1
|
Abstract
Cataract is a major cause of blindness worldwide. It is characterized by lens opacification and is accompanied by extensive posttranslational modifications (PTMs) in various proteins. PTMs play an essential role in lens opacification. Several PTMs have been described in proteins isolated from relatively old human lenses, including phosphorylation, deamidation, racemization, truncation, acetylation, and methylation. An overwhelming majority of previous cataract proteomic studies have exclusively focused on crystallin proteins, which are the most abundant proteome components of the lens. To investigate the proteome of cataract markers, this chapter focuses on the proteomic research on the functional relevance of the major PTMs in crystallins of human cataractous lenses. Elucidating the role of these modifications in cataract formation has been a challenging task because they are among the most difficult PTMs to study analytically. The proteomic status of some amides presents similar properties in normal aged and cataractous lenses, whereas some may undergo greater PTMs in cataract. Therefore, it is of great importance to review the current proteomic research on crystallins, the major protein markers in different types of cataract, to elucidate the pathogenesis of this major human-blinding condition.
Collapse
Affiliation(s)
- Keke Zhang
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Myopia, Ministry of Health PR China, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiangjia Zhu
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Myopia, Ministry of Health PR China, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Lu
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Myopia, Ministry of Health PR China, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Fujii N, Takata T, Fujii N, Aki K. Isomerization of aspartyl residues in crystallins and its influence upon cataract. Biochim Biophys Acta Gen Subj 2015; 1860:183-91. [PMID: 26275494 DOI: 10.1016/j.bbagen.2015.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/25/2015] [Accepted: 08/03/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND Age-related cataracts, which probably form due to insolubilization of lens proteins, can lead to loss of vision. Although the exact reason is unknown, lens protein aggregation may be triggered by increases in PTMs such as D-β-, L-β- and D-α-Asp isomers. These isomers have been observed in aged lens; however, there have been few quantitative and site-specific studies owing to the lack of a quick and precise method for distinguishing between D- and L-Asp in a peptide or protein. SCOPE OF REVIEW We describe a new method for detecting peptides containing Asp isomers at individual sites in any protein by using an LC-MS/MS system combined with commercial enzymes that specifically react with different isomers. We also summarize current data on the effect of Asp isomerization on lens crystallins. MAJOR CONCLUSIONS The new technique enabled the analysis of isomers of Asp residues in lens proteins precisely and quickly. An extensive proportion of Asp isomerization was observed at all Asp sites of crystallins in the insoluble fraction of aged lens. In addition, d-amino acid substitutions in crystallin-mimic peptides showed altered structural formation and function. These results indicate that isomerization of Asp residues affects the stability, structure and inter-subunit interaction of lens crystallins, which will induce crystallin aggregation and insolubilization, disrupt the associated functions, and ultimately contribute to the onset of senile cataract formation. GENERAL SIGNIFICANCE The mechanism underlying the onset of age-related diseases may involve isomerization, whereby D-amino acids are incorporated in the L-amino acid world of life. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Noriko Fujii
- Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan.
| | - Takumi Takata
- Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan
| | - Norihiko Fujii
- Radioisotope Research Center, Teikyo University, Kaga Itabashi-ku, Tokyo 173-8605, Japan
| | - Kenzo Aki
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Kamiohno, Himeji 670-8524, Japan
| |
Collapse
|
3
|
Maeda H, Takata T, Fujii N, Sakaue H, Nirasawa S, Takahashi S, Sasaki H, Fujii N. Rapid Survey of Four Asp Isomers in Disease-Related Proteins by LC-MS combined with Commercial Enzymes. Anal Chem 2014; 87:561-8. [DOI: 10.1021/ac504413e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Hiroki Maeda
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takumi Takata
- Research
Reactor Institute, Kyoto University Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Norihiko Fujii
- Radioisotope
Research Center, Teikyo University, Kaga Itabashi-ku, Tokyo 173-8605, Japan
| | - Hiroaki Sakaue
- International University of Health and Welfare, Ohtawara, Tochigi 324-8501, Japan
| | - Satoru Nirasawa
- Japan International
Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
| | - Saori Takahashi
- Akita Research Institute
of Food and Brewing, Akita, 010-1623, Japan
| | - Hiroshi Sasaki
- Kanazawa Medical University, Kanazawa, Ishikawa 920-0293, Japan
| | - Noriko Fujii
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Research
Reactor Institute, Kyoto University Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| |
Collapse
|
4
|
Fujii N, Sakaue H, Sasaki H, Fujii N. A rapid, comprehensive liquid chromatography-mass spectrometry (LC-MS)-based survey of the Asp isomers in crystallins from human cataract lenses. J Biol Chem 2012; 287:39992-40002. [PMID: 23007399 DOI: 10.1074/jbc.m112.399972] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cataracts are caused by clouding of the eye lens and may lead to partial or total loss of vision. The mechanism of cataract development, however, is not well understood. It is thought that abnormal aggregates of lens proteins form with age, causing loss of lens clarity and development of the cataract. Lens proteins are composed of soluble α-, β-, and γ-crystallins, and as long lived proteins, they undergo post-translational modifications including isomerization, deamidation, and oxidation, which induce insolubilization, aggregation, and loss of function that may lead to cataracts. Therefore, analysis of post-translational modifications of individual amino acid residues in proteins is important. However, detection of the optical isomers of amino acids formed in these proteins is difficult because optical resolution is only achieved using complex methodology. In this study, we describe a new method for the analysis of isomerization of individual Asp residues in proteins using LC-MS and the corresponding synthetic peptides containing the Asp isomers. This makes it possible to analyze isomers of Asp residues in proteins precisely and quickly. We demonstrate that Asp-58, -76, -84, and -151 of αA-crystallin and Asp-62 and -96 of αB-crystallin are highly converted to lβ-, dβ-, and dα-isomers. The amount of isomerization of Asp is greater in the insoluble fraction at all Asp sites in lens proteins, therefore indicating that isomerization of these Asp residues affects the higher order structure of the proteins and contributes to the increase in aggregation, insolubilization, and disruption of function of proteins in the lens, leading to the cataract.
Collapse
Affiliation(s)
- Norihiko Fujii
- Research Reactor Institute, Kyoto University Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | | | | | | |
Collapse
|
5
|
Heys KR, Friedrich MG, Truscott RJW. Presbyopia and heat: changes associated with aging of the human lens suggest a functional role for the small heat shock protein, alpha-crystallin, in maintaining lens flexibility. Aging Cell 2007; 6:807-15. [PMID: 17973972 DOI: 10.1111/j.1474-9726.2007.00342.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Presbyopia, the inability to focus up close, affects everyone by age 50 and is the most common eye condition. It is thought to result from changes to the lens over time making it less flexible. We present evidence that presbyopia may be the result of age-related changes to the proteins of the lens fibre cells. Specifically, we show that there is a progressive decrease in the concentration of the chaperone, alpha-crystallin, in human lens nuclei with age, as it becomes incorporated into high molecular weight aggregates and insoluble protein. This is accompanied by a large increase in lens stiffness. Stiffness increases even more dramatically after middle age following the disappearance of free soluble alpha-crystallin from the centre of the lens. These alterations in alpha-crystallin and aggregated protein in human lenses can be reproduced simply by exposing intact pig lenses to elevated temperatures, for example, 50 degrees C. In this model system, the same protein changes are also associated with a progressive increase in lens stiffness. These data suggest a functional role for alpha-crystallin in the human lens acting as a small heat shock protein and helping to maintain lens flexibility. Presbyopia may be the result of a loss of alpha-crystallin coupled with progressive heat-induced denaturation of structural proteins in the lens during the first five decades of life.
Collapse
|
6
|
McGinty SJ, Truscott RJW. Presbyopia: the first stage of nuclear cataract? Ophthalmic Res 2006; 38:137-48. [PMID: 16397406 DOI: 10.1159/000090645] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 11/08/2005] [Indexed: 11/19/2022]
Abstract
Presbyopia, the inability to accommodate, affects almost everyone at middle age. Recently, it has been shown that there is a massive increase in the stiffness(1) of the lens with age and, since the shape of the lens must change during accommodation, this could provide an explanation for presbyopia. In this review, we propose that presbyopia may be the earliest observable symptom of age-related nuclear (ARN) cataract. ARN cataract is a major cause of world blindness. The genesis of ARN cataract can be traced to the onset of a barrier within the lens at middle age. This barrier restricts the ability of small molecules, such as antioxidants, to penetrate into the centre of the lens leaving the proteins in this region susceptible to oxidation and post-translational modification. Major protein oxidation and colouration are the hallmarks of ARN cataract. We postulate that the onset of the barrier, and the hardening of the nucleus, are intimately linked. Specifically, we propose that progressive age-dependent hardening of the lens nucleus may be responsible for both presbyopia and ARN cataract.
Collapse
Affiliation(s)
- S J McGinty
- Save Sight Institute, Sydney, and Institute for Biomolecular Science, University of Wollongong, Wollongong, Australia
| | | |
Collapse
|