1
|
Liu M, Chen P. Proliferation‑inhibiting pathways in liver regeneration (Review). Mol Med Rep 2017; 16:23-35. [PMID: 28534998 DOI: 10.3892/mmr.2017.6613] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 03/13/2017] [Indexed: 12/14/2022] Open
Abstract
Liver regeneration, an orchestrated process, is the primary compensatory mechanism following liver injury caused by various factors. The process of liver regeneration consists of three stages: Initiation, proliferation and termination. Proliferation‑promoting factors, which stimulate the recovery of mitosis in quiescent hepatocytes, are essential in the initiation and proliferation steps of liver regeneration. Proliferation‑promoting factors act as the 'motor' of liver regeneration, whereas proliferation inhibitors arrest cell proliferation when the remnant liver reaches a suitable size. Certain proliferation inhibitors are also expressed and activated in the first two steps of liver regeneration. Anti‑proliferation factors, acting as a 'brake', control the speed of proliferation and determine the terminal point of liver regeneration. Furthermore, anti‑proliferation factors function as a 'steering‑wheel', ensuring that the regeneration process proceeds in the right direction by preventing proliferation in the wrong direction, as occurs in oncogenesis. Therefore, proliferation inhibitors to ensure safe and stable liver regeneration are as important as proliferation‑promoting factors. Cytokines, including transforming growth factor‑β and interleukin‑1, and tumor suppressor genes, including p53 and p21, are important members of the proliferation inhibitor family in liver regeneration. Certain anti‑proliferation factors are involved in the process of gene expression and protein modification. The suppression of liver regeneration led by metabolism, hormone activity and pathological performance have been reviewed previously. However, less is known regarding the proliferation inhibitors of liver regeneration and further investigations are required. Detailed information regarding the majority of known anti‑proliferation signaling pathways also remains fragmented. The present review aimed to understand the signalling pathways that inhbit proliferation in the process of liver regeneration.
Collapse
Affiliation(s)
- Menggang Liu
- Department of Hepatobiliary Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Ping Chen
- Department of Hepatobiliary Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
2
|
Stamper BD, Garcia ML, Nguyen DQ, Beyer RP, Bammler TK, Farin FM, Kavanagh TJ, Nelson SD. p53 Contributes to Differentiating Gene Expression Following Exposure to Acetaminophen and Its Less Hepatotoxic Regioisomer Both In Vitro and In Vivo. GENE REGULATION AND SYSTEMS BIOLOGY 2015; 9:1-14. [PMID: 26056430 PMCID: PMC4454132 DOI: 10.4137/grsb.s25388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/06/2015] [Accepted: 04/14/2015] [Indexed: 01/20/2023]
Abstract
The goal of the present study was to compare hepatic toxicogenomic signatures across in vitro and in vivo mouse models following exposure to acetaminophen (APAP) or its relatively nontoxic regioisomer 3′-hydroxyacetanilide (AMAP). Two different Affymetrix microarray platforms and one Agilent Oligonucleotide microarray were utilized. APAP and AMAP treatments resulted in significant and large changes in gene expression that were quite disparate, and likely related to their different toxicologic profiles. Ten transcripts, all of which have been implicated in p53 signaling, were identified as differentially regulated at all time-points following APAP and AMAP treatments across multiple microarray platforms. Protein-level quantification of p53 activity aligned with results from the transcriptomic analysis, thus supporting the implicated mechanism of APAP-induced toxicity. Therefore, the results of this study provide good evidence that APAP-induced p53 phosphorylation and an altered p53-driven transcriptional response are fundamental steps in APAP-induced toxicity.
Collapse
Affiliation(s)
| | | | - Duy Q Nguyen
- School of Pharmacy, Pacific University, Hillsboro, OR, USA
| | - Richard P Beyer
- Department of Environmental and Occupational Health Sciences, University Of Washington, Seattle, WA, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University Of Washington, Seattle, WA, USA
| | - Frederico M Farin
- Department of Environmental and Occupational Health Sciences, University Of Washington, Seattle, WA, USA
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University Of Washington, Seattle, WA, USA
| | - Sidney D Nelson
- Department of Medicinal Chemistry, University Of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Yu D, Zhang ZW, Yao HD, Li S, Xu SW. Antioxidative role of selenoprotein W in oxidant-induced chicken splenic lymphocyte death. Biometals 2014; 27:277-91. [DOI: 10.1007/s10534-014-9708-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 01/23/2014] [Indexed: 01/15/2023]
|
4
|
Cao H, Feng Q, Xu W, Li X, Kang Z, Ren Y, Du L. Genipin Induced Apoptosis Associated with Activation of the c-Jun NH2-Terminal Kinase and p53 Protein in HeLa Cells. Biol Pharm Bull 2010; 33:1343-8. [DOI: 10.1248/bpb.33.1343] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Houli Cao
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Science, Sichuan University
| | - Qian Feng
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Science, Sichuan University
| | - Wei Xu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Science, Sichuan University
| | - Xiaorong Li
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Science, Sichuan University
| | - Zhuang Kang
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Science, Sichuan University
| | - Yanqin Ren
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Science, Sichuan University
| | - Linfang Du
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Science, Sichuan University
| |
Collapse
|
5
|
Yedjou CG, Tchounwou PB. Modulation of p53, c-fos, RARE, cyclin A, and cyclin D1 expression in human leukemia (HL-60) cells exposed to arsenic trioxide. Mol Cell Biochem 2009; 331:207-14. [PMID: 19444595 PMCID: PMC2855208 DOI: 10.1007/s11010-009-0160-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 04/29/2009] [Indexed: 11/25/2022]
Abstract
Arsenic trioxide (As(2)O(3)) has recently been successfully used to treat all trans retinoic acid (ATRA) resistant relapsing acute promyelocytic leukemia. However, its molecular mechanisms of action are poorly understood. In the present study, we used the human leukemia (HL-60) cell line as a test model to study the cellular and molecular mechanisms of anti-cancer properties of As(2)O(3). We hypothesized that As(2)O(3)-induced expression of stress genes and related proteins may play a role in the cellular and molecular events leading to cell cycle modulation in leukemic cells. To test this hypothesis, we performed Western blot analysis to assess the expression of specific cellular response proteins including p53, c-fos, RARE, Cyclin A, and Cyclin D1. Densitometric analysis was performed to determine the relative abundance of these proteins. Western Blot and densitometric analyses demonstrated a strong dose-response relationship with regard to p53 and RARE expression within the dose-range of 0-8 microg/ml. Expression of c-fos was slightly up-regulated at 2 microg/ml, and down-regulated within the dose-range of 4-8 microg/ml. A statistically significant down-regulation of this protein was detected at the 6 and 8 microg/ml dose levels. No statistically significant differences (p > 0.05) in Cyclin D1 expression was found between As(2)O(3)-treated cells and the control. Cyclin A expression in As(2)O(3)-treated HL-60 cells was up-regulated at 6 microg/ml, suggesting that it is required for S phase and passage through G(2) phase in cell cycle progression. Taken together, these results indicate that As(2)O(3) has the potential to induce cell cycle arrest through activation of the 53-kDa tumor suppressor protein and repression of the c-fos transcription factor. Up-regulation of RARE by As(2)O(3) indicates that its cytotoxicity may be mediated through interaction/binding with the retinoic acid receptor, and subsequent inhibition of growth and differentiation.
Collapse
Affiliation(s)
- Clement G. Yedjou
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18540, Jackson, Mississippi, USA
| | - Paul B. Tchounwou
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18540, Jackson, Mississippi, USA
| |
Collapse
|
6
|
Jang JH, Kang KJ, Kang Y, Lee IS, Graf R, Clavien PA. Ischemic preconditioning and intermittent clamping confer protection against ischemic injury in the cirrhotic mouse liver. Liver Transpl 2008; 14:980-8. [PMID: 18581460 DOI: 10.1002/lt.21467] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Surgery on cirrhotic livers is fraught with complications, and many surgeons refrain from operating on patients with cirrhosis. Surgical procedures include temporal occlusion of blood flow resulting in ischemia. The mechanisms of protective strategies to prevent ischemic injury in patients with cirrhosis are not fully understood. The aim of this study was to evaluate how the cirrhotic liver tolerates an ischemic insult, whether mechanisms other than those observed in the normal liver are active, and whether intermittent clamping and preconditioning, which are known as safe surgical strategies in normal and steatotic livers, confer protection to the cirrhotic liver. We applied partial hepatic inflow occlusion to cirrhotic mice fed carbon tetrachloride according to different vascular occlusion protocols: intermittent clamping with 15 or 30 minute cycles of ischemia or ischemic preconditioning prior to 60 or 75 minutes of ischemia. Continuous ischemia (60 or 75 minutes) served as controls. The results showed that the cirrhotic liver was significantly more susceptible to 60 minutes of ischemia than the normal liver. Apoptosis was higher in the normal liver, whereas necrosis was a predominant feature in the cirrhotic liver. Both protocols of intermittent vascular occlusion and ischemic preconditioning dramatically prevented injury compared to continuous occlusion for 60 minutes. This protection was associated with reduced necrosis and apoptosis, and particularly reduced activation of the apoptotic pathway through mitochondria. In conclusion, this study extends the protective effects of ischemic preconditioning and intermittent clamping to the cirrhotic liver, highlighting a diminished apoptotic pathway with dramatic improvement in the development of necrosis.
Collapse
Affiliation(s)
- Jae Hwi Jang
- Department of Surgery, School of Medicine, Institute for Medical Genetics, Keimyung University, Daegu, Korea
| | | | | | | | | | | |
Collapse
|
7
|
Bockhorn M, Goralski M, Prokofiev D, Dammann P, Grünewald P, Trippler M, Biglarnia A, Kamler M, Niehues EM, Frilling A, Broelsch CE, Schlaak JF. VEGF is important for early liver regeneration after partial hepatectomy. J Surg Res 2007; 138:291-9. [PMID: 17275844 DOI: 10.1016/j.jss.2006.07.027] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 07/14/2006] [Accepted: 07/17/2006] [Indexed: 12/30/2022]
Abstract
BACKGROUND The aim of the study was to determine the role of Vascular Endothelial Growth Factor (VEGF) on the microvasculature and on angiogenetic gene expression after partial hepatectomy (PH) in the rat model. METHODS To determine the effect of exogenous and endogenous VEGF after PH, rats were subjected to 70% PH and treated either with VEGF, anti-VEGF or NaCl. Postoperatively (3-168 h), vessel density (VD), vessel diameter (VDi), and intersinusoidal space, liver body weight ratio (LBR), hepatic proliferation and biochemical markers were assessed. To further elucidate the underlying molecular mechanisms hepatic gene expression was determined by customized cDNA arrays and quantitative RT-PCR. RESULTS In the VEGF group, VD, VDi, and LBR were significantly increased compared with anti-VEGF or controls. Blockage of endogenous VEGF led to a marked increase of biochemical markers. Anti-VEGF almost completely suppressed and VEGF markedly enhanced hepatic proliferation in the first 24 h after surgery. This was associated with a modulation of cell cycle control genes (PC4, Gadd45a, Tis21/BTG2), v-jun, and CD14 by VEGF. CONCLUSIONS VEGF plays an important role in liver regeneration and this may be due in part through its effects on neovascularization. Whether it may, when given therapeutically, represent a strategy to optimize liver regeneration in problematic patients needs to be clarified.
Collapse
Affiliation(s)
- Maximilian Bockhorn
- Department of General, Visceral, and Transplantation Surgery, University Hospital Essen, Essen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lagranha CJ, Hirabara SM, Curi R, Pithon-Curi TC. Glutamine supplementation prevents exercise-induced neutrophil apoptosis and reduces p38 MAPK and JNK phosphorylation and p53 and caspase 3 expression. Cell Biochem Funct 2007; 25:563-9. [PMID: 17542038 DOI: 10.1002/cbf.1421] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have previously shown that a single session of exercise induces DNA fragmentation, mitochondrial membrane depolarization, increases expression of pro-apoptotic genes (bax and bcl-xS) and decreases expression of anti-apoptotic genes (bcl-xL) in rat neutrophils. Glutamine supplementation had a protective effect in the apoptosis induced by a single session of exercise. The mechanism involved in the effect of single session of exercise to induce apoptosis was investigated by measuring expression of p53 and caspase 3 and phosphorylation of p38 mitogen-activated protein kinases (MAPK) and cJun NH(2)-terminal kinase (JNK) in neutrophils from rats supplemented or not with glutamine. Exercise was carried out on a treadmill for 1 h and the rats were killed by decapitation. Neutrophils were obtained by intraperitoneal (i.p.) lavage with PBS, 4 h after injection of oyster glycogen solution. Glutamine supplementation (1g per Kg b.w.) was given by gavage 1 h before the exercise session. Gene expression and protein phosphorylation were then analyzed by reverse transcriptase chain reaction (RT-PCR) and Western blotting, respectively. A single session of exercise increased p38 MAPK and JNK phosphorylation and p53 and caspase 3 expression. Glutamine supplementation partially prevented the increase in p38 MAPK and JNK phosphorylation and p53 expression, and fully abolished the increase in caspase 3 expression. Thus, neutrophil apoptosis induced by a single session of exercise is accompanied by increased p53 and caspase 3 expression and p38 MAPK and JNK phosphorylation. Glutamine supplementation prevents these effects of exercise and reduces apoptosis.
Collapse
Affiliation(s)
- Claudia J Lagranha
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
9
|
Lai HS, Lin WH, Chen PR, Wu HC, Lee PH, Chen WJ. Effects of a high-fiber diet on hepatocyte apoptosis and liver regeneration after partial hepatectomy in rats with fatty liver. JPEN J Parenter Enteral Nutr 2006; 29:401-7. [PMID: 16224031 DOI: 10.1177/0148607105029006401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND The morbidity and mortality that accompany fatty liver may occur as a result of increased apoptosis of hepatocytes and decreased liver regeneration. We determined the effects of a high-fiber diet on hepatocyte apoptosis and liver regeneration after partial hepatectomy in rats with fatty liver. METHODS Fatty liver was induced in male Wistar rats weighing around 200 g through feeding of a high-fat diet for 4 weeks. The rats were then randomly assigned to 3 groups that received a high-fat diet, a normal diet, or a high-fiber diet for another 4 weeks. Partial hepatectomy (around 70%) was performed, and rats were killed 6, 24, 48, or 72 hours after hepatectomy. We then measured (1) the ratio of remnant liver weight to body weight and assessed the histology of the remnant liver as indicators of fatty liver, (2) caspase-3 activity and in situ cell death detection of DNA fragmentation as indicators of apoptosis, and (3) 5-bromo-2-deoxyuridine (BrdU) activity and (4) ornithine decarboxylase (ODC) contents in remnant livers as markers of regeneration. RESULTS We found that (1) a high-fat diet for 4 weeks can markedly induce fatty liver, (2) apoptosis of hepatocytes is greater in fatty liver than in normal liver (98 +/- 19 vs 36 +/- 7) at 6 hours after partial hepatectomy (p < .05), (3) the capacity of liver regeneration decreases significantly (BrdU index: 30 +/- 5 vs 12 +/- 3, and ODC contents: 604 +/- 48 vs 390 +/- 42 mg/dL) in fatty liver 24 hours after partial hepatectomy (p < .05), (4) a normal diet can partially reverse the effects of fatty liver; (5) a high-fiber diet can significantly reverse the effects of fatty liver (p < .05). CONCLUSIONS A high-fiber diet can reverse the negative effects of fatty liver on apoptosis and regenerative capacity after partial hepatectomy.
Collapse
Affiliation(s)
- Hong-Shiee Lai
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei.
| | | | | | | | | | | |
Collapse
|
10
|
Suzuki T, Tsukamoto I. Manganese-induced apoptosis in hepatocytes after partial hepatectomy. Eur J Pharmacol 2005; 525:48-53. [PMID: 16293243 DOI: 10.1016/j.ejphar.2005.09.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 09/19/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
To investigate the apoptosis induced by manganese (Mn) in hepatocytes in vivo, rats received a single injection of manganese chloride immediately after partial hepatectomy. Characteristic DNA fragmentation was observed at 4 h after partial hepatectomy with Mn-injection. The activation of caspase-3 by Mn-injection was detected as early as 30 min and peaked at 1 h after partial hepatectomy. The activity of Jun N-terminal kinase (JNK) increased to a maximal level, which was about 10-fold the maximal level of the control, at 15 min after partial hepatectomy and this increase was maintained for 4 h in Mn-injected rats, while a transient increase was observed at 1 h in the control. No effect of the Mn-injection on the activation of p38 mitogen-activated protein kinase (MAPK) was observed. Western blot analysis revealed that the injection of Mn markedly increased c-Jun and phosphorylated c-Jun protein levels at 1 h after partial hepatectomy. An increase in p53 was also observed at 30 min after the Mn-injection and followed by the upregulation of p21(WAF1/CIP1) protein expression at 2 h after partial hepatectomy. These results suggested that the activation of JNK and the upregulation of c-Jun, p53 and p21(WAF1/CIP1) were involved in the apoptosis of hepatocytes induced by partial hepatectomy with manganese.
Collapse
Affiliation(s)
- Tomoko Suzuki
- Department of Food Science and Nutrition, Nara Women's University, Nara 630 Japan
| | | |
Collapse
|
11
|
Kuo WH, Chen JH, Lin HH, Chen BC, Hsu JD, Wang CJ. Induction of apoptosis in the lung tissue from rats exposed to cigarette smoke involves p38/JNK MAPK pathway. Chem Biol Interact 2005; 155:31-42. [PMID: 15970277 DOI: 10.1016/j.cbi.2005.04.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 04/13/2005] [Accepted: 04/13/2005] [Indexed: 11/16/2022]
Abstract
Smoking is a major cause of human lung cancer. Past studies suggest that apoptosis might influence the malignant phenotype, but little is known about the association between apoptosis and cigarette smoke (CS)-induced lung pathogenesis. Using an in situ cell death detection kit (TA300), the association of CS with apoptosis was determined in a concentration-dependent manner. Furthermore, the expression of related proteins were investigated in the terminal bronchiole areas of the lung tissue from rats exposed to CS. Results showed that the expression of phosphotyrosine proteins was increased significantly in lung tissue of rats exposed to CS from 5 to 15 cigarettes. Using Western blotting and immunoprecipitation assay, Fas, a death receptor, was proved just be one of these phosphotyrosine proteins. CS triggered activation of MAP kinase (p38/JNK or ERK2) pathway, which led to Jun or p53 phosphorylation and FasL induction links Fas phosphorylation. Further, smoke treatment produced an increase in the level of proapoptotic proteins (Bax, t-Bid, cytochrome c and caspase-3), but a decline in Bcl-2, procaspase-8 and procaspase-9 proteins. Thus, CS-induced apoptosis may result from two main mechanisms, one is the activation of p38/JNK-Jun-FasL signaling, and the other is stimulated by the stabilization of p53, increase in the ratio of Bax/Bcl-2, release of cytochrome c; thus, leading to activation of caspase cascade.
Collapse
Affiliation(s)
- Wu-Hsien Kuo
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, No. 110, Sec. 1, Chien Kuo N. Road, Taichung 402, Taiwan
| | | | | | | | | | | |
Collapse
|
12
|
Suzuki T, Tsukamoto I. Apoptosis induced by 5-(N,N-hexamethylene)-amiloride in regenerating liver after partial hepatectomy. Eur J Pharmacol 2005; 503:1-7. [PMID: 15496288 DOI: 10.1016/j.ejphar.2004.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Accepted: 09/07/2004] [Indexed: 01/12/2023]
Abstract
The effects of a specific inhibitor of the Na+/H+ exchanger, 5-(N,N-hexamethylene)-amiloride (HMA), on liver regeneration after partial hepatectomy were investigated. A single injection of HMA inhibited DNA synthesis and caused apoptosis in regenerating liver. Characteristic DNA fragmentation was observed at 4 h after partial hepatectomy with HMA-injection. The activity of Jun N-terminal kinase (JNK) increased to a maximal level at 15 min after partial hepatectomy in HMA-injected rats, while it was not detected until 30 min in the control. Western blot analysis revealed that the injection of HMA markedly increased c-Jun and phosphorylated c-Jun protein levels at 30 min after partial hepatectomy. An increase in p53 was also observed at 30 min after the HMA-injection and was followed by the upregulation of p21WAF1/CIP1 protein expression at 1 h after partial hepatectomy. These results suggested that HMA induced apoptosis accompanied by the activation of JNK and the upregulation of c-Jun, p53 and p21WAF1/CIP1 expression at an early stage of liver regeneration.
Collapse
Affiliation(s)
- Tomoko Suzuki
- Department of Food Science and Nutrition, Nara Women's University, Nara 630 Japan
| | | |
Collapse
|