Abstract
In principle, ageing may be due to the interaction of several factors, including the accumulation of random changes both genomic and non-genomic, secondary changes in a tissue contingent upon the changing function of other tissues, and programmed non-random changes in the tissue-specific expression of various genes. The use of a single tissue comprising one cell type only, in which the major gene products are well defined, in which there is a well attested series of developmental and age-related changes in cell properties and gene expression and which can be studied and compared in vivo and in vitro, offers advantages for investigation of these questions. The vertebrate eye lens possesses these advantages. The crystallins (proteins expressed at super-abundant levels in the lens) are well characterised. The lens epithelial cells (LEC) grow readily and can differentiate into the lens fibre cells in vitro, and, finally, such terminally differentiated cells may also be derived, by a process of transdifferentiation, from neural retina cells (NRC) in vitro. Thus the effect on ageing changes of the tissue of origin may also be studied. This article reviews our previous studies on long-term changes in growth potential, differentiation capacity and crystallin expression of chick lens cells in ageing cultures, their overall similarity to events in vivo and the effect on ageing changes of genotypes affecting the growth rate. It presents new information on these genetic aspects, and on crystallin expression in long-term ageing cultures of transdifferentiated neural retina, and compares the behaviour of ageing chick lens cells with that reported for mammals.
Collapse