1
|
Aryal S, Viet J, Weatherbee BAT, Siddam AD, Hernandez FG, Gautier-Courteille C, Paillard L, Lachke SA. The cataract-linked RNA-binding protein Celf1 post-transcriptionally controls the spatiotemporal expression of the key homeodomain transcription factors Pax6 and Prox1 in lens development. Hum Genet 2020; 139:1541-1554. [PMID: 32594240 DOI: 10.1007/s00439-020-02195-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022]
Abstract
The homeodomain transcription factors (TFs) Pax6 (OMIM: 607108) and Prox1 (OMIM: 601546) critically regulate gene expression in lens development. While PAX6 mutations in humans can cause cataract, aniridia, microphthalmia, and anophthalmia, among other defects, Prox1 deletion in mice causes severe lens abnormalities, in addition to other organ defects. Furthermore, the optimal dosage/spatiotemporal expression of these key TFs is essential for development. In lens development, Pax6 expression is elevated in cells of the anterior epithelium compared to fiber cells, while Prox1 exhibits the opposite pattern. Whether post-transcriptional regulatory mechanisms control these precise TF expression patterns is unknown. Here, we report the unprecedented finding that the cataract-linked RNA-binding protein (RBP), Celf1 (OMIM: 601074), post-transcriptionally regulates Pax6 and Prox1 protein expression in lens development. Immunostaining shows that Celf1 lens-specific conditional knockout (Celf1cKO) mice exhibit abnormal elevation of Pax6 protein in fiber cells and abnormal Prox1 protein levels in epithelial cells-directly opposite to their normal expression patterns in development. Furthermore, RT-qPCR shows no change in Pax6 and Prox1 transcript levels in Celf1cKO lenses, suggesting that Celf1 regulates these TFs on the translational level. Indeed, RNA-immunoprecipitation assays using Celf1 antibody indicate that Celf1 protein binds to Pax6 and Prox1 transcripts. Furthermore, reporter assays in Celf1 knockdown and Celf1-overexpression cells demonstrate that Celf1 negatively controls Pax6 and Prox1 translation via their 3' UTRs. These data define a new mechanism of RBP-based post-transcriptional regulation that enables precise control over spatiotemporal expression of Pax6 and Prox1 in lens development, thereby uncovering a new etiological mechanism for Celf1 deficiency-based cataract.
Collapse
Affiliation(s)
- Sandeep Aryal
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Justine Viet
- Institut de Génétique et Développement de Rennes, Univ Rennes, CNRS, IGDR-UMR 6290, 35000, Rennes, France
| | | | - Archana D Siddam
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | | | - Carole Gautier-Courteille
- Institut de Génétique et Développement de Rennes, Univ Rennes, CNRS, IGDR-UMR 6290, 35000, Rennes, France
| | - Luc Paillard
- Institut de Génétique et Développement de Rennes, Univ Rennes, CNRS, IGDR-UMR 6290, 35000, Rennes, France.
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA. .,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
2
|
Wang D, Wang E, Liu K, Xia CH, Li S, Gong X. Roles of TGFβ and FGF signals during growth and differentiation of mouse lens epithelial cell in vitro. Sci Rep 2017; 7:7274. [PMID: 28779082 PMCID: PMC5544739 DOI: 10.1038/s41598-017-07619-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/29/2017] [Indexed: 11/29/2022] Open
Abstract
Transforming growth factor β (TGFβ) and fibroblast growth factor (FGF) signaling pathways play important roles in the proliferation and differentiation of lens epithelial cells (LECs) during development. Low dosage bFGF promotes cell proliferation while high dosage induces differentiation. TGFβ signaling regulates LEC proliferation and differentiation as well, but also promotes epithelial-mesenchymal transitions that lead to cataracts. Thus far, it has been difficult to recapitulate the features of germinative LECs in vitro. Here, we have established a LEC culture protocol that uses SB431542 (SB) compound to inhibit TGFβ/Smad activation, and found that SB treatment promoted mouse LEC proliferation, maintained LECs’ morphology and distinct markers including N-cadherin, c-Maf, Prox1, and αA-, αB-, and β-crystallins. In contrast, low-dosage bFGF was unable to sustain those markers and, combined with SB, altered LECs’ morphology and β-crystallin expression. We further found that Matrigel substrate coatings greatly increased cell proliferation and uniquely affected β-crystallin expression. Cultured LECs retained the ability to differentiate into γ-crystallin-positive lentoids by high-dosage bFGF treatment. Thus, a suppression of TGFβ/Smad signaling in vitro is critical to maintaining characteristic features of mouse LECs, especially expression of the key transcription factors c-Maf and Prox1.
Collapse
Affiliation(s)
- Dong Wang
- School of Optometry and Vision Science Program, University of California Berkeley, California, 94720, USA.,Department of Bioengineering, University of California, Berkeley, California, 94720, USA.,Department of Bioengineering, University of California, Los Angeles, California, 90095, USA
| | - Eddie Wang
- School of Optometry and Vision Science Program, University of California Berkeley, California, 94720, USA
| | - Kelsey Liu
- School of Optometry and Vision Science Program, University of California Berkeley, California, 94720, USA
| | - Chun-Hong Xia
- School of Optometry and Vision Science Program, University of California Berkeley, California, 94720, USA
| | - Song Li
- Department of Bioengineering, University of California, Berkeley, California, 94720, USA.,Department of Bioengineering, University of California, Los Angeles, California, 90095, USA.,Department of Medicine, University of California, Los Angeles, California, 90095, USA
| | - Xiaohua Gong
- School of Optometry and Vision Science Program, University of California Berkeley, California, 94720, USA.
| |
Collapse
|
3
|
Golestaneh N, Fan J, Fariss RN, Lo WK, Zelenka PS, Chepelinsky AB. Lens major intrinsic protein (MIP)/aquaporin 0 expression in rat lens epithelia explants requires fibroblast growth factor-induced ERK and JNK signaling. J Biol Chem 2004; 279:31813-22. [PMID: 15145928 DOI: 10.1074/jbc.m403473200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lens major intrinsic protein (MIP), exclusive to the vertebrate lens, otherwise known as MIP26 and Aquaporin 0, is abundantly expressed as a lens fiber membrane protein. Although relatively less efficient compared with other aquaporins, MIP is suggested to function as a water channel, as an adhesion molecule, and is required for lens transparency. Because MIP is specifically expressed in lens fiber cells, we investigated in this study the activation of Mip expression after triggering differentiation of rat lens epithelia explants by fibroblast growth factor (FGF)-2. Here, we show that Mip expression in the lens cells is regulated by FGF-2. Using Real time PCR we demonstrate that endogenous Mip levels in the explants were up-regulated upon FGF-2 stimulation, in a concentration-dependent manner. Up-regulation of Mip at the transcriptional level was simultaneous with the activation of the FGF down-stream signaling components, ERK1/2 and JNK. Specific inhibitors, UO126 for ERK1/2 and SP600125 for JNK, abrogated Mip expression in response to FGF-2 in the explants. This inhibition pattern was recapitulated in reporter assays for transfection of the rat lens epithelia explants, driven by the Mip promoter (-1648/+44). Our studies show that ERK1/2 and JNK signaling pathways are required for Mip expression in lens epithelia explants induced to differentiate by FGF-2.
Collapse
Affiliation(s)
- Nady Golestaneh
- Laboratory of Molecular and Developmental Biology, NEI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
4
|
Zeiss CJ, Johnson EM, Dubielzig RR. Feline intraocular tumors may arise from transformation of lens epithelium. Vet Pathol 2003; 40:355-62. [PMID: 12824506 DOI: 10.1354/vp.40-4-355] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Feline ocular sarcomas are malignant intraocular neoplasms that are frequently associated with a history of ocular trauma. They usually present as fibrosarcomas, but some have both epithelial and mesenchymal features. The purpose of this study was to determine the cell of origin of a subset of feline intraocular sarcomas that display a mixed epithelial-mesenchymal phenotype, with elaboration of basement membrane-type matrix. We examined the morphology and histochemical and immunohistochemical phenotypes of nine feline intraocular sarcomas. Immunohistochemistry and in situ hybridization were performed to detect expression of crystallin alpha A. In addition, tumors were examined for expression of vimentin, cytokeratin, smooth muscle actin, desmin, melan A, neural cell adhesion molecule, S-100, glial fibrillary acidic protein, nerve growth factor receptor, and collagen type IV. Animals ranged from 7 to 17 years of age--no breed or sex predilection for tumor occurrence was present. Tumors were characterized by mixed epithelial and mesenchymal phenotypes, both of which elaborated basement membrane-type material and expressed vimentin highly. On the basis of collagen type IV and crystallin alpha A immunopositivity, we established that three of nine tumors were of lens epithelial origin. Expression of desmin and smooth muscle actin identified one tumor as a leiomyosarcoma. The remainder were undifferentiated sarcomas of myofibroblastic origin. This is the first report of lens epithelial neoplasia in clinical material from any species. The history and morphologic features of feline ocular sarcomas are reminiscent of feline vaccine-induced sarcomas. These tumors may share pathophysiologic similarities unique to this species.
Collapse
Affiliation(s)
- C J Zeiss
- Section of Comparative Medicine, Yale School of Medicine, 375 Congress Avenue, LSOG 126, New Haven, CT 06437, USA.
| | | | | |
Collapse
|
5
|
Chen WV, Fielding Hejtmancik J, Piatigorsky J, Duncan MK. The mouse beta B1-crystallin promoter: strict regulation of lens fiber cell specificity. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1519:30-8. [PMID: 11406268 DOI: 10.1016/s0167-4781(01)00201-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies have shown that the chicken beta B1-crystallin promoter (-434/+30) contains all of the signals necessary to specifically direct high level expression of heterologous genes to the lens fiber cells of mice. In the present study, the mouse beta B1-crystallin gene was cloned, and its regulation was investigated to further elucidate the mechanisms controlling lens fiber cell-specific gene expression. Phylogenetic footprinting analysis of the 5' flanking sequence from the mouse, rat, human and chicken beta B1-crystallin genes identified several known and putative functional cis elements including the PL2 element which is required for lens-specific expression of the chicken beta B1 promoter. Surprisingly, however, all six mouse beta B1-crystallin/CAT constructs tested (-1493/+44, -1493/+30, -870/+30, -250/+30, -135/+30 and -98/+30) were inactive in three different mammalian lens-derived cell lines while only the -870/+30 and -98/+30 constructs were active in chicken primary patched lens epithelial cells. In contrast, the chicken beta B1-crystallin promoter (-434/+30) was transcriptionally active in all lens-derived cells tested. Transgenic mice harboring a mouse beta B1-crystallin -1493/+44 CAT construct did express the transgene specifically in lens fiber cells, however, at lower levels than that previously reported for a chicken -434/+30 CAT construct. These data suggest that, as in other crystallin genes, the regulatory signals controlling lens fiber cell-specific expression are conserved between chicken and mouse. However, the inability of the mouse beta B1-crystallin promoter to function in mammalian lens-derived cultured cells implies that this gene has acquired additional cis-regulatory elements to ensure lens fiber cell specificity.
Collapse
Affiliation(s)
- W V Chen
- Department of Biological Sciences, University of Delaware, Newark, 19716, USA
| | | | | | | |
Collapse
|
6
|
Li W, Nagineni CN, Ge H, Efiok B, Chepelinsky AB, Egwuagu CE. Interferon consensus sequence-binding protein is constitutively expressed and differentially regulated in the ocular lens. J Biol Chem 1999; 274:9686-91. [PMID: 10092656 DOI: 10.1074/jbc.274.14.9686] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interferon signaling is mediated by STATs and interferon regulatory factor (IRF) families of transcription factors. Ten distinct IRFs have been described and most are expressed in a variety of cells except for interferon consensus sequence-binding protein (ICSBP) and lymphoid-specific IRF/Pip that are thought to be exclusively expressed in lymphoid cells. We show here for the first time that ICSBP is constitutively and inducibly expressed in the mouse lens. In contrast to lymphoid cells with exclusive expression of ICSBP in the nucleus, ICSBP is present in both the cytoplasm and nucleus of the lens cell. However, ICSBP in the nucleus is of lower apparent molecular weight. We further show that the ICSBP promoter is constitutively bound by lens nuclear factors and that its activation requires binding of additional factors including STAT1. Furthermore, transcriptional activation of ICSBP gene by interferon gamma is accompanied by selective nuclear localization of ICSBP in proliferating epithelial cells but not in the nuclei of nondividing cells in the lens fiber compartment. Constitutive and inducible expression of ICSBP in the ocular lens and differential regulation of its subcellular localization in the developing lens suggest that ICSBP may have nonimmunity related functions and that the commonly held view that it is lymphoid-specific be modified.
Collapse
Affiliation(s)
- W Li
- Laboratory of Immunology, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|