1
|
Kwok ACM, Yan KTH, Wen S, Sun S, Li C, Wong JTY. Dinochromosome Heterotermini with Telosomal Anchorages. Int J Mol Sci 2024; 25:11312. [PMID: 39457094 PMCID: PMC11508785 DOI: 10.3390/ijms252011312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Dinoflagellate birefringent chromosomes (BfCs) contain some of the largest known genomes, yet they lack typical nucleosomal micrococcal-nuclease protection patterns despite containing variant core histones. One BfC end interacts with extranuclear mitotic microtubules at the nuclear envelope (NE), which remains intact throughout the cell cycle. Ultrastructural studies, polarized light and fluorescence microscopy, and micrococcal nuclease-resistant profiles (MNRPs) revealed that NE-associated chromosome ends persisted post-mitosis. Histone H3K9me3 inhibition caused S-G2 delay in synchronous cells, without any effects at G1. Differential labeling and nuclear envelope swelling upon decompaction indicate an extension of the inner compartment into telosomal anchorages (TAs). Additionally, limited effects of low-concentration sirtinol on bulk BfCs, coupled with distinct mobility patterns in MNase-digested and psoralen-crosslinked nuclei observed on 2D gels, suggest that telomeric nucleosomes (TNs) are the primary histone structures. The absence of a nucleosomal ladder with cDNA probes, the presence of histone H2A and telomere-enriched H3.3 variants, along with the immuno-localization of H3 variants mainly at the NE further reinforce telomeric regions as the main nucleosomal domains. Cumulative biochemical and molecular analyses suggest that telomeric repeats constitute the major octameric MNRPs that provision chromosomal anchorage at the NE.
Collapse
Affiliation(s)
| | | | | | | | | | - Joseph Tin Yum Wong
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; (A.C.M.K.); (K.T.H.Y.); (S.W.); (S.S.); (C.L.)
| |
Collapse
|
2
|
Meza-Espinoza JP, González-García JR, Nieto-Marín N, Patrón-Baro LI, González-Arreola RM, Arámbula-Meraz E, Benítez-Pascual J, De la Herrán-Arita AK, Norzagaray-Valenzuela CD, Valdez-Flores MA, Carrillo-Cázares TA, Picos-Cárdenas VJ. Chromosomal instability in a patient with ring chromosome 14 syndrome: a case report. Mol Cytogenet 2024; 17:17. [PMID: 39020403 PMCID: PMC11256661 DOI: 10.1186/s13039-024-00686-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 06/26/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Ring chromosome 14 syndrome is a rare disorder primarily marked by early-onset epilepsy, microcephaly, distinctive craniofacial features, hypotonia, intellectual disability, and delay in both development and language acquisition. CASE PRESENTATION A 21-year-old woman with a history of epileptic seizures since the age of 1.5 years presented with distinctive craniofacial features, including a prominent and narrow forehead, sparse and short eyebrows, palpebral ptosis, horizontal palpebral fissures, a broad nasal bridge, a prominent nasal tip, a flat philtrum, hypertelorism, midfacial hypoplasia, horizontal labial fissures, a thin upper lip, crowded teeth, an ogival palate, retrognathia, and a wide neck. Additional physical abnormalities included kyphosis, lumbar scoliosis, pectus carinatum, cubitus valgus, thenar and hypothenar hypoplasia, bilateral hallux valgus, shortening of the Achilles tendon on the left foot, and hypoplasia of the labia minora. Chromosomal analysis identified a ring 14 chromosome with breakpoints in p11 and q32.33. An aCGH study revealed a ~ 1.7 Mb deletion on chromosome 14qter, encompassing 23 genes. Genomic instability was evidenced by the presence of micronuclei and aneuploidies involving the ring and other chromosomes. CONCLUSION The clinical features of our patient closely resembled those observed in other individuals with ring chromosome 14 syndrome. The most important point was that we were able to verify an instability of the r(14) chromosome, mainly involving anaphasic lags and its exclusion from the nucleus in the form of a micronucleus.
Collapse
Affiliation(s)
| | - Juan Ramón González-García
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| | - Nayeli Nieto-Marín
- Maestría en Ciencias en Biomedicina Molecular, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Sin, México
| | - Liliana Itzel Patrón-Baro
- Maestría en Ciencias en Biomedicina Molecular, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Sin, México
| | | | - Eliakym Arámbula-Meraz
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sin, México
| | | | | | | | | | | | | |
Collapse
|
3
|
Keller D, Stinus S, Umlauf D, Gourbeyre E, Biot E, Olivier N, Mahou P, Beaurepaire E, Andrey P, Crabbe L. Non-random spatial organization of telomeres varies during the cell cycle and requires LAP2 and BAF. iScience 2024; 27:109343. [PMID: 38510147 PMCID: PMC10951912 DOI: 10.1016/j.isci.2024.109343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/30/2023] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Spatial genome organization within the nucleus influences major biological processes and is impacted by the configuration of linear chromosomes. Here, we applied 3D spatial statistics and modeling on high-resolution telomere and centromere 3D-structured illumination microscopy images in cancer cells. We found a multi-scale organization of telomeres that dynamically evolved from a mixed clustered-and-regular distribution in early G1 to a purely regular distribution as cells progressed through the cell cycle. In parallel, our analysis revealed two pools of peripheral and internal telomeres, the proportions of which were inverted during the cell cycle. We then conducted a targeted screen using MadID to identify the molecular pathways driving or maintaining telomere anchoring to the nuclear envelope observed in early G1. Lamina-associated polypeptide (LAP) proteins were found transiently localized to telomeres in anaphase, a stage where LAP2α initiates the reformation of the nuclear envelope, and impacted telomere redistribution in the next interphase together with their partner barrier-to-autointegration factor (BAF).
Collapse
Affiliation(s)
- Debora Keller
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
- Laboratory for Optics and Biosciences, École polytechnique, CNRS, INSERM, IP Paris, 91128 Palaiseau, France
| | - Sonia Stinus
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - David Umlauf
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Edith Gourbeyre
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Eric Biot
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Nicolas Olivier
- Laboratory for Optics and Biosciences, École polytechnique, CNRS, INSERM, IP Paris, 91128 Palaiseau, France
| | - Pierre Mahou
- Laboratory for Optics and Biosciences, École polytechnique, CNRS, INSERM, IP Paris, 91128 Palaiseau, France
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, École polytechnique, CNRS, INSERM, IP Paris, 91128 Palaiseau, France
| | - Philippe Andrey
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Laure Crabbe
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
4
|
Thiel CS, Vahlensieck C, Ullrich O. Assoziation schneller Reaktionen der Genexpression mit Änderungen der 3D-Chromatinkonformation in veränderter Schwerkraft. FLUGMEDIZIN · TROPENMEDIZIN · REISEMEDIZIN - FTR 2022. [DOI: 10.1055/a-1928-0420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
ZUSAMMENFASSUNGDie molekularen Prinzipien bei der Transduktion von Schwerkraftänderungen in zelluläre Antwort- und Anpassungsprozesse sind bisher weitgehend unbekannt. Wir konnten in humanen Jurkat-T-Zellen zeigen, dass Gene bei veränderter Schwerkraft in Clusterstrukturen („gravity-responsive chromosomal regions“, GRCRs) differenziell reguliert werden. Durch Kombination mit Hochdurchsatz-Chromatin-Konformationsanalysen (Hi-C) konnte eine hochsignifikante Assoziation von GRCRs mit strukturellen 3D-Chromatinveränderungen identifiziert werden, die vor allem auf den kleinen Chromosomen (chr16–chr22) kolokalisieren. Wir fanden weiterhin Hinweise auf einen mechanistischen Zusammenhang zwischen Spleißprozessen und differenzieller Genexpression bei veränderter Schwerkraft. Somit haben wir erste Belege dafür gefunden, dass Änderungen der Schwerkraft in den Zellkern übertragen werden und dort 3D-Chromosomen-Konformationsänderungen hervorrufen, die mit einer schnellen Transkriptionsantwort verbunden sind. Wir vermuten, dass die schnelle genomische Antwort auf veränderte Gravitationskräfte in der Organisation des Chromatins spezifisch codiert ist.
Collapse
Affiliation(s)
- Cora S. Thiel
- Innovation Cluster Space and Aviation (UZH Space Hub), Universität Zürich, Schweiz
- Anatomisches Institut, Universität Zürich, Schweiz
- Raumfahrtmedizin, Fachbereich Wirtschaftsingenieurwesen, Ernst-Abbe-Hochschule Jena
- Weltraumbiotechnologie, Fakultät für Maschinenbau, Otto-von-Guericke-Universität Magdeburg
| | - Christian Vahlensieck
- Innovation Cluster Space and Aviation (UZH Space Hub), Universität Zürich, Schweiz
- Anatomisches Institut, Universität Zürich, Schweiz
| | - Oliver Ullrich
- Innovation Cluster Space and Aviation (UZH Space Hub), Universität Zürich, Schweiz
- Anatomisches Institut, Universität Zürich, Schweiz
- Raumfahrtmedizin, Fachbereich Wirtschaftsingenieurwesen, Ernst-Abbe-Hochschule Jena
- Weltraumbiotechnologie, Fakultät für Maschinenbau, Otto-von-Guericke-Universität Magdeburg
| |
Collapse
|
5
|
Gravitational Force-Induced 3D Chromosomal Conformational Changes Are Associated with Rapid Transcriptional Response in Human T Cells. Int J Mol Sci 2021; 22:ijms22179426. [PMID: 34502336 PMCID: PMC8430767 DOI: 10.3390/ijms22179426] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
The mechanisms underlying gravity perception in mammalian cells are unknown. We have recently discovered that the transcriptome of cells in the immune system, which is the most affected system during a spaceflight, responds rapidly and broadly to altered gravity. To pinpoint potential underlying mechanisms, we compared gene expression and three-dimensional (3D) chromosomal conformational changes in human Jurkat T cells during the short-term gravitational changes in parabolic flight and suborbital ballistic rocket flight experiments. We found that differential gene expression in gravity-responsive chromosomal regions, but not differentially regulated single genes, are highly conserved between different real altered gravity comparisons. These coupled gene expression effects in chromosomal regions could be explained by underlying chromatin structures. Based on a high-throughput chromatin conformation capture (Hi-C) analysis in altered gravity, we found that small chromosomes (chr16–22, with the exception of chr18) showed increased intra- and interchromosomal interactions in altered gravity, whereby large chromosomes showed decreased interactions. Finally, we detected a nonrandom overlap between Hi-C-identified chromosomal interacting regions and gravity-responsive chromosomal regions (GRCRs). We therefore demonstrate the first evidence that gravitational force-induced 3D chromosomal conformational changes are associated with rapid transcriptional response in human T cells. We propose a general model of cellular sensitivity to gravitational forces, where gravitational forces acting on the cellular membrane are rapidly and mechanically transduced through the cytoskeleton into the nucleus, moving chromosome territories to new conformation states and their genes into more expressive or repressive environments, finally resulting in region-specific differential gene expression.
Collapse
|
6
|
Kychygina A, Dall'Osto M, Allen JAM, Cadoret JC, Piras V, Pickett HA, Crabbe L. Progerin impairs 3D genome organization and induces fragile telomeres by limiting the dNTP pools. Sci Rep 2021; 11:13195. [PMID: 34162976 PMCID: PMC8222272 DOI: 10.1038/s41598-021-92631-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/11/2021] [Indexed: 11/09/2022] Open
Abstract
Chromatin organization within the nuclear volume is essential to regulate many aspects of its function and to safeguard its integrity. A key player in this spatial scattering of chromosomes is the nuclear envelope (NE). The NE tethers large chromatin domains through interaction with the nuclear lamina and other associated proteins. This organization is perturbed in cells from Hutchinson–Gilford progeria syndrome (HGPS), a genetic disorder characterized by premature aging features. Here, we show that HGPS-related lamina defects trigger an altered 3D telomere organization with increased contact sites between telomeres and the nuclear lamina, and an altered telomeric chromatin state. The genome-wide replication timing signature of these cells is perturbed, with a shift to earlier replication for regions that normally replicate late. As a consequence, we detected a higher density of replication forks traveling simultaneously on DNA fibers, which relies on limiting cellular dNTP pools to support processive DNA synthesis. Remarkably, increasing dNTP levels in HGPS cells rescued fragile telomeres, and improved the replicative capacity of the cells. Our work highlights a functional connection between NE dysfunction and telomere homeostasis in the context of premature aging.
Collapse
Affiliation(s)
- Anna Kychygina
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), CNRS, UPS, University of Toulouse, 31062, Toulouse, France.,INSERM UMR1291, CNRS UMR5051, UT3, Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), 31059, Toulouse, France
| | - Marina Dall'Osto
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), CNRS, UPS, University of Toulouse, 31062, Toulouse, France
| | - Joshua A M Allen
- Telomere Length Regulation Unit, Faculty of Medicine and Health, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | | | - Vincent Piras
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), CNRS, UPS, University of Toulouse, 31062, Toulouse, France
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Faculty of Medicine and Health, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Laure Crabbe
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), CNRS, UPS, University of Toulouse, 31062, Toulouse, France.
| |
Collapse
|
7
|
Scourzic L, Salataj E, Apostolou E. Deciphering the Complexity of 3D Chromatin Organization Driving Lymphopoiesis and Lymphoid Malignancies. Front Immunol 2021; 12:669881. [PMID: 34054841 PMCID: PMC8160312 DOI: 10.3389/fimmu.2021.669881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Proper lymphopoiesis and immune responses depend on the spatiotemporal control of multiple processes, including gene expression, DNA recombination and cell fate decisions. High-order 3D chromatin organization is increasingly appreciated as an important regulator of these processes and dysregulation of genomic architecture has been linked to various immune disorders, including lymphoid malignancies. In this review, we present the general principles of the 3D chromatin topology and its dynamic reorganization during various steps of B and T lymphocyte development and activation. We also discuss functional interconnections between architectural, epigenetic and transcriptional changes and introduce major key players of genomic organization in B/T lymphocytes. Finally, we present how alterations in architectural factors and/or 3D genome organization are linked to dysregulation of the lymphopoietic transcriptional program and ultimately to hematological malignancies.
Collapse
Affiliation(s)
| | | | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
8
|
Crosetto N, Bienko M. Radial Organization in the Mammalian Nucleus. Front Genet 2020; 11:33. [PMID: 32117447 PMCID: PMC7028756 DOI: 10.3389/fgene.2020.00033] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/10/2020] [Indexed: 11/13/2022] Open
Abstract
In eukaryotic cells, most of the genetic material is contained within a highly specialized organelle-the nucleus. A large body of evidence indicates that, within the nucleus, chromatinized DNA is spatially organized at multiple length scales. The higher-order organization of chromatin is crucial for proper execution of multiple genome functions, including DNA replication and transcription. Here, we review our current knowledge on the spatial organization of chromatin in the nucleus of mammalian cells, focusing in particular on how chromatin is radially arranged with respect to the nuclear lamina. We then discuss the possible mechanisms by which the radial organization of chromatin in the cell nucleus is established. Lastly, we propose a unifying model of nuclear spatial organization, and suggest novel approaches to test it.
Collapse
Affiliation(s)
| | - Magda Bienko
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Hoffman DP, Shtengel G, Xu CS, Campbell KR, Freeman M, Wang L, Milkie DE, Pasolli HA, Iyer N, Bogovic JA, Stabley DR, Shirinifard A, Pang S, Peale D, Schaefer K, Pomp W, Chang CL, Lippincott-Schwartz J, Kirchhausen T, Solecki DJ, Betzig E, Hess HF. Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells. Science 2020; 367:eaaz5357. [PMID: 31949053 PMCID: PMC7339343 DOI: 10.1126/science.aaz5357] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/20/2019] [Indexed: 12/27/2022]
Abstract
Within cells, the spatial compartmentalization of thousands of distinct proteins serves a multitude of diverse biochemical needs. Correlative super-resolution (SR) fluorescence and electron microscopy (EM) can elucidate protein spatial relationships to global ultrastructure, but has suffered from tradeoffs of structure preservation, fluorescence retention, resolution, and field of view. We developed a platform for three-dimensional cryogenic SR and focused ion beam-milled block-face EM across entire vitreously frozen cells. The approach preserves ultrastructure while enabling independent SR and EM workflow optimization. We discovered unexpected protein-ultrastructure relationships in mammalian cells including intranuclear vesicles containing endoplasmic reticulum-associated proteins, web-like adhesions between cultured neurons, and chromatin domains subclassified on the basis of transcriptional activity. Our findings illustrate the value of a comprehensive multimodal view of ultrastructural variability across whole cells.
Collapse
Affiliation(s)
- David P Hoffman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Gleb Shtengel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kirby R Campbell
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Melanie Freeman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Lei Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel E Milkie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - H Amalia Pasolli
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Nirmala Iyer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - John A Bogovic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Daniel R Stabley
- Neuroimaging Laboratory, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Abbas Shirinifard
- Bioimage Analysis Core, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Song Pang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - David Peale
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kathy Schaefer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Wim Pomp
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Chi-Lun Chang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | | - Tom Kirchhausen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - David J Solecki
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Physics, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
10
|
Paulsen J, Sekelja M, Oldenburg AR, Barateau A, Briand N, Delbarre E, Shah A, Sørensen AL, Vigouroux C, Buendia B, Collas P. Chrom3D: three-dimensional genome modeling from Hi-C and nuclear lamin-genome contacts. Genome Biol 2017; 18:21. [PMID: 28137286 PMCID: PMC5278575 DOI: 10.1186/s13059-016-1146-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/23/2016] [Indexed: 01/09/2023] Open
Abstract
Current three-dimensional (3D) genome modeling platforms are limited by their inability to account for radial placement of loci in the nucleus. We present Chrom3D, a user-friendly whole-genome 3D computational modeling framework that simulates positions of topologically-associated domains (TADs) relative to each other and to the nuclear periphery. Chrom3D integrates chromosome conformation capture (Hi-C) and lamin-associated domain (LAD) datasets to generate structure ensembles that recapitulate radial distributions of TADs detected in single cells. Chrom3D reveals unexpected spatial features of LAD regulation in cells from patients with a laminopathy-causing lamin mutation. Chrom3D is freely available on github.
Collapse
Affiliation(s)
- Jonas Paulsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Monika Sekelja
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anja R Oldenburg
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Nolwenn Briand
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Erwan Delbarre
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Akshay Shah
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anita L Sørensen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Corinne Vigouroux
- INSERM, UMR S938, Centre de Recherches Saint-Antoine, Paris, France.,UPMC Université Paris 6 UMR S938, Paris, France.,ICAN, Paris, France.,AP-HP Hôpital Tenon, Paris, France
| | | | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway. .,Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
11
|
Interstitial Telomeric Motifs in Squamate Reptiles: When the Exceptions Outnumber the Rule. PLoS One 2015; 10:e0134985. [PMID: 26252002 PMCID: PMC4529230 DOI: 10.1371/journal.pone.0134985] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/15/2015] [Indexed: 12/19/2022] Open
Abstract
Telomeres are nucleoprotein complexes protecting the physical ends of linear eukaryotic chromosomes and therefore helping to ensure their stability and integrity. Additionally, telomeric sequences can be localized in non-terminal regions of chromosomes, forming so-called interstitial telomeric sequences (ITSs). ITSs are traditionally considered to be relics of chromosomal rearrangements and thus very informative in the reconstruction of the evolutionary history of karyotype formation. We examined the distribution of the telomeric motifs (TTAGGG)n using fluorescence in situ hybridization (FISH) in 30 species, representing 17 families of squamate reptiles, and compared them with the collected data from another 38 species from literature. Out of the 68 squamate species analyzed, 35 possess ITSs in pericentromeric regions, centromeric regions and/or within chromosome arms. We conclude that the occurrence of ITSs is rather common in squamates, despite their generally conserved karyotypes, suggesting frequent and independent cryptic chromosomal rearrangements in this vertebrate group.
Collapse
|
12
|
Gay S, Foiani M. Nuclear envelope and chromatin, lock and key of genome integrity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:267-330. [PMID: 26008788 DOI: 10.1016/bs.ircmb.2015.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
More than as an inert separation between the inside and outside of the nucleus, the nuclear envelope (NE) constitutes an active toll, which controls the import and export of molecules, and also a hub for a diversity of genomic processes, such as transcription, DNA repair, and chromatin dynamics. Proteins localized at the inner surface of the NE (such as lamins, nuclear pore proteins, lamin-associated proteins) interact with chromatin in a dynamic manner, contributing to the establishment of topological domains. In this review, we address the complex interplay between chromatin and NE. We discuss the divergence of this cross talk during evolution and comment both on the current established models and the most recent findings. In particular, we focus our attention on how the NE cooperates with chromatin in protecting the genome integrity.
Collapse
Affiliation(s)
- Sophie Gay
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Marco Foiani
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy; Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
13
|
Bivalent associations in Mus domesticus 2n = 40 spermatocytes. Are they random? Bull Math Biol 2014; 76:1941-52. [PMID: 25033783 PMCID: PMC4153974 DOI: 10.1007/s11538-014-9992-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 06/24/2014] [Indexed: 11/03/2022]
Abstract
The establishment of associations between bivalents from Mus domesticus 2n = 40 spermatocytes is a common phenomenon that shows up during the first prophase of meiotic nuclei. In each nucleus, a seemingly random display of variable size clusters of bivalents in association is observed. These associations originate a particular nuclear architecture and determine the probability of encounters between chromosome domains. Hence, the type of randomness in associations between bivalents has nontrivial consequences. We explore different models for randomness and the associated bivalent probability distributions and find that a simple model based on randomly coloring a subset of vertices of a 6-regular graph provides best agreement with microspreads observations. The notion of randomness is thereby explained in conjunction with the underlying local geometry of the nuclear envelope.
Collapse
|
14
|
Mompart F, Robelin D, Delcros C, Yerle-Bouissou M. 3D organization of telomeres in porcine neutrophils and analysis of LPS-activation effect. BMC Cell Biol 2013; 14:30. [PMID: 23803152 PMCID: PMC3701612 DOI: 10.1186/1471-2121-14-30] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/12/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND While the essential role of 3D nuclear architecture on nuclear functions has been demonstrated for various cell types, information available for neutrophils, essential components of the immune system, remains limited. In this study, we analysed the spatial arrangements of telomeres which play a central role in cell fate. Our studies were carried out in swine, which is an excellent model organism for both biomedical research and agronomic applications. We isolated bacterial artificial chromosome (BAC)-containing subtelomeric p and q sequences specific to each porcine chromosome. This allowed us to study the behaviour of p and q telomeres of homologous chromosomes for seven pairs chosen for their difference in length and morphology. This was performed using 3D-FISH on structurally preserved neutrophils, and confocal microscopy. Resting and lipopolysaccharide (LPS)-activated states were investigated to ascertain whether a response to a pathogen aggression modifies this organization. RESULTS The positions of the p and q telomeres relative to the nuclear outer border were determined in the two states. All p telomeres changed their position significantly during the activation process, although the effect was less pronounced for the q telomeres. The patterns of telomeric associations between homologs and their frequencies were analysed for 7 pairs of chromosomes. This analysis revealed that the distribution of pp, qq and pq associations differs significantly among the 7 chromosomes. This distribution does not fit with the theoretical distribution for each chromosome, suggesting that preferential associations occur between subtelomeres. CONCLUSIONS The percentage of nuclei harbouring at least one telomeric association between homologs varies significantly among the chromosomes, the smallest metacentric chromosome SSC12, which is also the richest in gene-density, harbouring the highest value. The distribution of types of telomeric associations is highly dependent on the chromosomes and is not affected by the activation process. The frequencies of telomeric associations are also highly dependent on the type of association and the type of chromosome. Overall, the LPS-activation process induces only minor changes in these patterns of associations. When telomeric associations occur, the associations of p and q arms from the same chromosome are the most frequent, suggesting that "chromosome bending" occurs in neutrophils as previously observed in gametes.
Collapse
Affiliation(s)
- Florence Mompart
- INRA, UMR 444, Génétique Cellulaire, F-31326 Castanet, Tolosan, France
| | | | | | | |
Collapse
|
15
|
Crabbe L, Cesare AJ, Kasuboski JM, Fitzpatrick JAJ, Karlseder J. Human telomeres are tethered to the nuclear envelope during postmitotic nuclear assembly. Cell Rep 2012; 2:1521-9. [PMID: 23260663 DOI: 10.1016/j.celrep.2012.11.019] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 10/25/2012] [Accepted: 11/27/2012] [Indexed: 10/27/2022] Open
Abstract
Telomeres are essential for nuclear organization in yeast and during meiosis in mice. Exploring telomere dynamics in living human cells by advanced time-lapse confocal microscopy allowed us to evaluate the spatial distribution of telomeres within the nuclear volume. We discovered an unambiguous enrichment of telomeres at the nuclear periphery during postmitotic nuclear assembly, whereas telomeres were localized more internally during the rest of the cell cycle. Telomere enrichment at the nuclear rim was mediated by physical tethering of telomeres to the nuclear envelope, most likely via specific interactions between the shelterin subunit RAP1 and the nuclear envelope protein Sun1. Genetic interference revealed a critical role in cell-cycle progression for Sun1 but no effect on telomere positioning for RAP1. Our results shed light on the dynamic relocalization of human telomeres during the cell cycle and suggest redundant pathways for tethering telomeres to the nuclear envelope.
Collapse
Affiliation(s)
- Laure Crabbe
- Molecular and Cellular Biology Department, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Kitada K, Taima A, Ogasawara K, Metsugi S, Aikawa S. Chromosome-specific segmentation revealed by structural analysis of individually isolated chromosomes. Genes Chromosomes Cancer 2011; 50:217-27. [PMID: 21319258 DOI: 10.1002/gcc.20847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 11/09/2022] Open
Abstract
Analysis of structural rearrangements at the individual chromosomal level is still technologically challenging. Here we optimized a chromosome isolation method using fluorescent marker-assisted laser-capture and laser-beam microdissection and applied it to structural analysis of two aberrant chromosomes found in a lung cancer cell line. A high-density array-comparative genomic hybridization (array-CGH) analysis of DNA samples prepared from each of the chromosomes revealed that these two chromosomes contained 296 and 263 segments, respectively, ranging from 1.5 kb to 784.3 kb in size, derived from different portions of chromosome 8. Among these segments, 242 were common in both aberrant chromosomes, but 75 were found to be chromosome-specific. Sequences of 263 junction sites connecting the ends of segments were determined using a PCR/Sanger-sequencing procedure. Overlapping microhomologies were found at 169 junction sites. Junction partners came from various portions of chromosome 8 and no biased pattern in the positional distribution of junction partners was detected. These structural characteristics suggested the occurrence of random fragmentation of the entire chromosome 8 followed by random rejoining of these fragments. Based on that, we proposed a model to explain how these aberrant chromosomes are formed. Through these structural analyses, it was demonstrated that the optimized chromosome isolation method described here can provide high-quality chromosomal DNA for high resolution array-CGH analysis and probably for massively parallel sequencing analysis.
Collapse
Affiliation(s)
- Kunio Kitada
- Kamakura Research Laboratories, Chugai Pharmaceutical Co. Ltd., 200-Kajiwara, Kamakura, Kanagawa 247-8530, Japan.
| | | | | | | | | |
Collapse
|
18
|
Cabianca DS, Gabellini D. The cell biology of disease: FSHD: copy number variations on the theme of muscular dystrophy. J Cell Biol 2010; 191:1049-60. [PMID: 21149563 PMCID: PMC3002039 DOI: 10.1083/jcb.201007028] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/08/2010] [Indexed: 01/17/2023] Open
Abstract
In humans, copy number variations (CNVs) are a common source of phenotypic diversity and disease susceptibility. Facioscapulohumeral muscular dystrophy (FSHD) is an important genetic disease caused by CNVs. It is an autosomal-dominant myopathy caused by a reduction in the copy number of the D4Z4 macrosatellite repeat located at chromosome 4q35. Interestingly, the reduction of D4Z4 copy number is not sufficient by itself to cause FSHD. A number of epigenetic events appear to affect the severity of the disease, its rate of progression, and the distribution of muscle weakness. Indeed, recent findings suggest that virtually all levels of epigenetic regulation, from DNA methylation to higher order chromosomal architecture, are altered at the disease locus, causing the de-regulation of 4q35 gene expression and ultimately FSHD.
Collapse
Affiliation(s)
- Daphne Selvaggia Cabianca
- International PhD Program in Cellular and Molecular Biology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Division of Regenerative Medicine, San Raffaele Scientific Institute, DIBIT 1, 2A3-49, 20132 Milan, Italy
| | - Davide Gabellini
- Division of Regenerative Medicine, San Raffaele Scientific Institute, DIBIT 1, 2A3-49, 20132 Milan, Italy
- Dulbecco Telethon Institute, 20132 Milan, Italy
| |
Collapse
|
19
|
Uhlírová R, Horáková AH, Galiová G, Legartová S, Matula P, Fojtová M, Varecha M, Amrichová J, Vondrácek J, Kozubek S, Bártová E. SUV39h- and A-type lamin-dependent telomere nuclear rearrangement. J Cell Biochem 2010; 109:915-26. [PMID: 20069564 DOI: 10.1002/jcb.22466] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Telomeres are specialized chromatin structures that are situated at the end of linear chromosomes and play an important role in cell senescence and immortalization. Here, we investigated whether changes in histone signature influence the nuclear arrangement and positioning of telomeres. Analysis of mouse embryonic fibroblasts revealed that telomeres were organized into specific clusters that partially associated with centromeric clusters. This nuclear arrangement was influenced by deficiency of the histone methyltransferase SUV39h, LMNA deficiency, and the histone deacetylase inhibitor Trichostatin A (TSA). Similarly, nuclear radial distributions of telomeric clusters were preferentially influenced by TSA, which caused relocation of telomeres closer to the nuclear center. Telomeres also co-localized with promyelocytic leukemia bodies (PML). This association was increased by SUV39h deficiency and decreased by LMNA deficiency. These differences could be explained by differing levels of the telomerase subunit, TERT, in SUV39h- and LMNA-deficient fibroblasts. Taken together, our data show that SUV39h and A-type lamins likely play a key role in telomere maintenance and telomere nuclear architecture.
Collapse
Affiliation(s)
- Radka Uhlírová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-612 65 Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rouquette J, Cremer C, Cremer T, Fakan S. Functional nuclear architecture studied by microscopy: present and future. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 282:1-90. [PMID: 20630466 DOI: 10.1016/s1937-6448(10)82001-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this review we describe major contributions of light and electron microscopic approaches to the present understanding of functional nuclear architecture. The large gap of knowledge, which must still be bridged from the molecular level to the level of higher order structure, is emphasized by differences of currently discussed models of nuclear architecture. Molecular biological tools represent new means for the multicolor visualization of various nuclear components in living cells. New achievements offer the possibility to surpass the resolution limit of conventional light microscopy down to the nanometer scale and require improved bioinformatics tools able to handle the analysis of large amounts of data. In combination with the much higher resolution of electron microscopic methods, including ultrastructural cytochemistry, correlative microscopy of the same cells in their living and fixed state is the approach of choice to combine the advantages of different techniques. This will make possible future analyses of cell type- and species-specific differences of nuclear architecture in more detail and to put different models to critical tests.
Collapse
Affiliation(s)
- Jacques Rouquette
- Biocenter, Ludwig Maximilians University (LMU), Martinsried, Germany
| | | | | | | |
Collapse
|
21
|
Comparison of chromosome centromere topology in differentiating cells with myogenic potential. Folia Histochem Cytobiol 2010; 47:377-83. [PMID: 20164021 DOI: 10.2478/v10042-009-0037-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromosome territories (CT's) constitute the critical element of the intranuclear architecture. Position of these compartmentalized structures plays an important role in functioning of entire genome. Present study was to examine whether the centromeres position of chromosomes 4, X and Y can be changed during differentiation from myoblasts to myotubes. Topological analysis of these centromeres was based on two-dimensional fluorescent hybridization in situ (2D-FISH). During differentiation process the majority of X chromosome centromeres analyzed shifted to the peripheral part of a nucleus and similar phenomenon was observed with one of the chromosome 4 centromeres. Completely different tendency was noticed when investigating the location of the chromosome Y centromeres. Centromeres of this chromosome migrated to the centre of a nucleus. The results obtained demonstrated visible changes in chromosome topology along the myogenic stem cells differentiation.
Collapse
|
22
|
Arnoult N, Schluth-Bolard C, Letessier A, Drascovic I, Bouarich-Bourimi R, Campisi J, Kim SH, Boussouar A, Ottaviani A, Magdinier F, Gilson E, Londoño-Vallejo A. Replication timing of human telomeres is chromosome arm-specific, influenced by subtelomeric structures and connected to nuclear localization. PLoS Genet 2010; 6:e1000920. [PMID: 20421929 PMCID: PMC2858680 DOI: 10.1371/journal.pgen.1000920] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 03/22/2010] [Indexed: 12/12/2022] Open
Abstract
The mechanisms governing telomere replication in humans are still poorly understood. To fill this gap, we investigated the timing of replication of single telomeres in human cells. Using in situ hybridization techniques, we have found that specific telomeres have preferential time windows for replication during the S-phase and that these intervals do not depend upon telomere length and are largely conserved between homologous chromosomes and between individuals, even in the presence of large subtelomeric segmental polymorphisms. Importantly, we show that one copy of the 3.3 kb macrosatellite repeat D4Z4, present in the subtelomeric region of the late replicating 4q35 telomere, is sufficient to confer both a more peripheral localization and a later-replicating property to a de novo formed telomere. Also, the presence of β-satellite repeats next to a newly created telomere is sufficient to delay its replication timing. Remarkably, several native, non-D4Z4–associated, late-replicating telomeres show a preferential localization toward the nuclear periphery, while several early-replicating telomeres are associated with the inner nuclear volume. We propose that, in humans, chromosome arm–specific subtelomeric sequences may influence both the spatial distribution of telomeres in the nucleus and their replication timing. Functional telomeres are essential for genome stability. While replication of telomeres has been extensively studied in model organisms such as the baker's yeast, little is known about the mechanisms that govern the replication of human telomeres. In this study, we have determined the timing of replication of telomeres of individual human chromosomes and its association with potential modulating factors such as particular subtelomeric sequences, the presence of heterochromatic regions, and nuclear localization. We have found that native telomeres associated with D4Z4 sequences—a macrosatellite naturally located in the subtelomeric regions of 4q, 10q, and acrocentric chromosome extremities—replicate later than others. We also present descriptive and experimental evidence indicating that nuclear localization influences the timing of telomere replication. These results contribute to our understanding of telomere metabolism in humans.
Collapse
Affiliation(s)
- Nausica Arnoult
- Telomeres and Cancer Laboratory, Institut Curie, CNRS, UPMC University Paris 06, Paris, France
| | - Caroline Schluth-Bolard
- Epigenetics and Telomere Regulation, CNRS ENS UCBL IFR128, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Anne Letessier
- Functional Organization and Plasticity of Mammalian Genomes, Institut Curie, UPMC University Paris 06, Paris, France
| | - Irena Drascovic
- Telomeres and Cancer Laboratory, Institut Curie, CNRS, UPMC University Paris 06, Paris, France
| | | | - Judith Campisi
- Lawrence Berkeley Laboratory, Berkeley, California, United States of America
- Buck Institute for Age Research, Novato, California, United States of America
| | - Sahn-ho Kim
- Lawrence Berkeley Laboratory, Berkeley, California, United States of America
| | - Amina Boussouar
- Epigenetics and Telomere Regulation, CNRS ENS UCBL IFR128, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Alexandre Ottaviani
- Epigenetics and Telomere Regulation, CNRS ENS UCBL IFR128, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Frédérique Magdinier
- Epigenetics and Telomere Regulation, CNRS ENS UCBL IFR128, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Eric Gilson
- Epigenetics and Telomere Regulation, CNRS ENS UCBL IFR128, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Arturo Londoño-Vallejo
- Telomeres and Cancer Laboratory, Institut Curie, CNRS, UPMC University Paris 06, Paris, France
- * E-mail:
| |
Collapse
|
23
|
Ktistaki E, Garefalaki A, Williams A, Andrews SR, Bell DM, Foster KE, Spilianakis CG, Flavell RA, Kosyakova N, Trifonov V, Liehr T, Kioussis D. CD8 locus nuclear dynamics during thymocyte development. THE JOURNAL OF IMMUNOLOGY 2010; 184:5686-95. [PMID: 20404270 DOI: 10.4049/jimmunol.1000170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nuclear architecture and chromatin reorganization have recently been shown to orchestrate gene expression and act as key players in developmental pathways. To investigate how regulatory elements in the mouse CD8 gene locus are arranged in space and in relation to each other, three-dimensional fluorescence in situ hybridization and chromosome conformation capture techniques were employed to monitor the repositioning of the locus in relation to its subchromosomal territory and to identify long-range interactions between the different elements during development. Our data demonstrate that CD8 gene expression in murine lymphocytes is accompanied by the relocation of the locus outside its subchromosomal territory. Similar observations in the CD4 locus point to a rather general phenomenon during T cell development. Furthermore, we show that this relocation of the CD8 gene locus is associated with a clustering of regulatory elements forming a tight active chromatin hub in CD8-expressing cells. In contrast, in nonexpressing cells, the gene remains close to the main body of its chromosomal domain and the regulatory elements appear not to interact with each other.
Collapse
Affiliation(s)
- Eleni Ktistaki
- Division of Molecular Immunology, Medical Research Council, National Institute for Medical Research, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Harnicarová Horáková A, Bártová E, Kozubek S. Chromatin structure with respect to histone signature changes during cell differentiation. Cell Struct Funct 2010; 35:31-44. [PMID: 20424340 DOI: 10.1247/csf.09021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Here, we would like to point out important milestones in the study of nuclear radial positioning and gene expression during differentiation processes. In addition, changes in the histone signature that significantly precede various differentiation pathways are reviewed. We address the regulatory functions of chromatin structure and histone epigenetic marks that give rise to gene expression patterns that are specific to distinct differentiation pathways. The functional relevance of nuclear architecture and epigenetic traits is preferentially discussed in the context of in vitro induced enterocytic differentiation and pluripotent or differentiated embryonic stem cells. We especially focus on the recapitulation of nuclear events that have been characterized for some genes and proto-oncogenes that are important for development and differentiation.
Collapse
|
25
|
Yerle-Bouissou M, Mompart F, Iannuccelli E, Robelin D, Jauneau A, Lahbib-Mansais Y, Delcros C, Oswald IP, Gellin J. Nuclear architecture of resting and LPS-stimulated porcine neutrophils by 3D FISH. Chromosome Res 2009; 17:847-62. [PMID: 19763853 DOI: 10.1007/s10577-009-9074-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 08/07/2009] [Accepted: 08/11/2009] [Indexed: 12/18/2022]
Abstract
Neutrophils are essential components of the innate immune system due to their ability to kill and phagocytose invading microbes. They possess a lobulated nucleus and are capable of extensive and complex changes in response to bacterial stimulation. The aim of our study was to investigate whether the 3D nuclear organization of porcine neutrophils was modified upon stimulation. The organization of centromeres, telomeres, and chromosome territories (chromosomes 2, 3, 7, 8, 12, 13, and 17) was studied on structurally preserved nuclei using 3D fluorescence in situ hybridization, confocal microscopy, and image analysis. By differential labeling of centromeres of acrocentric and metacentric/submetacentric chromosomes, we showed that centromeres associated to form chromocenters but did so preferentially between chromosomes with the same morphology. Upon activation, some of these chromocenters dispersed. Telomeres were also found to form clusters, but their number remained unchanged in lipopolysaccharide-stimulated neutrophils. The analysis of the position of chromocenters and telomere clusters showed a more internal location of the latter compared to the former. The analysis of chromosome territories revealed that homologs were distributed randomly among lobes whatever the cell's status. The volume of these territories was not proportional to chromosome length, and some chromosomes (chr 3, 12, 13, and 17) were more prone to decondensation when neutrophils were stimulated. Thus, our study demonstrated that activation of neutrophils resulted in several modifications of their nuclear architecture: a decrease in the number of non-acrocentric chromocenters and the decondensation of several chromosomes.
Collapse
Affiliation(s)
- Martine Yerle-Bouissou
- Laboratoire de Génétique Cellulaire UMR 444, Département de Génétique Animale, INRA, 31326, Castanet-Tolosan, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
De Vos WH, Hoebe RA, Joss GH, Haffmans W, Baatout S, Van Oostveldt P, Manders EMM. Controlled light exposure microscopy reveals dynamic telomere microterritories throughout the cell cycle. Cytometry A 2009; 75:428-39. [PMID: 19097172 DOI: 10.1002/cyto.a.20699] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Telomeres are complex end structures that confer functional integrity and positional stability to human chromosomes. Despite their critical importance, there is no clear view on telomere organization in cycling human cells and their dynamic behavior throughout the cell cycle. We investigated spatiotemporal organization of telomeres in living human ECV-304 cells stably expressing telomere binding proteins TRF1 and TRF2 fused to mCitrine using four dimensional microscopy. We thereby made use of controlled light exposure microscopy (CLEM), a novel technology that strongly reduces photodamage by limiting excitation in parts of the image where full exposure is not needed. We found that telomeres share small territories where they dynamically associate. These territories are preferentially positioned at the interface of chromatin domains. TRF1 and TRF2 are abundantly present in these territories but not firmly bound. At the onset of mitosis, the bulk of TRF protein dissociates from telomere regions, territories disintegrate and individual telomeres become faintly visible. The combination of stable cell lines, CLEM and cytometry proved essential in providing novel insights in compartment-based nuclear organization and may serve as a model approach for investigating telomere-driven genome-instability and studying long-term nuclear dynamics.
Collapse
Affiliation(s)
- Winnok H De Vos
- Department of Molecular Biotechnology, Faculty of Bio-engineering Sciences, Ghent University, Coupure links 653, Ghent 9000, Belgium.
| | | | | | | | | | | | | |
Collapse
|
27
|
Raz V, Vermolen BJ, Garini Y, Onderwater JJM, Mommaas-Kienhuis MA, Koster AJ, Young IT, Tanke H, Dirks RW. The nuclear lamina promotes telomere aggregation and centromere peripheral localization during senescence of human mesenchymal stem cells. J Cell Sci 2009; 121:4018-28. [PMID: 19056671 DOI: 10.1242/jcs.034876] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ex vivo, human mesenchymal stem cells (hMSCs) undergo spontaneous cellular senescence after a limited number of cell divisions. Intranuclear structures of the nuclear lamina were formed in senescent hMSCs, which are identified by the presence of Hayflick-senescence-associated factors. Notably, spatial changes in lamina shape were observed before the Hayflick senescence-associated factors, suggesting that the lamina morphology can be used as an early marker to identify senescent cells. Here, we applied quantitative image-processing tools to study the changes in nuclear architecture during cell senescence. We found that centromeres and telomeres colocalised with lamina intranuclear structures, which resulted in a preferred peripheral distribution in senescent cells. In addition, telomere aggregates were progressively formed during cell senescence. Once formed, telomere aggregates showed colocalization with gamma-H2AX but not with TERT, suggesting that telomere aggregates are sites of DNA damage. We also show that telomere aggregation is associated with lamina intranuclear structures, and increased telomere binding to lamina proteins is found in cells expressing lamina mutants that lead to increases in lamina intranuclear structures. Moreover, three-dimensional image processing revealed spatial overlap between telomere aggregates and lamina intranuclear structures. Altogether, our data suggest a mechanical link between changes in lamina spatial organization and the formation of telomere aggregates during senescence of hMSCs, which can possibly contribute to changes in nuclear activity during cell senescence.
Collapse
Affiliation(s)
- Vered Raz
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Vermolen BJ, Garini Y, Young IT, Dirks RW, Raz V. Segmentation and analysis of the three-dimensional redistribution of nuclear components in human mesenchymal stem cells. Cytometry A 2008; 73:816-24. [DOI: 10.1002/cyto.a.20612] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Grasser F, Neusser M, Fiegler H, Thormeyer T, Cremer M, Carter NP, Cremer T, Müller S. Replication-timing-correlated spatial chromatin arrangements in cancer and in primate interphase nuclei. J Cell Sci 2008; 121:1876-86. [PMID: 18477608 DOI: 10.1242/jcs.026989] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Using published high-resolution data on S-phase replication timing, we determined the three-dimensional (3D) nuclear arrangement of 33 very-early-replicating and 31 very-late-replicating loci. We analyzed diploid human, non-human primate and rearranged tumor cells by 3D fluorescence in situ hybridization with the aim of investigating the impact of chromosomal structural changes on the nuclear organization of these loci. Overall, their topology was found to be largely conserved between cell types, species and in tumor cells. Early-replicating loci were localized in the nuclear interior, whereas late-replicating loci showed a broader distribution with a higher preference for the periphery than for late-BrdU-incorporation foci. However, differences in the spatial arrangement of early and late loci of chromosome 2, as compared with those from chromosome 5, 7 and 17, argue against replication timing as a major driving force for the 3D radial genome organization in human lymphoblastoid cell nuclei. Instead, genomic properties, and local gene density in particular, were identified as the decisive parameters. Further detailed comparisons of chromosome 7 loci in primate and tumor cells suggest that the inversions analyzed influence nuclear topology to a greater extent than the translocations, thus pointing to geometrical constraints in the 3D conformation of a chromosome territory.
Collapse
Affiliation(s)
- Florian Grasser
- Department of Biology II, Human Genetics, Ludwig-Maximilians University Munich, Planegg-Martinsreid, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Neusser M, Schubel V, Koch A, Cremer T, Müller S. Evolutionarily conserved, cell type and species-specific higher order chromatin arrangements in interphase nuclei of primates. Chromosoma 2007; 116:307-20. [PMID: 17318634 DOI: 10.1007/s00412-007-0099-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 01/03/2007] [Accepted: 01/13/2007] [Indexed: 01/25/2023]
Abstract
Several studies demonstrated a gene-density-correlated radial organization of chromosome territories (CTs) in spherically shaped nuclei of human lymphocytes or lymphoblastoid cells, while CT arrangements in flat-ellipsoidal nuclei of human fibroblasts are affected by both gene density and chromosome size. In the present study, we performed fluorescence in situ hybridization (FISH) experiments to three-dimensionally preserved nuclei (3D-FISH) from human and nonhuman primate cultured lymphoblastoid cells and fibroblasts. We investigated apes, Old, and New World monkeys showing either evolutionarily conserved karyotypes, multiple translocations, fusions, or serial fissions. Our goal was to test whether cell type specific differences of higher order chromatin arrangements are evolutionarily conserved in different primate lineages. Whole genome painting experiments and further detailed analyses of individual chromosomes indicate a gene-density-correlated higher order organization of chromatin in lymphoblastoid cell nuclei of all studied primate species, despite evolutionary chromosome reshuffling. In contrast, in primate fibroblast nuclei evolutionary translocations, fissions and fusions resulted in positional shifts of orthologous chromosome segments, thus arguing against a functional role of chromosome size-dependent spatial chromatin arrangements and for geometrical constraints in flat-ellipsoidal fibroblast nuclei. Notably, in both cell types, regions of rearranged chromosomes with distinct differences in gene density showed polarized arrangements with the more gene-dense segment oriented towards the nuclear interior. Our results indicate that nonrandom breakage and rejoining of preferentially gene-dense chromosomes or chromosome segments may have occurred during evolution.
Collapse
Affiliation(s)
- Michaela Neusser
- Department Biology II, Human Genetics, Ludwig-Maximilians-University, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
31
|
Bártová E, Kozubek S. Nuclear architecture in the light of gene expression and cell differentiation studies. Biol Cell 2006; 98:323-36. [PMID: 16704376 DOI: 10.1042/bc20050099] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It is evident that primary DNA sequences, that define genomes, are responsible for genome functions. However, the functional properties of chromatin are additionally regulated by heritable modifications known as epigenetic factors and, therefore, genomes should be also considered with respect to their 'epigenomes'. Nucleosome remodelling, DNA methylation and histone modifications are the most prominent epigenetic changes that play fundamental roles in the chromatin-mediated control of gene expression. Another important nuclear feature with functional relevance is the organization of mammalian chromatin into distinct chromosome territories which are surrounded by the interchromatin compartment that is necessary for transport of regulatory molecules to the targeted DNA. The inner structure of the chromosome territories, as well as the arrangement of the chromosomes within the interphase nuclei, has been found to be non-randomly organized. Therefore, a specific nuclear arrangement can be observed in many cellular processes, such as differentiation and tumour cell transformation.
Collapse
Affiliation(s)
- Eva Bártová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65, Brno, Czech Republic
| | | |
Collapse
|
32
|
Bolzán AD, Bianchi MS. Telomeres, interstitial telomeric repeat sequences, and chromosomal aberrations. Mutat Res 2006; 612:189-214. [PMID: 16490380 DOI: 10.1016/j.mrrev.2005.12.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 12/29/2005] [Accepted: 12/30/2005] [Indexed: 11/18/2022]
Abstract
Telomeres are specialized nucleoproteic complexes localized at the physical ends of linear eukaryotic chromosomes that maintain their stability and integrity. The DNA component of telomeres is characterized by being a G-rich double stranded DNA composed by short fragments tandemly repeated with different sequences depending on the species considered. At the chromosome level, telomeres or, more properly, telomeric repeats--the DNA component of telomeres--can be detected either by using the fluorescence in situ hybridization (FISH) technique with a DNA or a peptide nucleic acid (PNA) (pan)telomeric probe, i.e., which identifies simultaneously all of the telomeres in a metaphase cell, or by the primed in situ labeling (PRINS) reaction using an oligonucleotide primer complementary to the telomeric DNA repeated sequence. Using these techniques, incomplete chromosome elements, acentric fragments, amplification and translocation of telomeric repeat sequences, telomeric associations and telomeric fusions can be identified. In addition, chromosome orientation (CO)-FISH allows to discriminate between the different types of telomeric fusions, namely telomere-telomere and telomere-DNA double strand break fusions and to detect recombination events at the telomere, i.e., telomeric sister-chromatid exchanges (T-SCE). In this review, we summarize our current knowledge of chromosomal aberrations involving telomeres and interstitial telomeric repeat sequences and their induction by physical and chemical mutagens. Since all of the studies on the induction of these types of aberrations were conducted in mammalian cells, the review will be focused on the chromosomal aberrations involving the TTAGGG sequence, i.e., the telomeric repeat sequence that "caps" the chromosomes of all vertebrate species.
Collapse
Affiliation(s)
- Alejandro D Bolzán
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE), C.C. 403, 1900 La Plata, Argentina.
| | - Martha S Bianchi
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE), C.C. 403, 1900 La Plata, Argentina
| |
Collapse
|
33
|
Gué M, Messaoudi C, Sun JS, Boudier T. Smart 3D-FISH: automation of distance analysis in nuclei of interphase cells by image processing. Cytometry A 2005; 67:18-26. [PMID: 16082715 DOI: 10.1002/cyto.a.20170] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Detection of fluorescent probes by fluorescence in situ hybridization in cells with preserved three-dimensional nuclear structures (3D-FISH) is useful for studying the organization of chromatin and localization of genes in interphase nuclei. Fast and reliable measurements of the relative positioning of fluorescent spots specific to subchromosomal regions and genes would improve understanding of cell structure and function. METHODS 3D-FISH protocol, confocal microscopy, and digital image analysis were used. RESULTS New software (Smart 3D-FISH) has been developed to automate the process of spot segmentation and distance measurements in images from 3D-FISH experiments. It can handle any number of fluorescent spots and incorporate images of 4',6-diamino-2-phenylindole counterstained nuclei to measure the relative positioning of spot loci in the nucleus and inter-spot distance. Results from a pilot experiment using Smart 3D-FISH on ENL, MLL, and AF4 genes in two lymphoblastic cell lines were satisfactory and consistent with data published in the literature. CONCLUSION Smart 3D-FISH should greatly facilitate image processing and analysis of 3D-FISH images by providing a useful tool to overcome the laborious task of image segmentation based on user-defined parameters and decrease subjectivity in data analysis. It is available as a set of plugins for ImageJ software.
Collapse
Affiliation(s)
- Michael Gué
- USM 0503, UMR 5153 CNRS-MNHN, U 565 INSERM, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, France
| | | | | | | |
Collapse
|
34
|
Wiech T, Timme S, Riede F, Stein S, Schuricke M, Cremer C, Werner M, Hausmann M, Walch A. Human archival tissues provide a valuable source for the analysis of spatial genome organization. Histochem Cell Biol 2005; 123:229-38. [PMID: 15827756 DOI: 10.1007/s00418-005-0768-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2004] [Indexed: 01/29/2023]
Abstract
Sections from archival formalin-fixed, paraffin wax-embedded human tissues are a valuable source for the study of the nuclear architecture of specific tissue types in terms of the three-dimensional spatial positioning and architecture of chromosome territories and sub-chromosomal domains. Chromosome painting, centromeric, and locus-specific probes were hybridized to tissue microarrays prepared from formalin-fixed paraffin wax-embedded samples of pancreas and breast. The cell nuclei were analyzed using quantitative three-dimensional image microscopy. The results obtained from non-neoplastic pancreatic cells of randomly selected individuals indicated that the radial arrangement of the chromosome 8 territories as well as their shape (roundness) did not significantly differ between the individuals and were in accordance with assumptions of a probabilistic model for computer simulations. There were considerable differences between pancreatic tumor and non-neoplastic cells. In non-neoplastic ductal epithelium of the breast there was a larger, but insignificant, variability in the three-dimensional positioning of the centromere 17 and HER2 domains between individuals. In neoplastic epithelial breast cells, however, the distances between centromere and gene domains were, on average, smaller than in non-neoplastic cells. In conclusion, our results demonstrate the feasibility of studying the genome architecture in archival, formalin-fixed, paraffin wax-embedded human tissues, opening new directions in tumor research and cell classification.
Collapse
Affiliation(s)
- Thorsten Wiech
- Institute of Pathology, University Hospital Freiburg, Albertstrasse 19, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hildenbrand G, Rapp A, Spöri U, Wagner C, Cremer C, Hausmann M. Nano-sizing of specific gene domains in intact human cell nuclei by spatially modulated illumination light microscopy. Biophys J 2005; 88:4312-8. [PMID: 15805170 PMCID: PMC1305660 DOI: 10.1529/biophysj.104.056796] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although light microscopy and three-dimensional image analysis have made considerable progress during the last decade, it is still challenging to analyze the genome nano-architecture of specific gene domains in three-dimensional cell nuclei by fluorescence microscopy. Here, we present for the first time chromatin compaction measurements in human lymphocyte cell nuclei for three different, specific gene domains using a novel light microscopic approach called Spatially Modulated Illumination microscopy. Gene domains for p53, p58, and c-myc were labeled by fluorescence in situ hybridization and the sizes of the fluorescence in situ hybridization "spots" were measured. The mean diameters of the gene domains were determined to 103 nm (c-myc), 119 nm (p53), and 123 nm (p58) and did not correlate to the genomic, labeled sequence length. Assuming a spherical domain shape, these values would correspond to volumes of 5.7 x 10(-4) microm(3) (c-myc), 8.9 x 10(-4) microm(3) (p53), and 9.7 x 10(-4) microm(3) (p58). These volumes are approximately 2 orders of magnitude smaller than the diffraction limited illumination or observation volume, respectively, in a confocal laser scanning microscope using a high numerical aperture objective lens. By comparison of the labeled sequence length to the domain size, compaction ratios were estimated to 1:129 (p53), 1:235 (p58), and 1:396 (c-myc). The measurements demonstrate the advantage of the SMI technique for the analysis of gene domain nano-architecture in cell nuclei. The data indicate that chromatin compaction is subjected to a large variability which may be due to different states of genetic activity or reflect the cell cycle state.
Collapse
Affiliation(s)
- Georg Hildenbrand
- Applied Optics and Information Processing, Kirchhoff-Institute of Physics, University of Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Quina AS, Parreira L. Telomere-surrounding regions are transcription-permissive 3D nuclear compartments in human cells. Exp Cell Res 2005; 307:52-64. [PMID: 15922726 DOI: 10.1016/j.yexcr.2005.02.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 02/12/2005] [Accepted: 02/19/2005] [Indexed: 11/16/2022]
Abstract
Positioning of genes relative to nuclear heterochromatic compartments is thought to help regulate their transcriptional activity. Given that human subtelomeric regions are rich in highly expressed genes, we asked whether human telomeres are related to transcription-permissive nuclear compartments. To address this question, we investigated in the nuclei of normal human lymphocytes the spatial relations of two constitutively expressed genes (ACTB and RARA) and three nuclear transcripts (ACTB, IL2RA and TCRB) to telomeres and centromeres, as a function of gene activity and transcription levels. We observed that genes and gene transcripts locate close to telomere clusters and away from chromocenters upon activation of transcription. These findings, together with the observation that SC35 domains, which are enriched in pre-mRNA processing factors, are in close proximity to telomeres, indicate that telomere-neighboring regions are permissive to gene expression in human cells. Therefore, the associations of telomeres observed in the interphase nucleus might contribute, as opposed to chromocenters, for the establishment of transcription-permissive 3D nuclear compartments.
Collapse
Affiliation(s)
- Ana Sofia Quina
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | | |
Collapse
|
37
|
Monajembashi S, Rapp A, Schmitt E, Dittmar H, Greulich KO, Hausmann M. Spatial association of homologous pericentric regions in human lymphocyte nuclei during repair. Biophys J 2004; 88:2309-22. [PMID: 15626712 PMCID: PMC1305280 DOI: 10.1529/biophysj.104.048728] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spatial positioning of pericentric chromosome regions in human lymphocyte cell nuclei was investigated during repair after H(2)O(2)/L-histidine treatment. Fifteen to three-hundred minutes after treatment, these regions of chromosomes 1, 15, and X were labeled by fluorescence in situ hybridization. The relative locus distances (LL-distances), the relative distances to the nuclear center (LC-distances), and the locus-nuclear center-locus angles (LCL-angles) were measured in approximately 5000 nuclei after two-dimensional microscopy. Experimental frequency histograms were compared to control data from untreated stimulated and quiescent (G(0)) nuclei and to a theoretical two-dimensional projection from random points. Based on the frequency distributions of the LL-distances and the LCL-angles, an increase of closely associated labeled regions was found shortly after repair activation. For longer repair times this effect decreased. After 300 min the frequency distribution of the LL-distances was found to be compatible with the random distance distribution again. The LL-distance frequency histograms for quiescent nuclei did not significantly differ from the theoretical random distribution, although this was the case for the stimulated control of chromosomes 15 and X. It may be inferred that, concerning the distances, homologous pericentric regions appear not to be randomly distributed during S-phase, and are subjected to dynamic processes during replication and repair.
Collapse
Affiliation(s)
- Shamci Monajembashi
- Department of Single Cell and Single Molecule Techniques, Institute of Molecular Biotechnology, Beutenbergstrasse 11, D-07745Jena, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Lukásová E, Kozubek S, Falk M, Kozubek M, Zaloudík J, Vagunda V, Pavlovský Z. Topography of genetic loci in the nuclei of cells of colorectal carcinoma and adjacent tissue of colonic epithelium. Chromosoma 2004; 112:221-30. [PMID: 14722711 DOI: 10.1007/s00412-003-0263-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2002] [Revised: 08/25/2003] [Accepted: 10/02/2003] [Indexed: 01/08/2023]
Abstract
To determine the influence of increased gene expression and amplification in colorectal carcinoma on chromatin structure, the nuclear distances between pairs of bacterial artificial chromosome (BAC) clones with genomic separation from 800 to 29,000 kb were measured and compared between the tumor and parallel epithelial cells of six patients. The nuclear distances were measured between the loci in chromosomal bands 7p22.3-7p21.3; 7q35-7q36.3; 11p15.5-11p15.4; 20p13; 20p12.2; 20q11.21 and 20q12 where increased expression had been found in all types of colorectal carcinoma. The loci were visualized by three-dimensional fluorescence in situ hybridization using 22 BAC clones. Our results show that for short genomic separations, mean nuclear distance increases linearly with increased genomic separation. The results for some pairs of loci fell outside this linear slope, indicating the existence of different levels of chromatin folding. For the same genomic separations the nuclear distances were frequently shorter for tumor as compared with epithelial cells. Above the initial growing phase of the nuclear distances, a plateau phase was observed in both cell types where the increase in genomic separation was not accompanied by an increase in nuclear distance. The ratio of the mean nuclear distances between the corresponding loci in tumor and epithelium cells decreases with increasing amplification of loci. Our results further show that the large-scale chromatin folding might differ for specific regions of chromosomes and that it is basically preserved in tumor cells in spite of the amplification of many loci.
Collapse
Affiliation(s)
- Emilie Lukásová
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
39
|
Gilbert N, Gilchrist S, Bickmore WA. Chromatin organization in the mammalian nucleus. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 242:283-336. [PMID: 15598472 DOI: 10.1016/s0074-7696(04)42007-5] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mammalian cells package their DNA into chromatin and arrange it in the nucleus as chromosomes. In interphase cells chromosomes are organized in a radial distribution with the most gene-dense chromosomes toward the center of the nucleus. Gene transcription, replication, and repair are influenced by the underlying chromatin architecture, which in turn is affected by the formation of chromosome territories. This arrangement in the nucleus presumably facilitates cellular functions to occur in an efficient and ordered fashion and exploring the link between transcription and nuclear organization will be an exciting area of further research.
Collapse
Affiliation(s)
- Nick Gilbert
- MRC Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, UK
| | | | | |
Collapse
|