1
|
Faida P, Attiogbe MKI, Majeed U, Zhao J, Qu L, Fan D. Lung cancer treatment potential and limits associated with the STAT family of transcription factors. Cell Signal 2023:110797. [PMID: 37423343 DOI: 10.1016/j.cellsig.2023.110797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Lung cancer is one of the mortal cancers and the leading cause of cancer-related mortality, with a cancer survival rate of fewer than 5% in developing nations. This low survival rate can be linked to things like late-stage detection, quick postoperative recurrences in patients receiving therapy, and chemoresistance developing against various lung cancer treatments. Signal transducer and activator of transcription (STAT) family of transcription factors are involved in lung cancer cell proliferation, metastasis, immunological control, and treatment resistance. By interacting with specific DNA sequences, STAT proteins trigger the production of particular genes, which in turn result in adaptive and incredibly specific biological responses. In the human genome, seven STAT proteins have been discovered (STAT1 to STAT6, including STAT5a and STAT5b). Many external signaling proteins can activate unphosphorylated STATs (uSTATs), which are found inactively in the cytoplasm. When STAT proteins are activated, they can increase the transcription of several target genes, which leads to unchecked cellular proliferation, anti-apoptotic reactions, and angiogenesis. The effects of STAT transcription factors on lung cancer are variable; some are either pro- or anti-tumorigenic, while others maintain dual, context-dependent activities. Here, we give a succinct summary of the various functions that each member of the STAT family plays in lung cancer and go into more detail about the advantages and disadvantages of pharmacologically targeting STAT proteins and their upstream activators in the context of lung cancer treatment.
Collapse
Affiliation(s)
- Paison Faida
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Mawusse K I Attiogbe
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Usman Majeed
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jing Zhao
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Linlin Qu
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
2
|
Ota S, Tanaka Y, Yasutake R, Ikeda Y, Yuki R, Nakayama Y, Saito Y. Distinct effects of heat shock temperatures on mitotic progression by influencing the spindle assembly checkpoint. Exp Cell Res 2023; 429:113672. [PMID: 37339729 DOI: 10.1016/j.yexcr.2023.113672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/22/2023]
Abstract
Heat shock is a physiological and environmental stress that leads to the denaturation and inactivation of cellular proteins and is used in hyperthermia cancer therapy. Previously, we revealed that mild heat shock (42 °C) delays the mitotic progression by activating the spindle assembly checkpoint (SAC). However, it is unclear whether SAC activation is maintained at higher temperatures than 42 °C. Here, we demonstrated that a high temperature of 44 °C just before mitotic entry led to a prolonged mitotic delay in the early phase, which was shortened by the SAC inhibitor, AZ3146, indicating SAC activation. Interestingly, mitotic slippage was observed at 44 °C after a prolonged delay but not at 42 °C heat shock. Furthermore, the multinuclear cells were generated by mitotic slippage in 44 °C-treated cells. Immunofluorescence analysis revealed that heat shock at 44 °C reduces the kinetochore localization of MAD2, which is essential for mitotic checkpoint activation, in nocodazole-arrested mitotic cells. These results indicate that 44 °C heat shock causes SAC inactivation even after full activation of SAC and suggest that decreased localization of MAD2 at the kinetochore is involved in heat shock-induced mitotic slippage, resulting in multinucleation. Since mitotic slippage causes drug resistance and chromosomal instability, we propose that there may be a risk of cancer malignancy when the cells are exposed to high temperatures.
Collapse
Affiliation(s)
- Saki Ota
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Yui Tanaka
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Ryuji Yasutake
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Yuki Ikeda
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Ryuzaburo Yuki
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Yuji Nakayama
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Youhei Saito
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan.
| |
Collapse
|
3
|
Jego G, Hermetet F, Girodon F, Garrido C. Chaperoning STAT3/5 by Heat Shock Proteins: Interest of Their Targeting in Cancer Therapy. Cancers (Basel) 2019; 12:cancers12010021. [PMID: 31861612 PMCID: PMC7017265 DOI: 10.3390/cancers12010021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 01/16/2023] Open
Abstract
While cells from multicellular organisms are dependent upon exogenous signals for their survival, growth, and proliferation, commitment to a specific cell fate requires the correct folding and maturation of proteins, as well as the degradation of misfolded or aggregated proteins within the cell. This general control of protein quality involves the expression and the activity of molecular chaperones such as heat shock proteins (HSPs). HSPs, through their interaction with the STAT3/STAT5 transcription factor pathway, can be crucial both for the tumorigenic properties of cancer cells (cell proliferation, survival) and for the microenvironmental immune cell compartment (differentiation, activation, cytokine secretion) that contributes to immunosuppression, which, in turn, potentially promotes tumor progression. Understanding the contribution of chaperones such as HSP27, HSP70, HSP90, and HSP110 to the STAT3/5 signaling pathway has raised the possibility of targeting such HSPs to specifically restrain STAT3/5 oncogenic functions. In this review, we present how HSPs control STAT3 and STAT5 activation, and vice versa, how the STAT signaling pathways modulate HSP expression. We also discuss whether targeting HSPs is a valid therapeutic option and which HSP would be the best candidate for such a strategy.
Collapse
Affiliation(s)
- Gaëtan Jego
- INSERM, LNC UMR1231, team HSP-Pathies, University of Bourgogne Franche-Comté, F-21000 Dijon, France; (F.H.); (F.G.)
- UFR des Sciences de Santé, University of Burgundy and Franche-Comté, F-21000 Dijon, France
- Correspondence: (C.G.); (G.J.); Tel.: +33-3-8039-3345 (G.J.); Fax: +33-3-8039-3434 (C.G. & G.J.)
| | - François Hermetet
- INSERM, LNC UMR1231, team HSP-Pathies, University of Bourgogne Franche-Comté, F-21000 Dijon, France; (F.H.); (F.G.)
- UFR des Sciences de Santé, University of Burgundy and Franche-Comté, F-21000 Dijon, France
| | - François Girodon
- INSERM, LNC UMR1231, team HSP-Pathies, University of Bourgogne Franche-Comté, F-21000 Dijon, France; (F.H.); (F.G.)
- UFR des Sciences de Santé, University of Burgundy and Franche-Comté, F-21000 Dijon, France
- Haematology laboratory, Dijon University Hospital, F-21000 Dijon, France
| | - Carmen Garrido
- INSERM, LNC UMR1231, team HSP-Pathies, University of Bourgogne Franche-Comté, F-21000 Dijon, France; (F.H.); (F.G.)
- UFR des Sciences de Santé, University of Burgundy and Franche-Comté, F-21000 Dijon, France
- Centre Georges François Leclerc, 21000 Dijon, France
- Correspondence: (C.G.); (G.J.); Tel.: +33-3-8039-3345 (G.J.); Fax: +33-3-8039-3434 (C.G. & G.J.)
| |
Collapse
|
4
|
Matozaki M, Saito Y, Yasutake R, Munira S, Kaibori Y, Yukawa A, Tada M, Nakayama Y. Involvement of Stat3 phosphorylation in mild heat shock-induced thermotolerance. Exp Cell Res 2019; 377:67-74. [PMID: 30776355 DOI: 10.1016/j.yexcr.2019.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/24/2019] [Accepted: 02/14/2019] [Indexed: 01/05/2023]
Abstract
Thermotolerance is a phenomenon in which cells become resistant to stress by prior exposure to heat shock, and its development is associated with the induction of heat shock proteins (Hsps), including Hsp70. We previously showed that the expression of Hsp70 is regulated by the cytokine signaling transcription factor Stat3, but the role of Stat3 in thermotolerance is not known. In this study, we examined the possible involvement of Stat3 in the acquisition of thermotolerance. We found that severe heat shock-induced morphological changes and decreases in cell viability, which were suppressed by exposure to non-lethal mild heat shock prior to severe heat shock. This thermotolerance development was accompanied by Stat3 phosphorylation and the induction of Hsps such as Hsp105, Hsp70, and Hsp27. Stat3 phosphorylation and Hsp induction were inhibited by AG490, an inhibitor of JAK tyrosine kinase. Consistent with this, we found that mild heat shock-induced thermotolerance was partially suppressed by AG490 or knockdown of Hsp105. We also found that the Stat3 inhibitor Stattic suppresses the acquisition of thermotolerance by inhibiting the mild heat shock-induced Stat3 phosphorylation and Hsp105 expression. These results suggest that the mild heat shock-dependent stimulation of the JAK-Stat signaling pathway contributes to the development of thermotolerance via the induction of Hsps including Hsp105. This signaling pathway may be a useful target for hyperthermia cancer therapy.
Collapse
Affiliation(s)
- Masashi Matozaki
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Youhei Saito
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Ryuji Yasutake
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Sirajam Munira
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Yuichiro Kaibori
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Akihisa Yukawa
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Madoka Tada
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Yuji Nakayama
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| |
Collapse
|
5
|
Kakihana A, Oto Y, Saito Y, Nakayama Y. Heat shock-induced mitotic arrest requires heat shock protein 105 for the activation of spindle assembly checkpoint. FASEB J 2018; 33:3936-3953. [PMID: 30496702 DOI: 10.1096/fj.201801369r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heat shock causes proteotoxic stress that induces various cellular responses, including delayed mitotic progression and the generation of an aberrant number of chromosomes. In this study, heat shock delayed the onset of anaphase by increasing the number of misoriented cells, accompanied by the kinetochore localization of budding uninhibited by benzimidazole-related (BubR)1 in a monopolar spindle (Mps)1-dependent manner. The mitotic delay was canceled by knockdown of mitotic arrest defect (Mad)2. Knockdown of heat shock protein (Hsp)105 partially abrogated the mitotic delay with the loss of the kinetochore localization of BubR1 under heat shock conditions and accelerated mitotic progression under nonstressed conditions. Consistent with this result, Hsp105 knockdown increased the number of anaphase cells with lagging chromosomes, through mitotic slippage, and decreased taxol sensitivity more than Mad2 knockdown. Hsp105 was coprecipitated with cell division cycle (Cdc)20 in an Mps1-dependent manner; however, its knockdown did not affect coprecipitation of Mad2 and BubR1 with Cdc20. We propose that heat shock delays the onset of anaphase via the activation of the spindle assembly checkpoint (SAC). Hsp105 prevents abnormal cell division by contributing to SAC activation under heat shock and nonstressed conditions by interacting with Cdc20 but not affecting formation of the mitotic checkpoint complex.-Kakihana, A., Oto, Y., Saito, Y., Nakayama, Y. Heat shock-induced mitotic arrest requires heat shock protein 105 for the activation of spindle assembly checkpoint.
Collapse
Affiliation(s)
- Ayana Kakihana
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yui Oto
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Youhei Saito
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuji Nakayama
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
6
|
Yunoki T, Tabuchi Y, Hayashi A, Kondo T. Network analysis of genes involved in the enhancement of hyperthermia sensitivity by the knockdown of BAG3 in human oral squamous cell carcinoma cells. Int J Mol Med 2016; 38:236-42. [PMID: 27245201 DOI: 10.3892/ijmm.2016.2621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/16/2016] [Indexed: 11/05/2022] Open
Abstract
BCL2-associated athanogene 3 (BAG3), a co-chaperone of the heat shock 70 kDa protein (HSPA) family of proteins, is a cytoprotective protein that acts against various stresses, including heat stress. The aim of the present study was to identify gene networks involved in the enhancement of hyperthermia (HT) sensitivity by the knockdown (KD) of BAG3 in human oral squamous cell carcinoma (OSCC) cells. Although a marked elevation in the protein expression of BAG3 was detected in human the OSCC HSC-3 cells exposed to HT at 44˚C for 90 min, its expression was almost completely suppressed in the cells transfected with small interfering RNA against BAG3 (siBAG) under normal and HT conditions. The silencing of BAG3 also enhanced the cell death that was increased in the HSC-3 cells by exposure to HT. Global gene expression analysis revealed many genes that were differentially expressed by >2-fold in the cells exposed to HT and transfected with siBAG. Moreover, Ingenuity® pathways analysis demonstrated two unique gene networks, designated as Pro-cell death and Anti-cell death, which were obtained from upregulated genes and were mainly associated with the biological functions of induction and the prevention of cell death, respectively. Of note, the expression levels of genes in the Pro-cell death and Anti-cell death gene networks were significantly elevated and reduced in the HT + BAG3-KD group compared to those in the HT control group, respectively. These results provide further insight into the molecular mechanisms involved in the enhancement of HT sensitivity by the silencing of BAG3 in human OSCC cells.
Collapse
Affiliation(s)
- Tatsuya Yunoki
- Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Atsushi Hayashi
- Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Takashi Kondo
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
7
|
Henderson-Smith A, Corneveaux JJ, De Both M, Cuyugan L, Liang WS, Huentelman M, Adler C, Driver-Dunckley E, Beach TG, Dunckley TL. Next-generation profiling to identify the molecular etiology of Parkinson dementia. NEUROLOGY-GENETICS 2016; 2:e75. [PMID: 27275011 PMCID: PMC4881621 DOI: 10.1212/nxg.0000000000000075] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/21/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE We sought to determine the underlying cortical gene expression changes associated with Parkinson dementia using a next-generation RNA sequencing approach. METHODS In this study, we used RNA sequencing to evaluate differential gene expression and alternative splicing in the posterior cingulate cortex from neurologically normal control patients, patients with Parkinson disease, and patients with Parkinson disease with dementia. RESULTS Genes overexpressed in both disease states were involved with an immune response, whereas shared underexpressed genes functioned in signal transduction or as components of the cytoskeleton. Alternative splicing analysis produced a pattern of immune and RNA-processing disturbances. CONCLUSIONS Genes with the greatest degree of differential expression did not overlap with genes exhibiting significant alternative splicing activity. Such variation indicates the importance of broadening expression studies to include exon-level changes because there can be significant differential splicing activity with potential structural consequences, a subtlety that is not detected when examining differential gene expression alone, or is underrepresented with probe-limited array technology.
Collapse
Affiliation(s)
- Adrienne Henderson-Smith
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| | - Jason J Corneveaux
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| | - Matthew De Both
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| | - Lori Cuyugan
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| | - Winnie S Liang
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| | - Matthew Huentelman
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| | - Charles Adler
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| | - Erika Driver-Dunckley
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| | - Thomas G Beach
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| | - Travis L Dunckley
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| |
Collapse
|
8
|
Nmi interacts with Hsp105β and enhances the Hsp105β-mediated Hsp70 expression. Exp Cell Res 2014; 327:163-70. [DOI: 10.1016/j.yexcr.2014.07.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/26/2014] [Accepted: 07/23/2014] [Indexed: 11/20/2022]
|
9
|
Kumar S, Tomar MS, Acharya A. HSF1-mediated regulation of tumor cell apoptosis: a novel target for cancer therapeutics. Future Oncol 2013; 9:1573-86. [DOI: 10.2217/fon.13.106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Programmed cell death/apoptosis is a genetically conserved phenomenon involved in many biological processes including reconstruction of multicellular organisms and elimination of old or damaged cells. It is regulated by the activation/deactivation of PKC in response to exogenous and endogenous stimuli. PKC is activated under stress by a series of downstream signaling cascades, which ultimately induce HSF1 activation, which results in overexpression of heat shock proteins. Overexpression of heat shock proteins interferes in the apoptotic pathway, while their blocking results in apoptosis. Therefore, HSF1 could be a novel therapeutic target against a variety of tumors. Several pharmacological inhibitors of PKC have been demonstrated to exert inhibitory effects on the activation of HSF1 and, therefore, induce apoptosis in tumor cells. However, studies regarding the role of pharmacological inhibitors in the regulation of apoptosis and possible anti-tumor therapeutic intervention are still unknown or in their infancy. Therefore, an attempt has been made to delineate the precise role of HSF1 in the regulation of apoptosis and its prospects in cancer therapeutics.
Collapse
Affiliation(s)
- Sanjay Kumar
- Centre of Advance Study in Zoology, Faculty of Science, Banaras Hindu University, Varanasi–221 005, U.P., India
| | - Munendra Singh Tomar
- Centre of Advance Study in Zoology, Faculty of Science, Banaras Hindu University, Varanasi–221 005, U.P., India
| | - Arbind Acharya
- Centre of Advance Study in Zoology, Faculty of Science, Banaras Hindu University, Varanasi–221 005, U.P., India
| |
Collapse
|
10
|
Vydra N, Winiarski B, Rak-Raszewska A, Piglowski W, Mazurek A, Scieglinska D, Widlak W. The expression pattern of the 70-kDa heat shock protein Hspa2 in mouse tissues. Histochem Cell Biol 2009; 132:319-30. [PMID: 19462178 DOI: 10.1007/s00418-009-0605-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2009] [Indexed: 11/26/2022]
Abstract
The highest expression level of a 70-kDa heat shock protein family member Hspa2 is detected specifically in meiotic and post-meiotic male germ cells, which is reflected by original name of this protein, i.e., testis-specific Hsp70. However, this chaperon protein could be also detected in certain somatic tissues. Here, the extra-testicular expression pattern of mouse Hspa2 was analyzed. We found expression of Hspa2 in various epithelial cells including lining of bronchioles and oviduct, columnar epithelium of endometrium, epithelial reticular cells of thymus, transitional epithelium of the urinary bladder, or ependymal cells covering walls of the ventricular system of the brain. Surprisingly, Hspa2 was a putative secretory protein in intestine, endometrial glands and subcommissural organ. Hspa2 was detected in central and peripheral nervous system: in neuron's bodies and fiber tracts, in the subventricular zone of the lateral ventricles, in the dentate gyrus of the hippocampus, in enteric ganglia of the gastrointestinal tract. Hspa2 was also expressed in smooth muscles and at low level in immune system (in germinal centers associated with B-lymphocyte production). In addition to somatic tissues listed above, Hspa2 was detected in oocytes arrested at diplotene of the first meiotic division.
Collapse
Affiliation(s)
- Natalia Vydra
- Department of Tumor Biology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, 44-101, Gliwice, Poland
| | | | | | | | | | | | | |
Collapse
|
11
|
Heat shock protein inhibitors, 17-DMAG and KNK437, enhance arsenic trioxide-induced mitotic apoptosis. Toxicol Appl Pharmacol 2009; 236:231-8. [PMID: 19371599 DOI: 10.1016/j.taap.2009.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 01/23/2009] [Accepted: 02/04/2009] [Indexed: 11/21/2022]
Abstract
Arsenic trioxide (ATO) has recently emerged as a promising therapeutic agent in leukemia because of its ability to induce apoptosis. However, there is no sufficient evidence to support its therapeutic use for other types of cancers. In this study, we investigated if, and how, 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17-DMAG), an antagonist of heat shock protein 90 (HSP90), and KNK437, a HSP synthesis inhibitor, potentiated the cytotoxic effect of ATO. Our results showed that cotreatment with ATO and either 17-DMAG or KNK437 significantly increased ATO-induced cell death and apoptosis. siRNA-mediated attenuation of the expression of the inducible isoform of HSP70 (HSP70i) or HSP90alpha/beta also enhanced ATO-induced apoptosis. In addition, cotreatment with ATO and 17-DMAG or KNK437 significantly increased ATO-induced mitotic arrest and ATO-induced BUBR1 phosphorylation and PDS1 accumulation. Cotreatment also significantly increased the percentage of mitotic cells with abnormal mitotic spindles and promoted metaphase arrest as compared to ATO treatment alone. These results indicated that 17-DMAG or KNK437 may enhance ATO cytotoxicity by potentiating mitotic arrest and mitotic apoptosis possibly through increased activation of the spindle checkpoint.
Collapse
|
12
|
Cecconi D, Zamò A, Bianchi E, Parisi A, Barbi S, Milli A, Rinalducci S, Rosenwald A, Hartmann E, Zolla L, Chilosi M. Signal transduction pathways of mantle cell lymphoma: A phosphoproteome-based study. Proteomics 2008; 8:4495-506. [DOI: 10.1002/pmic.200800080] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Intracellular localization of the heat shock protein, HSP110, in Xenopus laevis A6 kidney epithelial cells. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:133-8. [DOI: 10.1016/j.cbpa.2008.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 06/10/2008] [Accepted: 06/12/2008] [Indexed: 11/20/2022]
|
14
|
HSP105 interacts with GRP78 and GSK3 and promotes ER stress-induced caspase-3 activation. Cell Signal 2007; 20:347-58. [PMID: 18083346 DOI: 10.1016/j.cellsig.2007.10.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 10/27/2007] [Accepted: 10/29/2007] [Indexed: 11/20/2022]
Abstract
Stress of the endoplasmic reticulum (ER stress) is caused by the accumulation of misfolded proteins, which occurs in many neurodegenerative diseases. ER stress can lead to adaptive responses or apoptosis, both of which follow activation of the unfolded protein response (UPR). Heat shock proteins (HSP) support the folding and function of many proteins, and are important components of the ER stress response, but little is known about the role of one of the major large HSPs, HSP105. We identified several new partners of HSP105, including glycogen synthase kinase-3 (GSK3), a promoter of ER stress-induced apoptosis, and GRP78, a key component of the UPR. Knockdown of HSP105 did not alter UPR signaling after ER stress, but blocked caspase-3 activation after ER stress. In contrast, caspase-3 activation induced by genotoxic stress was unaffected by knockdown of HSP105, suggesting ER stress-specificity in the apoptotic action of HSP105. However, knockdown of HSP105 did not alter cell survival after ER stress, but instead diverted signaling to a caspase-3-independent cell death pathway, indicating that HSP105 is necessary for apoptotic signaling after UPR activation by ER stress. Thus, HSP105 appears to chaperone the responses to ER stress through its interactions with GRP78 and GSK3, and without HSP105 cell death following ER stress proceeds by a non-caspase-3-dependent process.
Collapse
|
15
|
Saito Y, Yamagishi N, Hatayama T. Different localization of Hsp105 family proteins in mammalian cells. Exp Cell Res 2007; 313:3707-17. [PMID: 17643418 DOI: 10.1016/j.yexcr.2007.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 05/18/2007] [Accepted: 06/10/2007] [Indexed: 11/18/2022]
Abstract
Hsp105alpha and Hsp105beta of the HSP105 family are alternatively spliced products derived from an hsp 105 gene transcript. Hsp105alpha is constitutively expressed and also induced by various stress, whereas Hsp105beta, lacking 44 amino acids from Hsp105alpha, is specifically expressed during mild heat shock. Although Hsp105alpha is shown to localize in the cytoplasm of mammalian cells, cellular localization of Hsp105beta is not known. In this study, we showed that Hsp105beta localized in the nucleus of cells in contrast to cytoplasmic Hsp105alpha, suggesting that these proteins function in different cellular compartments of cells. Using deletion and substitution mutants of Hsp105alpha and Hsp105beta, we revealed that these proteins had a functional nuclear localization signal (NLS) and a nuclear export signal (NES). Furthermore, Hsp105alpha accumulated in the nucleus of cells when treated with leptomycin B, a specific inhibitor of NES-dependent nuclear export. siRNA for importin beta, an essential component for NLS-dependent nuclear transport, inhibited the nuclear localization of Hsp105beta. Furthermore, the 44 amino acids sequence found in Hsp105alpha but not in Hsp105beta suppressed the NLS activity. Thus, the different localization of Hsp105alpha and Hsp105beta is suggested to be due to the suppressed NLS activity in Hsp105alpha.
Collapse
Affiliation(s)
- Youhei Saito
- Department of Biochemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | | | | |
Collapse
|
16
|
Abstract
Lymphopenia-induced homeostatic expansion in non-obese diabetic (NOD) mice may lead to autoimmunity. We demonstrated that NOD lymphocytes are more susceptible to apoptosis than those of non-diabetic C57BL/6 or NOD.H2(h4) mice in vivo and in vitro, which may be an underlying mechanism causing lymphopenia in NOD mice. Gene expression profiling identified a set of genes that are differentially expressed between NOD and B6 mice. Identity of these genes suggested that NOD T cells have a deregulated stress response system, especially heat-shock protein family, making them overly sensitive to apoptosis. Thus, we hypothesize that this strain-specific gene expression profile may confer a liability upon NOD T cells making them more susceptible to apoptosis that may lead to lymphopenia in NOD mice and contribute to development of autoimmunity.
Collapse
Affiliation(s)
- Z Liu
- Department of Medicine, Division of Rheumatology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | |
Collapse
|
17
|
Sreedhar AS, Csermely P. Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol Ther 2004; 101:227-57. [PMID: 15031001 DOI: 10.1016/j.pharmthera.2003.11.004] [Citation(s) in RCA: 309] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heat shock proteins (Hsp) form the most ancient defense system in all living organisms on earth. These proteins act as molecular chaperones by helping in the refolding of misfolded proteins and assisting in their elimination if they become irreversibly damaged. Hsp interact with a number of cellular systems and form efficient cytoprotective mechanisms. However, in some cases, wherein it is better if the cell dies, there is no reason for any further defense. Programmed cell death is a widely conserved general phenomenon helping in many processes involving the reconstruction of multicellular organisms, as well as in the elimination of old or damaged cells. Here, we review some novel elements of the apoptotic process, such as its interrelationship with cellular senescence and necrosis, as well as bacterial apoptosis. We also give a survey of the most important elements of the apoptotic machinery and show the various modes of how Hsp interact with the apoptotic events in detail. We review caspase-independent apoptotic pathways and anoikis as well. Finally, we show the emerging variety of pharmacological interventions inhibiting or, just conversely, inducing Hsp and review the emergence of Hsp as novel therapeutic targets in anticancer protocols.
Collapse
Affiliation(s)
- Amere Subbarao Sreedhar
- Department of Medical Chemistry, Semmelweis University, P.O. Box 260, H-1444 Budapest, Hungary
| | | |
Collapse
|
18
|
Saito Y, Doi K, Yamagishi N, Ishihara K, Hatayama T. Screening of Hsp105alpha-binding proteins using yeast and bacterial two-hybrid systems. Biochem Biophys Res Commun 2004; 314:396-402. [PMID: 14733918 DOI: 10.1016/j.bbrc.2003.12.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hsp105alpha is a 105-kDa stress protein, which is expressed constitutively at especially high levels in the brain compared with other tissues in mammals, and is also induced by a variety of stressors. Recently, we have shown that Hsp105alpha binds to alpha-tubulin and prevents the heat-induced disaggregation of microtubules. To further elucidate the function of Hsp105alpha, we searched for Hsp105alpha-binding proteins by screening a mouse FM3A cell library and human and mouse brain cDNA libraries using the yeast and bacterial two-hybrid systems. We showed here that Hsp105alpha interacted with several cellular proteins, such as cofilin, dynein light chain 2A, alpha-adducin, ubiquitin activating enzyme E1, phosphoglycerate kinase 1, and platelet-activating factor acethylhydrolase alpha1-subunit. The interaction was validated by the results of a pull-down assay and indirect immunofluorescence analysis. The significance of Hsp105alpha and Hsp105alpha-binding proteins in cells was discussed.
Collapse
Affiliation(s)
- Youhei Saito
- Department of Biochemistry, Kyoto Pharmaceutical University, 607-8414 Kyoto, Japan
| | | | | | | | | |
Collapse
|
19
|
Delpire E, Piechotta K. STE20 kinases and cation-chloride cotransporters. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 559:43-53. [PMID: 18727226 DOI: 10.1007/0-387-23752-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232-2520, USA.
| | | |
Collapse
|