonic disinhibition of the septohippocampal pathway and subsequent enhancement of hippocampal theta activity. In addition, impairment of GABA A/B receptor transcription, trafficking, and membrane translocation was observed within the septohippocampal system. Given the recent findings that amyloid precursor protein (APP) forms complexes with GABA B receptors (GBRs), it is hypothesized that T-type Ca2+ current reduction, decrease in GABA receptors, and APP destabilization generate complex functional interdependence that can constitute a sophisticated proamyloidogenic environment, which could be of potential relevance in the etiopathogenesis of Alzheimer's disease (AD). The age-related downregulation of T-type Ca2+ channels in humans goes together with increased Aβ levels that could further inhibit T-type channels and aggravate the proamyloidogenic environment. The mechanistic model presented here sheds new light on recent reports about the potential risks of T-type Ca2+ channel blockers (CCBs) in dementia, as observed upon antiepileptic drug application in the elderly.
Collapse
Affiliation(s)
- Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Muhammad Imran Arshaad
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Johanna Daubner
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (K.B.); (B.H.)
| | - Jürgen Hescheler
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany;
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Dan Ehninger
- Translational Biogerontology, German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Britta Haenisch
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (K.B.); (B.H.)
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
- Center for Translational Medicine, Medical Faculty, University of Bonn, 53113 Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (K.B.); (B.H.)
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany;
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
| |
Collapse
|
6
|
Lanzetti S, Di Biase V. Small Molecules as Modulators of Voltage-Gated Calcium Channels in Neurological Disorders: State of the Art and Perspectives. Molecules 2022; 27:1312. [PMID: 35209100 PMCID: PMC8879281 DOI: 10.3390/molecules27041312] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 01/03/2023] Open
Abstract
Voltage-gated calcium channels (VGCCs) are widely expressed in the brain, heart and vessels, smooth and skeletal muscle, as well as in endocrine cells. VGCCs mediate gene transcription, synaptic and neuronal structural plasticity, muscle contraction, the release of hormones and neurotransmitters, and membrane excitability. Therefore, it is not surprising that VGCC dysfunction results in severe pathologies, such as cardiovascular conditions, neurological and psychiatric disorders, altered glycemic levels, and abnormal smooth muscle tone. The latest research findings and clinical evidence increasingly show the critical role played by VGCCs in autism spectrum disorders, Parkinson's disease, drug addiction, pain, and epilepsy. These findings outline the importance of developing selective calcium channel inhibitors and modulators to treat such prevailing conditions of the central nervous system. Several small molecules inhibiting calcium channels are currently used in clinical practice to successfully treat pain and cardiovascular conditions. However, the limited palette of molecules available and the emerging extent of VGCC pathophysiology require the development of additional drugs targeting these channels. Here, we provide an overview of the role of calcium channels in neurological disorders and discuss possible strategies to generate novel therapeutics.
Collapse
Affiliation(s)
| | - Valentina Di Biase
- Institute of Pharmacology, Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Peter-Mayr Strasse 1, A-6020 Innsbruck, Austria;
| |
Collapse
|
7
|
Wrzosek A, Gałecka S, Żochowska M, Olszewska A, Kulawiak B. Alternative Targets for Modulators of Mitochondrial Potassium Channels. Molecules 2022; 27:299. [PMID: 35011530 PMCID: PMC8746388 DOI: 10.3390/molecules27010299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial potassium channels control potassium influx into the mitochondrial matrix and thus regulate mitochondrial membrane potential, volume, respiration, and synthesis of reactive oxygen species (ROS). It has been found that pharmacological activation of mitochondrial potassium channels during ischemia/reperfusion (I/R) injury activates cytoprotective mechanisms resulting in increased cell survival. In cancer cells, the inhibition of these channels leads to increased cell death. Therefore, mitochondrial potassium channels are intriguing targets for the development of new pharmacological strategies. In most cases, however, the substances that modulate the mitochondrial potassium channels have a few alternative targets in the cell. This may result in unexpected or unwanted effects induced by these compounds. In our review, we briefly present the various classes of mitochondrial potassium (mitoK) channels and describe the chemical compounds that modulate their activity. We also describe examples of the multidirectional activity of the activators and inhibitors of mitochondrial potassium channels.
Collapse
Affiliation(s)
- Antoni Wrzosek
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Shur Gałecka
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Monika Żochowska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Anna Olszewska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland;
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| |
Collapse
|
8
|
Lou S, Cui S. Drug treatment of epilepsy: From serendipitous discovery to evolutionary mechanisms. Curr Med Chem 2021; 29:3366-3391. [PMID: 34514980 DOI: 10.2174/0929867328666210910124727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 11/22/2022]
Abstract
Epilepsy is a chronic brain disorder caused by abnormal firing of neurons. Up to now, using antiepileptic drugs is the main method of epilepsy treatment. The development of antiepileptic drugs lasted for centuries. In general, most agents entering clinical practice act on the balance mechanisms of brain "excitability-inhibition". More specifically, they target voltage-gated ion channels, GABAergic transmission and glutamatergic transmission. In recent years, some novel drugs representing new mechanisms of action have been discovered. Although there are about 30 available drugs in the market, it is still in urgent need of discovering more effective and safer drugs. The development of new antiepileptic drugs is into a new era: from serendipitous discovery to evolutionary mechanism-based design. This article presents an overview of drug treatment of epilepsy, including a series of traditional and novel drugs.
Collapse
Affiliation(s)
- Shengying Lou
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou. China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou. China
| |
Collapse
|
9
|
Kessi M, Chen B, Peng J, Yan F, Yang L, Yin F. Calcium channelopathies and intellectual disability: a systematic review. Orphanet J Rare Dis 2021; 16:219. [PMID: 33985586 PMCID: PMC8120735 DOI: 10.1186/s13023-021-01850-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Calcium ions are involved in several human cellular processes including corticogenesis, transcription, and synaptogenesis. Nevertheless, the relationship between calcium channelopathies (CCs) and intellectual disability (ID)/global developmental delay (GDD) has been poorly investigated. We hypothesised that CCs play a major role in the development of ID/GDD and that both gain- and loss-of-function variants of calcium channel genes can induce ID/GDD. As a result, we performed a systematic review to investigate the contribution of CCs, potential mechanisms underlying their involvement in ID/GDD, advancements in cell and animal models, treatments, brain anomalies in patients with CCs, and the existing gaps in the knowledge. We performed a systematic search in PubMed, Embase, ClinVar, OMIM, ClinGen, Gene Reviews, DECIPHER and LOVD databases to search for articles/records published before March 2021. The following search strategies were employed: ID and calcium channel, mental retardation and calcium channel, GDD and calcium channel, developmental delay and calcium channel. MAIN BODY A total of 59 reports describing 159 cases were found in PubMed, Embase, ClinVar, and LOVD databases. Variations in ten calcium channel genes including CACNA1A, CACNA1C, CACNA1I, CACNA1H, CACNA1D, CACNA2D1, CACNA2D2, CACNA1E, CACNA1F, and CACNA1G were found to be associated with ID/GDD. Most variants exhibited gain-of-function effect. Severe to profound ID/GDD was observed more for the cases with gain-of-function variants as compared to those with loss-of-function. CACNA1E, CACNA1G, CACNA1F, CACNA2D2 and CACNA1A associated with more severe phenotype. Furthermore, 157 copy number variations (CNVs) spanning calcium genes were identified in DECIPHER database. The leading genes included CACNA1C, CACNA1A, and CACNA1E. Overall, the underlying mechanisms included gain- and/ or loss-of-function, alteration in kinetics (activation, inactivation) and dominant-negative effects of truncated forms of alpha1 subunits. Forty of the identified cases featured cerebellar atrophy. We identified only a few cell and animal studies that focused on the mechanisms of ID/GDD in relation to CCs. There is a scarcity of studies on treatment options for ID/GDD both in vivo and in vitro. CONCLUSION Our results suggest that CCs play a major role in ID/GDD. While both gain- and loss-of-function variants are associated with ID/GDD, the mechanisms underlying their involvement need further scrutiny.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Mawenzi Regional Referral Hospital, Moshi, Tanzania
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Fangling Yan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China.
| |
Collapse
|
10
|
Goto A, Hagiwara-Nagasawa M, Kambayashi R, Nunoi Y, Izumi-Nakaseko H, Kawai S, Takei Y, Matsumoto A, Sugiyama A. Reverse translational analysis of clinically reported, lamotrigine-induced cardiovascular adverse events using the halothane-anesthetized dogs. Heart Vessels 2020; 36:424-429. [PMID: 33136260 DOI: 10.1007/s00380-020-01716-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022]
Abstract
Lamotrigine has been used for patients with epilepsy and/or bipolar disorder, overdose of which induced the hypotension, elevation of the atrial pacing threshold, cardiac conduction delay, wide complex tachycardia, cardiac arrest and Brugada-like electrocardiographic pattern. To clarify how lamotrigine induces those cardiovascular adverse events, we simultaneously assessed its cardiohemodynamic and electrophysiological effects using the halothane-anesthetized dogs (n = 4). Lamotrigine was intravenously administered in doses of 0.1, 1 and 10 mg/kg/10 min under the monitoring of cardiovascular variables, possibly providing subtherapeutic to supratherapeutic plasma concentrations. The low or middle dose of lamotrigine did not alter any of the variables. The high dose significantly delayed the intra-atrial and intra-ventricular conductions in addition to the prolongation of ventricular effective refractory period, whereas no significant change was detected in the other variables. Lamotrigine by itself has relatively wide safety margin for cardiohemodynamics, indicating that clinically reported hypotension may not be induced through its direct action on the resistance arterioles or capacitance venules. The electrophysiological effects suggested that lamotrigine can inhibit Na+ channel in the in situ hearts. This finding may partly explain the onset mechanism of lamotrigine-associated cardiac adverse events in the clinical cases. In addition, elevation of J wave was induced in half of the animals, suggesting that lamotrigine may have some potential to unmask Brugada electrocardiographic genotype in susceptible patients.
Collapse
Affiliation(s)
- Ai Goto
- Department of Pharmacology, Toho University Graduate School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Mihoko Hagiwara-Nagasawa
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Ryuichi Kambayashi
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Yoshio Nunoi
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Hiroko Izumi-Nakaseko
- Department of Pharmacology, Toho University Graduate School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.,Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Shinichi Kawai
- Department of Inflammation and Pain Control Research, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Yoshinori Takei
- Department of Translational Research and Cellular Therapeutics, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Akio Matsumoto
- Department of Aging Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Atsushi Sugiyama
- Department of Pharmacology, Toho University Graduate School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan. .,Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan. .,Department of Inflammation and Pain Control Research, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan. .,Department of Translational Research and Cellular Therapeutics, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan. .,Department of Aging Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
| |
Collapse
|
11
|
Neumaier F, Schneider T, Albanna W. Ca v2.3 channel function and Zn 2+-induced modulation: potential mechanisms and (patho)physiological relevance. Channels (Austin) 2020; 14:362-379. [PMID: 33079629 PMCID: PMC7583514 DOI: 10.1080/19336950.2020.1829842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Voltage-gated calcium channels (VGCCs) are critical for Ca2+ influx into all types of excitable cells, but their exact function is still poorly understood. Recent reconstruction of homology models for all human VGCCs at atomic resolution provides the opportunity for a structure-based discussion of VGCC function and novel insights into the mechanisms underlying Ca2+ selective flux through these channels. In the present review, we use these data as a basis to examine the structure, function, and Zn2+-induced modulation of Cav2.3 VGCCs, which mediate native R-type currents and belong to the most enigmatic members of the family. Their unique sensitivity to Zn2+ and the existence of multiple mechanisms of Zn2+ action strongly argue for a role of these channels in the modulatory action of endogenous loosely bound Zn2+, pools of which have been detected in a number of neuronal, endocrine, and reproductive tissues. Following a description of the different mechanisms by which Zn2+ has been shown or is thought to alter the function of these channels, we discuss their potential (patho)physiological relevance, taking into account what is known about the magnitude and function of extracellular Zn2+ signals in different tissues. While still far from complete, the picture that emerges is one where Cav2.3 channel expression parallels the occurrence of loosely bound Zn2+ pools in different tissues and where these channels may serve to translate physiological Zn2+ signals into changes of electrical activity and/or intracellular Ca2+ levels.
Collapse
Affiliation(s)
- Felix Neumaier
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5) , Jülich, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging , Cologne, Germany
| | - Toni Schneider
- Institute of Neurophysiology , Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Walid Albanna
- Department of Neurosurgery, RWTH Aachen University , Aachen, Germany
| |
Collapse
|
12
|
Buch D, Chabriat H. Lamotrigine in the Prevention of Migraine With Aura: A Narrative Review. Headache 2019; 59:1187-1197. [PMID: 31468532 DOI: 10.1111/head.13615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Lamotrigine is not recommended in the prevention of migraine in general but some reports suggest that it might be effective for treating specifically migraine with aura (MA). This review aims to summarize the related data from the literature and to better understand this discrepancy. METHODS All reports from the literature related to the use of lamotrigine in migraine with or without aura published prior to February 2019 found using PUBMED and the 2 keywords "migraine" AND "lamotrigine" were reviewed. Original studies, published in full, systematic reviews, and all case reports were synthetized. We also examined the risk profile, pharmacokinetics, and mode of action of lamotrigine in view of the presumed mechanism of MA. RESULTS Lamotrigine was tested in different populations of migraineurs, but previous studies had small sample sizes (n < 35) and might not have been powered enough for detecting a potential benefit of lamotrigine in MA. Accumulating data suggest that the drug can reduce both the frequency and severity of aura symptoms in multiple conditions and is well tolerated. CONCLUSION Lamotrigine appears promising for treating attacks of MA and related clinical manifestations because of its high potential of efficacy, low-risk profile, and cost. Additional studies are needed for testing lamotrigine in patients with MA.
Collapse
Affiliation(s)
- Dan Buch
- Neurology Department, DHU Neuro-Vasc, Hopital Lariboisière, Paris, France
| | - Hugues Chabriat
- Neurology Department, DHU Neuro-Vasc, Hopital Lariboisière, Paris, France.,INSERM U1161, Université Denis Diderot, Paris, France
| |
Collapse
|
13
|
Disruption of GpI mGluR-Dependent Cav2.3 Translation in a Mouse Model of Fragile X Syndrome. J Neurosci 2019; 39:7453-7464. [PMID: 31350260 DOI: 10.1523/jneurosci.1443-17.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 11/21/2022] Open
Abstract
Fragile X syndrome (FXS) is an inherited intellectual impairment that results from the loss of fragile X mental retardation protein (FMRP), an mRNA binding protein that regulates mRNA translation at synapses. The absence of FMRP leads to neuronal and circuit-level hyperexcitability that is thought to arise from the aberrant expression and activity of voltage-gated ion channels, although the identification and characterization of these ion channels have been limited. Here, we show that FMRP binds the mRNA of the R-type voltage-gated calcium channel Cav2.3 in mouse brain synaptoneurosomes and represses Cav2.3 translation under basal conditions. Consequently, in hippocampal neurons from male and female FMRP KO mice, we find enhanced Cav2.3 protein expression by western blotting and abnormally large R currents in whole-cell voltage-clamp recordings. In agreement with previous studies showing that FMRP couples Group I metabotropic glutamate receptor (GpI mGluR) signaling to protein translation, we find that GpI mGluR stimulation results in increased Cav2.3 translation and R current in hippocampal neurons which is disrupted in FMRP KO mice. Thus, FMRP serves as a key translational regulator of Cav2.3 expression under basal conditions and in response to GpI mGluR stimulation. Loss of regulated Cav2.3 expression could underlie the neuronal hyperactivity and aberrant calcium spiking in FMRP KO mice and contribute to FXS, potentially serving as a novel target for future therapeutic strategies.SIGNIFICANCE STATEMENT Patients with fragile X syndrome (FXS) exhibit signs of neuronal and circuit hyperexcitability, including anxiety and hyperactive behavior, attention deficit disorder, and seizures. FXS is caused by the loss of fragile X mental retardation protein (FMRP), an mRNA binding protein, and the neuronal hyperexcitability observed in the absence of FMRP likely results from its ability to regulate the expression and activity of voltage-gated ion channels. Here we find that FMRP serves as a key translational regulator of the voltage-gated calcium channel Cav2.3 under basal conditions and following activity. Cav2.3 impacts cellular excitability and calcium signaling, and the alterations in channel translation and expression observed in the absence of FMRP could contribute to the neuronal hyperactivity that underlies FXS.
Collapse
|
14
|
Wu T, Ido K, Ohgoh M, Hanada T. Mode of seizure inhibition by sodium channel blockers, an SV2A ligand, and an AMPA receptor antagonist in a rat amygdala kindling model. Epilepsy Res 2019; 154:42-49. [PMID: 31035244 DOI: 10.1016/j.eplepsyres.2019.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE A number of antiepileptic drugs (AEDs) with a variety of modes of action, are effective in treating focal seizures. Several AEDs, such as perampanel (PER), levetiracetam (LEV), lacosamide (LCM), lamotrigine (LTG), and carbamazepine (CBZ), have been shown to elevate the seizure threshold in kindling models. These AEDs are clinically effective, but differences exist in the anti-seizure profiles of drugs with similar modes of action. Therefore, we hypothesized that there are differences in how these AEDs affect seizures. Here, we evaluated the effects of AEDs on various seizure parameters in a rat amygdala kindling model upon stimulation at the after-discharge threshold (ADT) and at three-times the ADT (3xADT) to characterize the differences in the effects of these AEDs. METHODS PER, LEV, LCM, LTG, CBZ, or vehicle was administered intraperitoneally to fully kindled rats. Changes in Racine seizure score, after-discharge duration (ADD), and latency to Racine score 4 generalized seizure (S4L) were measured to assess differences in the modes of seizure inhibition among the AEDs. Stimulation at 3xADT was used to eliminate the influence of any AED-induced elevation of the seizure threshold on these parameters. RESULTS PER, LEV, LCM, LTG, and CBZ significantly reduced the seizure score from Racine score 5 after stimulation at the ADT; this effect was lost with LEV and LTG after stimulation at 3xADT. PER and LEV significantly shortened the ADD when the seizure focus was stimulated at the ADT, whereas LCM, LTG, and CBZ did not. LEV, LCM, LTG, and CBZ failed to shorten the ADD upon stimulation at 3xADT. PER dose-dependently and significantly increased S4L, even at doses that were ineffective for seizure score reduction, after stimulation at both the ADT and 3xADT. LEV and LTG significantly increased S4L after stimulation at the ADT, whereas LCM and CBZ did not significantly increase S4L at any of the doses tested. CONCLUSIONS The sodium channel blockers (LCM, LTG, and CBZ) appeared to act by elevation of the seizure threshold via reduction of neuronal excitability, whereas the AMPA receptor antagonist (PER) and the SV2A ligand (LEV), as well as LTG, exerted their effects through the weakening of synaptic transmission in neuronal networks at the seizure focus. Maintenance of the effect of PER even at 3xADT suggests direct and strong modulation of excitatory synaptic transmission by PER, both at the focus and along the seizure propagation route. These findings may provide further rationale for usage of AEDs beyond their respective modes of action.
Collapse
Affiliation(s)
- Ting Wu
- Neurology Tsukuba Research Department, Discovery, Medicine Creation, Neurology Business Group, Eisai Co., Ltd. Japan
| | - Katsutoshi Ido
- Neurology Tsukuba Research Department, Discovery, Medicine Creation, Neurology Business Group, Eisai Co., Ltd. Japan
| | - Makoto Ohgoh
- Neurology Tsukuba Research Department, Discovery, Medicine Creation, Neurology Business Group, Eisai Co., Ltd. Japan
| | - Takahisa Hanada
- Clinical Science Department, Medical Division, Eisai Co., Ltd. Nishigokencho 13-1, Shinjuku-ku, Tokyo 162-0812, Japan.
| |
Collapse
|
15
|
Gutzmann JJ, Lin L, Hoffman DA. Functional Coupling of Cav2.3 and BK Potassium Channels Regulates Action Potential Repolarization and Short-Term Plasticity in the Mouse Hippocampus. Front Cell Neurosci 2019; 13:27. [PMID: 30846929 PMCID: PMC6393364 DOI: 10.3389/fncel.2019.00027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/22/2019] [Indexed: 11/13/2022] Open
Abstract
Voltage-gated ion channels are essential for signal generation and propagation in neurons and other excitable cells. The high-voltage activated calcium-channel Cav2.3 is expressed throughout the central and peripheral nervous system, and within CA1 hippocampal pyramidal neurons it is localized throughout the somato-dendritic region and dendritic spines. Cav2.3 has been shown to provide calcium for other calcium-dependent potassium channels including small-conductance calcium-activated potassium channels (SK), but big-conductance calcium-activated potassium channels (BK) have been thought to be activated by calcium from all known voltage-gated calcium channels, except Cav2.3. Here we show for the first time that CA1 pyramidal cells which lack Cav2.3 show altered action potential (AP) waveforms, which can be traced back to reduced SK- and BK-channel function. This change in AP waveform leads to strengthened synaptic transmission between CA1 and the subiculum, resulting in increased short-term plasticity. Our results demonstrate that Cav2.3 impacts cellular excitability through functional interaction with BK channels, impacting communication between hippocampal subregions.
Collapse
Affiliation(s)
- Jakob J Gutzmann
- Molecular Neurophysiology and Biophysics Section, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Lin Lin
- Molecular Neurophysiology and Biophysics Section, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Dax A Hoffman
- Molecular Neurophysiology and Biophysics Section, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
16
|
Helbig KL, Lauerer RJ, Bahr JC, Souza IA, Myers CT, Uysal B, Schwarz N, Gandini MA, Huang S, Keren B, Mignot C, Afenjar A, Billette de Villemeur T, Héron D, Nava C, Valence S, Buratti J, Fagerberg CR, Soerensen KP, Kibaek M, Kamsteeg EJ, Koolen DA, Gunning B, Schelhaas HJ, Kruer MC, Fox J, Bakhtiari S, Jarrar R, Padilla-Lopez S, Lindstrom K, Jin SC, Zeng X, Bilguvar K, Papavasileiou A, Xing Q, Zhu C, Boysen K, Vairo F, Lanpher BC, Klee EW, Tillema JM, Payne ET, Cousin MA, Kruisselbrink TM, Wick MJ, Baker J, Haan E, Smith N, Sadeghpour A, Davis EE, Katsanis N, Corbett MA, MacLennan AH, Gecz J, Biskup S, Goldmann E, Rodan LH, Kichula E, Segal E, Jackson KE, Asamoah A, Dimmock D, McCarrier J, Botto LD, Filloux F, Tvrdik T, Cascino GD, Klingerman S, Neumann C, Wang R, Jacobsen JC, Nolan MA, Snell RG, Lehnert K, Sadleir LG, Anderlid BM, Kvarnung M, Guerrini R, Friez MJ, Lyons MJ, Leonhard J, Kringlen G, Casas K, El Achkar CM, Smith LA, Rotenberg A, Poduri A, Sanchis-Juan A, Carss KJ, Rankin J, Zeman A, Raymond FL, Blyth M, Kerr B, Ruiz K, Urquhart J, Hughes I, Banka S, Hedrich UB, Scheffer IE, Helbig I, Zamponi GW, Lerche H, Mefford HC, Allori A, Angrist M, Ashley P, Bidegain M, Boyd B, Chambers E, Cope H, Cotten CM, Curington T, Davis EE, Ellestad S, Fisher K, French A, Gallentine W, Goldberg R, Hill K, Kansagra S, Katsanis N, Katsanis S, Kurtzberg J, Marcus J, McDonald M, Mikati M, Miller S, Murtha A, Perilla Y, Pizoli C, Purves T, Ross S, Sadeghpour A, Smith E, Wiener J. De Novo Pathogenic Variants in CACNA1E Cause Developmental and Epileptic Encephalopathy with Contractures, Macrocephaly, and Dyskinesias. Am J Hum Genet 2018; 103:666-678. [PMID: 30343943 DOI: 10.1016/j.ajhg.2018.09.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are severe neurodevelopmental disorders often beginning in infancy or early childhood that are characterized by intractable seizures, abundant epileptiform activity on EEG, and developmental impairment or regression. CACNA1E is highly expressed in the central nervous system and encodes the α1-subunit of the voltage-gated CaV2.3 channel, which conducts high voltage-activated R-type calcium currents that initiate synaptic transmission. Using next-generation sequencing techniques, we identified de novo CACNA1E variants in 30 individuals with DEE, characterized by refractory infantile-onset seizures, severe hypotonia, and profound developmental impairment, often with congenital contractures, macrocephaly, hyperkinetic movement disorders, and early death. Most of the 14, partially recurring, variants cluster within the cytoplasmic ends of all four S6 segments, which form the presumed CaV2.3 channel activation gate. Functional analysis of several S6 variants revealed consistent gain-of-function effects comprising facilitated voltage-dependent activation and slowed inactivation. Another variant located in the domain II S4-S5 linker results in facilitated activation and increased current density. Five participants achieved seizure freedom on the anti-epileptic drug topiramate, which blocks R-type calcium channels. We establish pathogenic variants in CACNA1E as a cause of DEEs and suggest facilitated R-type calcium currents as a disease mechanism for human epilepsy and developmental disorders.
Collapse
|
17
|
Mader F, Müller S, Krause L, Springer A, Kernig K, Protzel C, Porath K, Rackow S, Wittstock T, Frank M, Hakenberg OW, Köhling R, Kirschstein T. Hyperpolarization-Activated Cyclic Nucleotide-Gated Non-selective (HCN) Ion Channels Regulate Human and Murine Urinary Bladder Contractility. Front Physiol 2018; 9:753. [PMID: 29971015 PMCID: PMC6018223 DOI: 10.3389/fphys.2018.00753] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/29/2018] [Indexed: 11/16/2022] Open
Abstract
Purpose: Hyperpolarization-activated cyclic nucleotide gated non-selective (HCN) channels have been demonstrated in the urinary bladder in various species. Since they play a major role in governing rhythmic activity in pacemaker cells like in the sinoatrial node, we explored the role of these channels in human and murine detrusor smooth muscle. Methods: In an organ bath, human and murine detrusor smooth muscle specimens were challenged with the HCN channel blocker ZD7288. In human tissue derived from macroscopically tumor-free cancer resections, the urothelium was removed. In addition, HCN1-deficient mice were used to identify the contribution of this particular isoform. Expression of HCN channels in the urinary bladder was analyzed using histological and ultrastructural analyses as well as quantitative reverse transcriptase polymerase chain reaction (RT-PCR). Results: We found that the HCN channel blocker ZD7288 (50 μM) both induced tonic contractions and increased phasic contraction amplitudes in human and murine detrusor specimens. While these responses were not sensitive to tetrodotoxin, they were significantly reduced by the gap junction inhibitor 18β-glycyrrhetic acid suggesting that HCN channels are located within the gap junction-interconnected smooth muscle cell network rather than on efferent nerve fibers. Immunohistochemistry suggested HCN channel expression on smooth muscle tissue, and immunoelectron microscopy confirmed the scattered presence of HCN2 on smooth muscle cell membranes. HCN channels seem to be down-regulated with aging, which is paralleled by an increasing effect of ZD7288 in aging detrusor tissue. Importantly, the anticonvulsant and HCN channel activator lamotrigine relaxed the detrusor which could be reversed by ZD7288. Conclusion: These findings demonstrate that HCN channels are functionally present and localized on smooth muscle cells of the urinary bladder. Given the age-dependent decline of these channels in humans, activation of HCN channels by compounds such as lamotrigine opens up the opportunity to combat detrusor hyperactivity in the elderly by drugs already approved for epilepsy.
Collapse
Affiliation(s)
- Felix Mader
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Steffen Müller
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Ludwig Krause
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Armin Springer
- Department of Medical Biology, Electron Microscopy Center, University of Rostock, Rostock, Germany
| | - Karoline Kernig
- Department of Urology, University of Rostock, Rostock, Germany
| | - Chris Protzel
- Department of Urology, University of Rostock, Rostock, Germany
| | - Katrin Porath
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Simone Rackow
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Tristan Wittstock
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Marcus Frank
- Department of Medical Biology, Electron Microscopy Center, University of Rostock, Rostock, Germany
| | | | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Timo Kirschstein
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| |
Collapse
|
18
|
Auerbach DS, Biton Y, Polonsky B, McNitt S, Gross RA, Dirksen RT, Moss AJ. Risk of cardiac events in Long QT syndrome patients when taking antiseizure medications. Transl Res 2018; 191:81-92.e7. [PMID: 29121487 PMCID: PMC5733703 DOI: 10.1016/j.trsl.2017.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/02/2017] [Accepted: 10/07/2017] [Indexed: 12/29/2022]
Abstract
Many antiseizure medications (ASMs) affect ion channel function. We investigated whether ASMs alter the risk of cardiac events in patients with corrected QT (QTc) prolongation. The study included people from the Rochester-based Long QT syndrome (LQTS) Registry with baseline QTc prolongation and history of ASM therapy (n = 296). Using multivariate Anderson-Gill models, we assessed the risk of recurrent cardiac events associated with ASM therapy. We stratified by LQTS genotype and predominant mechanism of ASM action (Na+ channel blocker and gamma-aminobutyric acid modifier.) There was an increased risk of cardiac events when participants with QTc prolongation were taking vs off ASMs (HR 1.65, 95% confidence interval [CI] 1.36-2.00, P < 0.001). There was an increased risk of cardiac events when LQTS2 (HR 1.49, 95% CI 1.03-2.15, P = 0.036) but not LQTS1 participants were taking ASMs (interaction, P = 0.016). Na+ channel blocker ASMs were associated with an increased risk of cardiac events in participants with QTc prolongation, specifically LQTS2, but decreased risk in LQTS1. The increased risk when taking all ASMs and Na+ channel blocker ASMs was attenuated by concurrent beta-adrenergic blocker therapy (interaction, P < 0.001). Gamma-aminobutyric acid modifier ASMs were associated with an increased risk of events in patients not concurrently treated with beta-adrenergic blockers. Female participants were at an increased risk of cardiac events while taking all ASMs and each class of ASMs. Despite no change in overall QTc duration, pharmacogenomic analyses set the stage for future prospective clinical and mechanistic studies to validate that ASMs with predominantly Na+ channel blocking actions are deleterious in LQTS2, but protective in LQTS1.
Collapse
Affiliation(s)
- David S Auerbach
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY; Department of Pharmacology & Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY.
| | - Yitschak Biton
- Department of Medicine, Heart Research Follow up Program, University of Rochester School of Medicine and Dentistry, Rochester, NY; Department of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Bronislava Polonsky
- Department of Medicine, Heart Research Follow up Program, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Scott McNitt
- Department of Medicine, Heart Research Follow up Program, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Robert A Gross
- Department of Pharmacology & Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY; Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Robert T Dirksen
- Department of Pharmacology & Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Arthur J Moss
- Department of Medicine, Heart Research Follow up Program, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
19
|
Wormuth C, Lundt A, Henseler C, Müller R, Broich K, Papazoglou A, Weiergräber M. Review: Ca v2.3 R-type Voltage-Gated Ca 2+ Channels - Functional Implications in Convulsive and Non-convulsive Seizure Activity. Open Neurol J 2016; 10:99-126. [PMID: 27843503 PMCID: PMC5080872 DOI: 10.2174/1874205x01610010099] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/16/2016] [Accepted: 06/24/2016] [Indexed: 11/22/2022] Open
Abstract
Background: Researchers have gained substantial insight into mechanisms of synaptic transmission, hyperexcitability, excitotoxicity and neurodegeneration within the last decades. Voltage-gated Ca2+ channels are of central relevance in these processes. In particular, they are key elements in the etiopathogenesis of numerous seizure types and epilepsies. Earlier studies predominantly targeted on Cav2.1 P/Q-type and Cav3.2 T-type Ca2+ channels relevant for absence epileptogenesis. Recent findings bring other channels entities more into focus such as the Cav2.3 R-type Ca2+ channel which exhibits an intriguing role in ictogenesis and seizure propagation. Cav2.3 R-type voltage gated Ca2+ channels (VGCC) emerged to be important factors in the pathogenesis of absence epilepsy, human juvenile myoclonic epilepsy (JME), and cellular epileptiform activity, e.g. in CA1 neurons. They also serve as potential target for various antiepileptic drugs, such as lamotrigine and topiramate. Objective: This review provides a summary of structure, function and pharmacology of VGCCs and their fundamental role in cellular Ca2+ homeostasis. We elaborate the unique modulatory properties of Cav2.3 R-type Ca2+ channels and point to recent findings in the proictogenic and proneuroapoptotic role of Cav2.3 R-type VGCCs in generalized convulsive tonic–clonic and complex-partial hippocampal seizures and its role in non-convulsive absence like seizure activity. Conclusion: Development of novel Cav2.3 specific modulators can be effective in the pharmacological treatment of epilepsies and other neurological disorders.
Collapse
Affiliation(s)
- Carola Wormuth
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Andreas Lundt
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Christina Henseler
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Ralf Müller
- Department of Psychiatry and Psychotherapy, University of Cologne, Faculty of Medicine, Cologne, Germany
| | - Karl Broich
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Anna Papazoglou
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Marco Weiergräber
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| |
Collapse
|
20
|
A systematic review of calcium channel blocker use and cognitive decline/dementia in the elderly. J Hypertens 2016; 32:1945-57; discussion 1957-8. [PMID: 25068540 DOI: 10.1097/hjh.0000000000000273] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Treating hypertension in those aged at least 80 years is now recommended; however, the best antihypertensive to choose remains unexplored. Calcium channel blocker (CCB) use has been associated with a decreased risk of incident dementia in a younger hypertensive group but with an increased risk of cognitive decline in the very elderly. Either result could have a large impact on a vulnerable population. The aim of this review was to assess the evidence relating CCB use to later cognitive decline or dementia in the very elderly. METHODS A systematic review of the literature was carried out. The databases Medline, PubMed, Embase and Psychinfo were searched from 1980 to 22 August 2013. Abstracts were reviewed by two independent reviewers and papers meeting the inclusion criteria were extracted. RESULTS One thousand, nine hundred and sixty-eight records were reviewed and 10 articles reporting on nine studies retained and extracted. Data were primarily from cohort studies. Only one reported a randomized controlled trial comparing CCBs with placebo. Populations, comparator groups, follow-up times, outcomes and exposure varied and overall results were mixed. It was not possible to combine all studies, but those reporting Alzheimer's disease outcomes were combined to produce an overall risk ratio of 0.79 (95% confidence interval 0.53-1.17). CONCLUSION At present, there is no clear evidence to suggest that CCB use increases or decreases risk of cognitive decline or dementia in the very elderly. A robust clinical trial is now required to resolve this.
Collapse
|
21
|
Abstract
A central theme in the quest to unravel the genetic basis of epilepsy has been the effort to elucidate the roles played by inherited defects in ion channels. The ubiquitous expression of voltage-gated calcium channels (VGCCs) throughout the central nervous system (CNS), along with their involvement in fundamental processes, such as neuronal excitability and synaptic transmission, has made them attractive candidates. Recent insights provided by the identification of mutations in the P/Q-type calcium channel in humans and rodents with epilepsy and the finding of thalamic T-type calcium channel dysfunction in the absence of seizures have raised expectations of a causal role of calcium channels in the polygenic inheritance of idiopathic epilepsy. In this review, we consider how genetic variation in neuronal VGCCs may influence the development of epilepsy.
Collapse
Affiliation(s)
- Sanjeev Rajakulendran
- UCL-Institute of Neurology, MRC Centre for Neuromuscular Diseases, Queen Square, London WC1N 3BG, United Kingdom
| | - Michael G Hanna
- UCL-Institute of Neurology, MRC Centre for Neuromuscular Diseases, Queen Square, London WC1N 3BG, United Kingdom
| |
Collapse
|
22
|
Zamponi GW. Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat Rev Drug Discov 2015; 15:19-34. [DOI: 10.1038/nrd.2015.5] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Dibué M, Kamp MA, Neumaier F, Steiger HJ, Hänggi D, Hescheler J, Schneider T. Cardiac phenomena during kainic-acid induced epilepsy and lamotrigine antiepileptic therapy. Epilepsy Res 2014; 108:666-74. [PMID: 24642265 DOI: 10.1016/j.eplepsyres.2014.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/03/2014] [Accepted: 02/18/2014] [Indexed: 01/28/2023]
Abstract
RATIONALE Pathologic ECG events are known to accompany seizures and to persist in several chronic epilepsy syndromes. The contribution of antiepileptic drugs (AEDs) to these events and the implications in the etiology of sudden-unexpected death in epilepsy (SUDEP) continue to be a matter of debate. We therefore investigated cardiac parameters during kainic-acid (KA) induced experimental epilepsy and antiepileptic treatment with lamotrigine (LTG). METHODS Epilepsy was induced in seven C57Bl/6 mice by injections of KA (20 mg/kg) on days 1 and 5, which produced severe acute seizures and spontaneous seizures 10 days later. Treatment with LTG (30 mg/kg) was initiated on day 11 and repeated on day 12. Continuous ECGs and ECoGs were collected telemetrically from freely moving mice. RESULTS Mice displayed pre-ictal but not ictal tachycardia. The squared coefficient of variation (SCV) of R-R intervals was significantly elevated 30s before and during seizures compared to control conditions. LTG produced a significant reversible increase in SCV and LF/HF ratio during slow-wave sleep (SWS), potentially indicative of sympatho-vagal imbalance during this state of vigilance, in which epileptic patients are known to be particularly vulnerable to SUDEP. SIGNIFICANCE The KA model used in this study permits the investigation of cardiac phenomena during epilepsy, as it features many effects found in human epileptic patients. Increased LF/HF, a known risk factor for cardiac disease, which is often found in epileptic patients, was observed as a side-effect of LTG treatment during SWS, suggesting that LTG may promote imbalance of the autonomous nervous system in epileptic mice.
Collapse
Affiliation(s)
- Maxine Dibué
- Institute for Neurophysiology, University of Cologne, Robert-Koch Straße 39, D-50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch Straße 39, D-50931 Cologne, Germany; Department of Neurosurgery, University Hospital, Heinrich-Heine-University, Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany.
| | - Marcel A Kamp
- Institute for Neurophysiology, University of Cologne, Robert-Koch Straße 39, D-50931 Cologne, Germany; Department of Neurosurgery, University Hospital, Heinrich-Heine-University, Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Felix Neumaier
- Institute for Neurophysiology, University of Cologne, Robert-Koch Straße 39, D-50931 Cologne, Germany
| | - Hans-Jakob Steiger
- Department of Neurosurgery, University Hospital, Heinrich-Heine-University, Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Daniel Hänggi
- Department of Neurosurgery, University Hospital, Heinrich-Heine-University, Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Jürgen Hescheler
- Institute for Neurophysiology, University of Cologne, Robert-Koch Straße 39, D-50931 Cologne, Germany
| | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, Robert-Koch Straße 39, D-50931 Cologne, Germany
| |
Collapse
|
24
|
Kopecky BJ, Liang R, Bao J. T-type calcium channel blockers as neuroprotective agents. Pflugers Arch 2014; 466:757-65. [PMID: 24563219 DOI: 10.1007/s00424-014-1454-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 01/12/2023]
Abstract
T-type calcium channels are expressed in many diverse tissues, including neuronal, cardiovascular, and endocrine. T-type calcium channels are known to play roles in the development, maintenance, and repair of these tissues but have also been implicated in disease when not properly regulated. Calcium channel blockers have been developed to treat various diseases and their use clinically is widespread due to both their efficacy as well as their safety. Aside from their established clinical applications, recent studies have suggested neuroprotective effects of T-type calcium channel blockers. Many of the current T-type calcium channel blockers could act on other molecular targets besides T-type calcium channels making it uncertain whether their neuroprotective effects are solely due to blocking of T-type calcium channels. In this review, we discuss these drugs as well as newly developed chemical compounds that are designed to be more selective for T-type calcium channels. We review in vitro and in vivo evidence of neuroprotective effects by these T-type calcium channel blockers. We conclude by discussing possible molecular mechanisms underlying the neuroprotective effects by T-type calcium channel blockers.
Collapse
Affiliation(s)
- Benjamin J Kopecky
- Department of Otolaryngology, Center for Aging, Washington University School of Medicine, 4560 Clayton Avenue, St. Louis, MO, 63110, USA
| | | | | |
Collapse
|
25
|
Malik S, Arif H, Hirsch LJ. Lamotrigine and its applications in the treatment of epilepsy and other neurological and psychiatric disorders. Expert Rev Neurother 2014; 6:1609-27. [PMID: 17144777 DOI: 10.1586/14737175.6.11.1609] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lamotrigine is a broad-spectrum antiepileptic drug, initially approved in 1994 for the adjunctive treatment of partial seizures in adults and for the generalized seizures of Lennox-Gastaut syndrome in pediatric (>2 years old) and adult populations. Its role in the treatment of bipolar disorder type I has also been well established. In addition, lamotrigine has been successfully used for the management of other neurological conditions such as migraines and neuropathic pain, and preliminary data show promising results. It has favorable pharmacokinetic properties and is generally well tolerated. The small risk of serious skin rash can be minimized with slow titration of the drug and dose adjustment with concomitant medications. Lamotrigine has demonstrated particular benefit in the treatment of women and elderly patients with epilepsy.
Collapse
Affiliation(s)
- Sheetal Malik
- Comprehensive Epilepsy Center, Columbia University Neurological Institute, Box NI-135, 710 West 168th Street, 7th Floor, New York, NY 10032, USA.
| | | | | |
Collapse
|
26
|
Cardiac functions of voltage-gated Ca(2+) channels: role of the pharmacoresistant type (E-/R-Type) in cardiac modulation and putative implication in sudden unexpected death in epilepsy (SUDEP). Rev Physiol Biochem Pharmacol 2014; 167:115-39. [PMID: 25280639 DOI: 10.1007/112_2014_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Voltage-gated Ca(2+) channels (VGCCs) are ubiquitous in excitable cells. These channels play key roles in many physiological events like cardiac regulation/pacemaker activity due to intracellular Ca(2+) transients. In the myocardium, the Cav1 subfamily (L-type: Cav1.2 and Cav1.3) is the main contributor to excitation-contraction coupling and/or pacemaking, whereas the Cav3 subfamily (T-type: Cav3.1 and Cav3.2) is important in rhythmically firing of the cardiac nodal cells. No established cardiac function has been attributed to the Cav2 family (E-/R-type: Cav2.3) despite accumulating evidence of cardiac dysregulation observed upon deletion of the Cav2.3 gene, the only member of this family so far detected in cardiomyocytes. In this review, we summarize the pathophysiological changes observed after ablation of the E-/R-type VGCC and propose a cardiac mechanism of action for this channel. Also, considering the role played by this channel in epilepsy and its reported sensitivity to antiepileptic drugs, a putative involvement of this channel in the cardiac mechanism of sudden unexpected death in epilepsy is also discussed.
Collapse
|
27
|
Dibué M, Kamp MA, Alpdogan S, Tevoufouet EE, Neiss WF, Hescheler J, Schneider T. Retracted: Cav2.3 (R-type) calcium channels are critical for mediating anticonvulsive and neuroprotective properties of lamotrigine in vivo. Epilepsia 2013; 54:1542-50. [DOI: 10.1111/epi.12250] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Maxine Dibué
- Institute for Neurophysiology; University of Cologne; Cologne Germany
- Center for Molecular Medicine Cologne (CMMC); University of Cologne; Cologne Germany
- Department of Neurosurgery; University Hospital; Heinrich-Heine-University; Duesseldorf Germany
| | - Marcel A. Kamp
- Institute for Neurophysiology; University of Cologne; Cologne Germany
- Department of Neurosurgery; University Hospital; Heinrich-Heine-University; Duesseldorf Germany
| | - Serdar Alpdogan
- Institute for Neurophysiology; University of Cologne; Cologne Germany
| | | | | | - Jürgen Hescheler
- Institute for Neurophysiology; University of Cologne; Cologne Germany
| | - Toni Schneider
- Institute for Neurophysiology; University of Cologne; Cologne Germany
| |
Collapse
|
28
|
Schneider T, Dibué M, Hescheler J. How "Pharmacoresistant" is Cav2.3, the Major Component of Voltage-Gated R-type Ca2+ Channels? Pharmaceuticals (Basel) 2013; 6:759-76. [PMID: 24276260 PMCID: PMC3816731 DOI: 10.3390/ph6060759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/26/2013] [Accepted: 05/06/2013] [Indexed: 12/04/2022] Open
Abstract
Membrane-bound voltage-gated Ca2+ channels (VGCCs) are targets for specific signaling complexes, which regulate important processes like gene expression, neurotransmitter release and neuronal excitability. It is becoming increasingly evident that the so called “resistant” (R-type) VGCC Cav2.3 is critical in several physiologic and pathophysiologic processes in the central nervous system, vascular system and in endocrine systems. However its eponymous attribute of pharmacologic inertness initially made in depth investigation of the channel difficult. Although the identification of SNX-482 as a fairly specific inhibitor of Cav2.3 in the nanomolar range has enabled insights into the channels properties, availability of other pharmacologic modulators of Cav2.3 with different chemical, physical and biological properties are of great importance for future investigations. Therefore the literature was screened systematically for molecules that modulate Cav2.3 VGCCs.
Collapse
Affiliation(s)
- Toni Schneider
- Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, Cologne D-50931, Germany; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (T.S.); (M.D.); Tel.: +49-221-478-69446 (T.S.); Fax: +49-221-478-6965 (T.S.)
| | - Maxine Dibué
- Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, Cologne D-50931, Germany; E-Mail:
- Department for Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstraße 5, Duesseldorf D-40225, Germany & Center of Molecular Medicine, Cologne D-50931, Germany
- Authors to whom correspondence should be addressed; E-Mails: (T.S.); (M.D.); Tel.: +49-221-478-69446 (T.S.); Fax: +49-221-478-6965 (T.S.)
| | - Jürgen Hescheler
- Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, Cologne D-50931, Germany; E-Mail:
| |
Collapse
|
29
|
Choi KH. The design and discovery of T-type calcium channel inhibitors for the treatment of central nervous system disorders. Expert Opin Drug Discov 2013; 8:919-31. [DOI: 10.1517/17460441.2013.796926] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
|
31
|
Porter RJ, Dhir A, Macdonald RL, Rogawski MA. Mechanisms of action of antiseizure drugs. HANDBOOK OF CLINICAL NEUROLOGY 2012; 108:663-681. [PMID: 22939059 DOI: 10.1016/b978-0-444-52899-5.00021-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Roger J Porter
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
32
|
Voltage-Gated Ca2+ Channel Mediated Ca2+ Influx in Epileptogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:1219-47. [DOI: 10.1007/978-94-007-2888-2_55] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Abstract
Drugs inhibiting voltage-gated sodium channels have long been used as analgesics, beginning with the use of local anaesthetics for sensory blockade and then with the discovery that Nav-blocking anticonvulsants also have benefit for pain therapy. These drugs were discovered without knowledge of their molecular target, using traditional pharmacological methods, and their clinical utility is limited by relatively narrow therapeutic windows. Until recently, attempts to develop improved inhibitors using modern molecular-targeted screening approaches have met with limited success. However, in the last few years there has been renewed activity following the discovery of human Nav1.7 mutations that cause striking insensitivity to pain. Together with recent advances in the technologies required to prosecute ion channels as drug targets, this has led to significant progress being made. This article reviews these developments and summarises current findings with these emerging new Nav inhibitors, highlighting some of the unanswered questions and the challenges that remain before they can be developed for clinical use.
Collapse
Affiliation(s)
- Jeffrey J Clare
- Cell-Based Assays Group, Millipore Corporation, St Charles, Missouri 63304, USA.
| |
Collapse
|
34
|
Voltage-gated calcium channels in the etiopathogenesis and treatment of absence epilepsy. ACTA ACUST UNITED AC 2010; 62:245-71. [DOI: 10.1016/j.brainresrev.2009.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 12/10/2009] [Accepted: 12/11/2009] [Indexed: 12/21/2022]
|
35
|
Palmer RA, Potter BS, Leach MJ, Jenkins TC, Chowdhry BZ. An absolute structure template for a unique voltage-gated sodium channel binding site. MEDCHEMCOMM 2010. [DOI: 10.1039/c0md00043d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
From ion channels to complex networks: Magic bullet versus magic shotgun approaches to anticonvulsant pharmacotherapy. Med Hypotheses 2009; 72:297-305. [PMID: 19046822 DOI: 10.1016/j.mehy.2008.09.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 08/05/2008] [Accepted: 09/18/2008] [Indexed: 01/15/2023]
|
37
|
Weiergräber M, Henry M, Ho MS, Struck H, Hescheler J, Schneider T. Altered thalamocortical rhythmicity in Cav2.3-deficient mice. Mol Cell Neurosci 2008; 39:605-18. [DOI: 10.1016/j.mcn.2008.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 07/28/2008] [Accepted: 08/13/2008] [Indexed: 01/18/2023] Open
|
38
|
Abstract
Despite their presence in many tissues and their potential implication in various disease states, low-voltage activated T-type calcium channels (T-channels) have only recently become targets of interest. Unfortunately, the lack of selective T-channel blockers has hampered further characterisation of these channels. The recent availability of cloned T-channels, the Ca(V)3 proteins, facilitates identification of novel T-channel blockers. Also, studies performed in knockout animals have fostered novel interest. Selective inhibition of T-channels may have clinical importance in cardiovascular diseases, some forms of epilepsy, sleep disorders, pain and possibly cancer. This review focuses on novel research approaches to discover potent and selective T-channel modulators. These molecules may be potential drugs for treating human diseases, as well as important tools to decipher the physiological role of these channels.
Collapse
Affiliation(s)
- Philippe Lory
- Institut de Génomique Fonctionnelle, Département de Physiologie, CNRS UMR 5203, INSERM U661, IFR3, Universités de Montpellier I and II, Montpellier cedex 05, France.
| | | |
Collapse
|
39
|
Weiergräber M, Henry M, Radhakrishnan K, Hescheler J, Schneider T. Hippocampal Seizure Resistance and Reduced Neuronal Excitotoxicity in Mice Lacking the Cav2.3 E/R-Type Voltage-Gated Calcium Channel. J Neurophysiol 2007; 97:3660-9. [PMID: 17376845 DOI: 10.1152/jn.01193.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Voltage-gated calcium channels are key components in the etiology and pathogenesis of epilepsies. Former studies mainly focused on P/Q-type Cav2.1 and T-type Cav3.2 Ca2+ channels involved in absence epileptogenesis, but recent findings also point to an intriguing role of the Cav2.3 E/R-type Ca2+ channel in ictogenesis and seizure propagation. Based on the observation that Cav2.3 is thought to induce plateau potentials in CA1 pyramidal cells, which can trigger epileptiform activity, our recent investigation revealed reduced PTZ-seizure susceptibility and altered seizure architecture in Cav2.3−/− mice compared with controls. In the present study we tested hippocampal seizure susceptibility in Cav2.3-deficient mice using surface and deep intrahippocampal telemetric EEG recordings as well as phenotypic seizure video analysis. Administration of kainic acid (30 mg/kg ip) revealed clear alteration in behavioral seizure architecture and dramatic resistance to limbic seizures in Cav2.3−/− mice compared with controls, whereas no difference in hippocampal EEG seizure activity between both genotypes could be detected at this suprathreshold dosage. The same tendency was observed for NMDA seizure susceptibility (150 mg/kg ip) approaching the level of significance. In addition, histochemical analysis within the hippocampus revealed that excitotoxic effects after kainic acid administration are absent in Cav2.3−/− mice, whereas Cav2.3+/+ animals exhibited clear and typical signs of excitotoxic cell death. These findings clearly indicate that the Cav2.3 voltage-gated calcium channel plays a crucial role in both hippocampal ictogenesis and seizure generalization and is of central importance in neuronal degeneration after excitotoxic events.
Collapse
Affiliation(s)
- Marco Weiergräber
- Institute of Neurophysiology, University of Cologne D-50931 Cologne, Germany.
| | | | | | | | | |
Collapse
|
40
|
Abstract
This review considers how recent advances in the physiology of ion channels and other potential molecular targets, in conjunction with new information on the genetics of idiopathic epilepsies, can be applied to the search for improved antiepileptic drugs (AEDs). Marketed AEDs predominantly target voltage-gated cation channels (the alpha subunits of voltage-gated Na+ channels and also T-type voltage-gated Ca2+ channels) or influence GABA-mediated inhibition. Recently, alpha2-delta voltage-gated Ca2+ channel subunits and the SV2A synaptic vesicle protein have been recognized as likely targets. Genetic studies of familial idiopathic epilepsies have identified numerous genes associated with diverse epilepsy syndromes, including genes encoding Na+ channels and GABA(A) receptors, which are known AED targets. A strategy based on genes associated with epilepsy in animal models and humans suggests other potential AED targets, including various voltage-gated Ca2+ channel subunits and auxiliary proteins, A- or M-type voltage-gated K+ channels, and ionotropic glutamate receptors. Recent progress in ion channel research brought about by molecular cloning of the channel subunit proteins and studies in epilepsy models suggest additional targets, including G-protein-coupled receptors, such as GABA(B) and metabotropic glutamate receptors; hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel subunits, responsible for hyperpolarization-activated current Ih; connexins, which make up gap junctions; and neurotransmitter transporters, particularly plasma membrane and vesicular transporters for GABA and glutamate. New information from the structural characterization of ion channels, along with better understanding of ion channel function, may allow for more selective targeting. For example, Na+ channels underlying persistent Na+ currents or GABA(A) receptor isoforms responsible for tonic (extrasynaptic) currents represent attractive targets. The growing understanding of the pathophysiology of epilepsy and the structural and functional characterization of the molecular targets provide many opportunities to create improved epilepsy therapies.
Collapse
Affiliation(s)
- Brian S Meldrum
- Centre for Neuroscience, Division of Biomedical and Health Sciences, School of Medicine, Kings College, London, United Kingdom
| | | |
Collapse
|
41
|
Weiergräber M, Henry M, Krieger A, Kamp M, Radhakrishnan K, Hescheler J, Schneider T. Altered seizure susceptibility in mice lacking the Ca(v)2.3 E-type Ca2+ channel. Epilepsia 2006; 47:839-50. [PMID: 16686648 DOI: 10.1111/j.1528-1167.2006.00541.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Recently the Ca(v)2.3 (E/R-type) voltage-gated calcium channel (VGCC) has turned out to be not only a potential target for different antiepileptic drugs (e.g., lamotrigine, topiramate) but also a crucial component in the pathogenesis of absence epilepsy, human juvenile myoclonic epilepsy (JME), and epileptiform activity in CA1 neurons. The aim of our study was to perform an electroencephalographic analysis, seizure-susceptibility testing, and histomorphologic characterization of Ca(v)2.3-/- mice to unravel the functional relevance of Ca(v)2.3 in ictogenesis. METHODS Generalized and brain-specific Ca(v)2.3 knockout animals were analyzed for spontaneous epileptiform discharges by using both electrocorticographic and deep intracerebral recordings. In addition, convulsive seizure activity was induced by systemic administration of either 4-aminopyridine (4-AP; 10 mg/kg, i.p.) or pentylenetetrazol (PTZ; 80 mg/kg, s.c.) to reveal possible alterations in seizure susceptibility. Besides histomorphologic analysis, expression studies of other voltage-gated Ca2+ channels in Ca(v)2.3-/- brains were carried out by using semiquantitative reverse transcription-polymerase chain reaction (RT-PCR). RESULTS Both electrocorticographic and deep intrahippocampal recordings exhibited no spontaneous epileptiform discharges indicative of convulsive or nonconvulsive seizure activity during long-term observation. Gross histology and expression levels of other voltage-gated Ca2+ channels remained unchanged in various brain regions. Surprisingly, PTZ-induced seizure susceptibility was dramatically reduced in Ca(v)2.3-deficient mice, whereas 4-AP sensitivity remained unchanged. CONCLUSIONS Ca(v)2.3 ablation results in seizure resistance, strongly supporting recent findings in CA1 neurons that Ca(v)2.3 triggers epileptiform activity in specialized neurons via plateau potentials and afterdepolarizations. We provide novel insight into the functional involvement of Ca(v)2.3 in ictogenesis and seizure susceptibility on the whole-animal level.
Collapse
|
42
|
Gao Z, Milnes JT, Choisy SCM, Leach MJ, Hancox JC, James AF. The neuroprotective agent sipatrigine blocks multiple cardiac ion channels and causes triangulation of the ventricular action potential. Clin Exp Pharmacol Physiol 2006; 32:1088-96. [PMID: 16445575 DOI: 10.1111/j.1440-1681.2005.04312.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sipatrigine (BW 619C89), a blocker of neuronal Na+ and Ca2+ channels that is structurally related to lamotrigine, has been shown to be neuroprotective in models of cortical ischaemia. Although associated with cardiovascular effects in animal models in vivo, there is no published information concerning the effects of sipatrigine on cardiac ion currents and action potentials (AP). The aim of the present study was to examine the effects of sipatrigine on the delayed rectifier currents (I(Kr) and I(Ks)), the inward rectifier current (I(K1)), the L-type Ca2+ current (I(Ca,L)) and the fast Na+ current (I(Na)), as well as on AP duration at 30% (APD30) and 90% (APD90) repolarization, in guinea-pig isolated ventricular myocytes. Each of the currents was inhibited by sipatrigine, demonstrating the drug to be a relatively broad-spectrum blocker of cation channels in the heart. However, sipatrigine was a comparatively more potent inhibitor of I(Kr) (IC50 = 0.85 micromol/L) and I(Ks) (IC50 = 0.92 micromol/L) than of I(K1) (IC50 = 5.3 micromol/L), I(Ca,L) (IC50 = 6.0 micromol/L) and I(Na) (IC50 = 25.5 micromol/L). Consistent with block of I(Kr), I(Ks) and I(K1), sipatrigine (1-30 micromol/L) produced a concentration-dependent prolongation of APD90. Although lower concentrations of sipatrigine (< or = 3 micromol/L) caused APD(30) prolongation, higher concentrations (> or = 10 micromol/L) shortened APD30, consistent with an involvement of I(Ca,L) blockade. The contrasting effects of sipatrigine on APD30 and APD90 at higher concentrations resulted in a marked concentration-dependent triangulation of the AP. 5. The results of the present study demonstrate that sipatrigine, at concentrations previously shown to be neuroprotective in vitro, modulates cardiac K+, Ca2+ and Na+ currents and repolarization of the cardiac ventricular action potential.
Collapse
Affiliation(s)
- Zhan Gao
- Department of Physiology and Cardiovascular Research Laboratories, School of Medical Sciences, University of Bristol, Bristol, UK
| | | | | | | | | | | |
Collapse
|
43
|
Large CH, Webster EL, Goff DC. The potential role of lamotrigine in schizophrenia. Psychopharmacology (Berl) 2005; 181:415-36. [PMID: 16001126 DOI: 10.1007/s00213-005-0020-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Accepted: 03/29/2005] [Indexed: 12/16/2022]
Abstract
RATIONALE Atypical antipsychotic drugs are the drugs of choice for the treatment of schizophrenia. However, despite advances, no treatments have been established for patients who fail to improve with the most effective of these, clozapine. The inhibition of dopamine transmission through blockade of dopamine D2 receptors is considered to be essential for antipsychotic efficacy, but it is postulated that modulation of glutamate transmission may be equally important. In support of this, symptoms similar to schizophrenia can be induced in healthy volunteers using N-methyl-D-aspartate (NMDA) antagonist drugs that are also known to enhance glutamate transmission. Furthermore, lamotrigine, which can modulate glutamate release, may add to or synergise with atypical antipsychotic drugs, some of which may themselves modulate glutamate transmission. OBJECTIVES We examine the evidence for the efficacy of lamotrigine. We consider how this fits with a glutamate neuron dysregulation hypothesis of the disorder. We discuss mechanisms by which lamotrigine might influence neuronal activity and glutamate transmission, and possible ways in which the drug might interact with antipsychotic medications. RESULTS Data from four clinical studies support the efficacy of adjunctive lamotrigine in the treatment of schizophrenia. In addition, and consistent with a glutamate neuron dysregulation hypothesis of schizophrenia, lamotrigine can prevent the psychotic symptoms or behavioural disruption induced by NMDA receptor antagonists in healthy volunteers or rodents. CONCLUSIONS The efficacy of lamotrigine is most likely explained within the framework of a glutamate neuron dysregulation hypothesis, and may arise primarily through the drugs ability to influence glutamate transmission and neural activity in the cortex. The drug is likely to act through inhibition of voltage-gated sodium channels, though other molecular interactions cannot be ruled out. Lamotrigine may add to or synergise with some atypical antipsychotic drugs acting on glutamate transmission; alternatively, they may act independently on glutamate and dopamine systems to bring about a combined therapeutic effect. We propose new strategies for the treatment of schizophrenia using a combination of anti-dopaminergic and anti-glutamatergic drugs.
Collapse
Affiliation(s)
- Charles H Large
- Department of Neuropharmacology, Psychiatry CEDD, GlaxoSmithKline SpA, Via Fleming 4, 37135, Verona, Italy.
| | | | | |
Collapse
|
44
|
Kuzmiski JB, Barr W, Zamponi GW, MacVicar BA. Topiramate Inhibits the Initiation of Plateau Potentials in CA1 Neurons by Depressing R-type Calcium Channels. Epilepsia 2005; 46:481-9. [PMID: 15816941 DOI: 10.1111/j.0013-9580.2005.35304.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Cholinergic-dependent plateau potentials (PPs) are intrinsically generated conductances that can elicit ictal-type seizure activity. The aim of this study was to investigate the actions of topiramate (TPM) on the generation of PPs. METHODS We used whole-cell patch-clamp recordings from CA1 pyramidal neurons in rat hippocampal slices to examine the effects of TPM on the PPs. RESULTS In current-clamp mode, action potentials evoked PPs after cholinergic receptor stimulation. Therapeutically relevant concentrations of TPM (50 microM) depressed the PPs evoked by action potentials. Surprisingly, in voltage-clamp mode, we discovered that the cyclic nucleotide-gated (CNG) current that underlies PP generation (denoted as I(tail)) was not depressed. However, significantly longer depolarizing voltage steps were required to elicit I(tail). This suggested that the calcium entry trigger for evoking PPs was depressed by TPM and not I(tail) itself. TPM had no effect on calcium spikes in control conditions; however, TPM did reduce calcium spikes after cholinergic-receptor stimulation. We recently found that R-type calcium spikes are enhanced by cholinergic-receptor stimulation. Therefore we isolated R-type calcium spikes with a cocktail containing tetrodotoxin, omega-conotoxin MVIIC, omega-conotoxin-GVIA, omega-agatoxin IVA, and nifedipine. R-type calcium spikes were significantly depressed by TPM. We also examined the effects of TPM on recombinant Ca(V)2.3 calcium channels expressed in tsA-201 cells. TPM depressed currents mediated by Ca(V)2.3 subunits by a hyperpolarizing shift in steady-state inactivation. CONCLUSIONS We have found that TPM reduces ictal-like activity in CA1 hippocampal neurons through a novel inhibitory action of R-type calcium channels.
Collapse
Affiliation(s)
- Joseph Brent Kuzmiski
- Brain Research Centre, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|