1
|
Metabolic Glycoengineering: A Promising Strategy to Remodel Microenvironments for Regenerative Therapy. Stem Cells Int 2023; 2023:1655750. [PMID: 36814525 PMCID: PMC9940976 DOI: 10.1155/2023/1655750] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/27/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
Cell-based regenerative therapy utilizes the differentiation potential of stem cells to rejuvenate tissues. But the dynamic fate of stem cells is calling for precise control to optimize their therapeutic efficiency. Stem cell fate is regulated by specific conditions called "microenvironments." Among the various factors in the microenvironment, the cell-surface glycan acts as a mediator of cell-matrix and cell-cell interactions and manipulates the behavior of cells. Herein, metabolic glycoengineering (MGE) is an easy but powerful technology for remodeling the structure of glycan. By presenting unnatural glycans on the surface, MGE provides us an opportunity to reshape the microenvironment and evoke desired cellular responses. In this review, we firstly focused on the determining role of glycans on cellular activity; then, we introduced how MGE influences glycosylation and subsequently affects cell fate; at last, we outlined the application of MGE in regenerative therapy, especially in the musculoskeletal system, and the future direction of MGE is discussed.
Collapse
|
2
|
Oscillatory calcium release and sustained store-operated oscillatory calcium signaling prevents differentiation of human oligodendrocyte progenitor cells. Sci Rep 2022; 12:6160. [PMID: 35418597 PMCID: PMC9007940 DOI: 10.1038/s41598-022-10095-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 03/31/2022] [Indexed: 11/08/2022] Open
Abstract
Endogenous remyelination in demyelinating diseases such as multiple sclerosis is contingent upon the successful differentiation of oligodendrocyte progenitor cells (OPCs). Signaling via the Gαq-coupled muscarinic receptor (M1/3R) inhibits human OPC differentiation and impairs endogenous remyelination in experimental models. We hypothesized that calcium release following Gαq-coupled receptor (GqR) activation directly regulates human OPC (hOPC) cell fate. In this study, we show that specific GqR agonists activating muscarinic and metabotropic glutamate receptors induce characteristic oscillatory calcium release in hOPCs and that these agonists similarly block hOPC maturation in vitro. Both agonists induce calcium release from endoplasmic reticulum (ER) stores and store operated calcium entry (SOCE) likely via STIM/ORAI-based channels. siRNA mediated knockdown (KD) of obligate calcium sensors STIM1 and STIM2 decreased the magnitude of muscarinic agonist induced oscillatory calcium release and attenuated SOCE in hOPCs. In addition, STIM2 expression was necessary to maintain the frequency of calcium oscillations and STIM2 KD reduced spontaneous OPC differentiation. Furthermore, STIM2 siRNA prevented the effects of muscarinic agonist treatment on OPC differentiation suggesting that SOCE is necessary for the anti-differentiative action of muscarinic receptor-dependent signaling. Finally, using a gain-of-function approach with an optogenetic STIM lentivirus, we demonstrate that independent activation of SOCE was sufficient to significantly block hOPC differentiation and this occurred in a frequency dependent manner while increasing hOPC proliferation. These findings suggest that intracellular calcium oscillations directly regulate hOPC fate and that modulation of calcium oscillation frequency may overcome inhibitory Gαq-coupled signaling that impairs myelin repair.
Collapse
|
3
|
Wratil PR, Horstkorte R, Reutter W. Metabolic Glycoengineering with N-Acyl Side Chain Modified Mannosamines. Angew Chem Int Ed Engl 2016; 55:9482-512. [PMID: 27435524 DOI: 10.1002/anie.201601123] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Indexed: 12/14/2022]
Abstract
In metabolic glycoengineering (MGE), cells or animals are treated with unnatural derivatives of monosaccharides. After entering the cytosol, these sugar analogues are metabolized and subsequently expressed on newly synthesized glycoconjugates. The feasibility of MGE was first discovered for sialylated glycans, by using N-acyl-modified mannosamines as precursor molecules for unnatural sialic acids. Prerequisite is the promiscuity of the enzymes of the Roseman-Warren biosynthetic pathway. These enzymes were shown to tolerate specific modifications of the N-acyl side chain of mannosamine analogues, for example, elongation by one or more methylene groups (aliphatic modifications) or by insertion of reactive groups (bioorthogonal modifications). Unnatural sialic acids are incorporated into glycoconjugates of cells and organs. MGE has intriguing biological consequences for treated cells (aliphatic MGE) and offers the opportunity to visualize the topography and dynamics of sialylated glycans in vitro, ex vivo, and in vivo (bioorthogonal MGE).
Collapse
Affiliation(s)
- Paul R Wratil
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Arnimallee 22, 14195, Berlin, Germany.
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystrasse 1, 06114, Halle, Germany.
| | - Werner Reutter
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
4
|
Wratil PR, Horstkorte R, Reutter W. Metabolisches Glykoengineering mitN-Acyl-Seiten- ketten-modifizierten Mannosaminen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601123] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Paul R. Wratil
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie; Charité - Universitätsmedizin Berlin; Arnimallee 22 14195 Berlin Deutschland
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie; Martin-Luther-Universität Halle-Wittenberg; Hollystraße 1 06114 Halle Deutschland
| | - Werner Reutter
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie; Charité - Universitätsmedizin Berlin; Arnimallee 22 14195 Berlin Deutschland
| |
Collapse
|
5
|
Cheng B, Xie R, Dong L, Chen X. Metabolic Remodeling of Cell-Surface Sialic Acids: Principles, Applications, and Recent Advances. Chembiochem 2015; 17:11-27. [PMID: 26573222 DOI: 10.1002/cbic.201500344] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 12/14/2022]
Abstract
Cell-surface sialic acids are essential in mediating a variety of physiological and pathological processes. Sialic acid chemistry and biology remain challenging to investigate, demanding new tools for probing sialylation in living systems. The metabolic glycan labeling (MGL) strategy has emerged as an invaluable chemical biology tool that enables metabolic installation of useful functionalities into cell-surface sialoglycans by "hijacking" the sialic acid biosynthetic pathway. Here we review the principles of MGL and its applications in study and manipulation of sialic acid function, with an emphasis on recent advances.
Collapse
Affiliation(s)
- Bo Cheng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Ran Xie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Lu Dong
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xing Chen
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Witzel C, Reutter W, Stark GB, Koulaxouzidis G. N-Propionylmannosamine stimulates axonal elongation in a murine model of sciatic nerve injury. Neural Regen Res 2015. [PMID: 26199617 PMCID: PMC4498362 DOI: 10.4103/1673-5374.150744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Increasing evidence indicates that sialic acid plays an important role during nerve regeneration. Sialic acids can be modified in vitro as well as in vivo using metabolic oligosaccharide engineering of the N-acyl side chain. N-Propionylmannosamine (ManNProp) increases neurite outgrowth and accelerates the reestablishment of functional synapses in vitro. We investigated the influence of systemic ManNProp application using a specific in vivo mouse model. Using mice expressing axonal fluorescent proteins, we quantified the extension of regenerating axons, the number of regenerating axons, the number of arborising axons and the number of branches per axon 5 days after injury. Sciatic nerves from non-expressing mice were grafted into those expressing yellow fluorescent protein. We began a twice-daily intraperitoneal application of either peracetylated ManNProp (200 mg/kg) or saline solution 5 days before injury, and continued it until nerve harvest (5 days after transection). ManNProp significantly increased the mean distance of axonal regeneration (2.49 mm vs. 1.53 mm; P < 0.005) and the number of arborizing axons (21% vs. 16%; P = 0.008) 5 days after sciatic nerve grafting. ManNProp did not affect the number of regenerating axons or the number of branches per arborizing axon. The biochemical glycoengineering of the N-acyl side chain of sialic acid might be a promising approach for improving peripheral nerve regeneration.
Collapse
Affiliation(s)
- Christian Witzel
- Plastic and Reconstructive Surgery, Interdisciplinary Breast Center, Charité - Universitätsmedizin Berlin, Germany
| | - Werner Reutter
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Germany
| | - G Björn Stark
- Department of Plastic and Hand Surgery, University of Freiburg Medical Centre, Freiburg, Germany
| | - Georgios Koulaxouzidis
- Department of Plastic and Hand Surgery, University of Freiburg Medical Centre, Freiburg, Germany
| |
Collapse
|
7
|
Koulaxouzidis G, Reutter W, Hildebrandt H, Stark GB, Witzel C. In vivo stimulation of early peripheral axon regeneration by N-propionylmannosamine in the presence of polysialyltransferase ST8SIA2. J Neural Transm (Vienna) 2015; 122:1211-9. [PMID: 25850639 DOI: 10.1007/s00702-015-1397-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 03/25/2015] [Indexed: 01/19/2023]
Abstract
The key enzyme of sialic acid (Sia) biosynthesis is the bifunctional UDP-N-acetylglucosamine 2-epimerase/ManNAc kinase (GNE/MNK). It metabolizes the physiological precursor ManNAc and N-acyl modified analogues such as N-propionylmannosamine (ManNProp) to the respective modified sialic acid. Polysialic acid (polySia) is a crucial compound for several functions in the nervous system and is synthesized by the polysialyltransferases ST8SIA2 and ST8SIA4. PolySia can be modified in vitro and in vivo by metabolic glycoengineering of the N-acyl side chain of Sia. In vitro studies show that the application of ManNProp increases neurite outgrowth and accelerates the re-establishment of functional synapses. In this study, we investigate in vivo how ManNProp application might benefit peripheral nerve regeneration. In mice expressing axonal fluorescent proteins (thy-1-YFP), we transected the sciatic nerve and then replaced part of it with a sciatic nerve graft from non-expressing mice (wild-type mice or St8sia2(-/-) mice). Analyses conducted 5 days after grafting showed that systemic application of ManNProp (200 mg/kg, twice a day, i.p.), but not of physiological ManNAc (1 g/kg, twice a day, i.p.), significantly increased the extent of axonal elongation, the number of arborizing axons and the number of branches per regenerating axon within the grafts from wild-type mice, but not in those from St8sia2(-/-) mice. The results demonstrate that the application of ManNProp has beneficial effects on early peripheral nerve regeneration and indicate that the stimulation of axon growth depends on ST8SIA2 activity in the nerve graft.
Collapse
Affiliation(s)
- Georgios Koulaxouzidis
- Klinik für Plastische und Handchirurgie, Universitätsklinikum Freiburg, Freiburg, Germany,
| | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- Heather E. Murrey
- Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125
| | - Linda C. Hsieh-Wilson
- Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
9
|
Kontou M, Bauer C, Reutter W, Horstkorte R. Sialic acid metabolism is involved in the regulation of gene expression during neuronal differentiation of PC12 cells. Glycoconj J 2008; 25:237-44. [PMID: 18228138 DOI: 10.1007/s10719-008-9104-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 01/03/2008] [Accepted: 01/07/2008] [Indexed: 11/24/2022]
Abstract
Sialic acid precursors are mediators of the sialic acid pathway. In this manuscript we present evidence that the application of sialic acid a precursor modulates gene expression and cell differentiation. The concept that sugars are involved in cellular transcription was first proposed by Jacob and Monod nearly 40 years ago studying the regulation of the lac-operon in prokaryotes. Surprisingly, these findings have never been transferred to eukaryotic systems. For our studies we have chosen PC12 cells. PC12-cells differentiate after application of NGF into a neuron-like phenotype. It is shown that treatment of PC12 cells with two different sialic acid precursors N-acetyl- or N-propanoylmannosamine, without application of NGF also induces neurite outgrowth. Moreover, the PC12 cells show the same morphology as the NGF-treated cells. Surprisingly, after application of both sialic acid precursors the phosphorylation and translocation of erk1/2 into the nucleus are activated, thus influencing the expression of genes involved in the differentiation of cells, such as the transcription factor c-Jun or TOAD-64/Ulip/CRMP (Turned ON After Division, 64 kd/ unc-33-like phosphoprotein/Collapsin Response Mediator Protein). These are the first experimental data showing that the sialic acid metabolism is closely associated with signal transduction and regulation of neuronal differentiation.
Collapse
Affiliation(s)
- Maria Kontou
- Institut für Biochemie und Molekularbiologie, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Arnimallee 22, 14195, Berlin-Dahlem, Germany.
| | | | | | | |
Collapse
|
10
|
Bork K, Kannicht C, Nöhring S, Reutter W, Weidemann W, Hart GW, Horstkorte R. N-Propanoylmannosamine interferes with O-GlcNAc modification of the tyrosine 3-monooxygenase and stimulates dopamine secretion. J Neurosci Res 2008; 86:647-52. [PMID: 17896794 DOI: 10.1002/jnr.21526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The most consistent neurochemical abnormality in Parkinson's disease is degeneration of dopaminergic neurons in the substantia nigra, leading to a reduction of striatal dopamine levels. The rate-limiting step in the biosynthesis of dopamine, noradrenalin, and adrenalin is catalyzed by tyrosine 3-monooxygenase (=tyrosine hydroxylase), which catalyzes the formation of L-DOPA. In earlier studies, we demonstrated that the novel synthetic sialic acid precursor N-propanoylmannosamine is a potent stimulator of axonal growth and promotes reestablishment of the perforant pathway from layer II of cortical neurons to the outer molecular layer of the dentate gyrus. Here we show that application of N-propanoylmannosamine leads to increased biosynthesis and secretion of dopamine. This increased biosynthesis of dopamine is due to decreased expression of O-linked N-acetylglucosamine on tyrosine 3-monooxygenase. Intracellular attachment of O-linked N-acetylglucosamine to serine and threonine residues hinders phosphorylation, thereby regulating the activity of the proteins concerned. We therefore propose a model in which the application of ManNProp leads to increased phosphorylation and activation of tyrosine 3-monooxygenase, which in turn leads to an increased synthesis of dopamine.
Collapse
Affiliation(s)
- Kaya Bork
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The function of oligodendrocytes is to myelinate CNS axons. Oligodendrocytes and the axons they myelinate are functional units, and neurotransmitters released by axons can influence all stages of oligodendrocyte development via calcium dependent mechanisms. Some of the clearest functional evidence is for adenosine, ATP, and glutamate, which are released by electrically active axons and regulate the migration and proliferation of oligodendrocyte progenitor cells and their differentiation into myelinating oligodendrocytes. Glutamate and ATP, released by both axons and astrocytes, continue to mediate Ca(2+) signaling in mature oligodendrocytes, acting via AMPA and NMDA glutamate receptors, and heterogeneous P2X and P2Y purinoceptors. Physiological signalling between axons, astrocytes, and oligodendrocytes is likely to play an important role in myelin maintenance throughout life. Significantly, ATP- and glutamate-mediated Ca(2+) signaling are also major components of oligodendrocyte and myelin damage in numerous pathologies, most notably ischemia, injury, periventricular leukomalacia, and multiple sclerosis. In addition, NG2-expressing glia (synantocytes) in the adult CNS are highly reactive cells that respond rapidly to any CNS insult by a characteristic gliosis, and are able to regenerate oligodendrocytes and possibly neurons. Glutamate and ATP released by neurons and astrocytes evoke Ca(2+) signaling in NG2-glia (synantocytes), and it is proposed these regulate their differentiation capacity and response to injury. In summary, clear roles have been demonstrated for neurotransmitter-mediated Ca(2+) signaling in oligodendrocyte development and pathology. A key issue for future studies is to determine the physiological roles of neurotransmitters in mature oligodendrocytes and NG2-glia (synantocytes).
Collapse
Affiliation(s)
- Arthur M Butt
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
12
|
Káradóttir R, Attwell D. Neurotransmitter receptors in the life and death of oligodendrocytes. Neuroscience 2006; 145:1426-38. [PMID: 17049173 PMCID: PMC2173944 DOI: 10.1016/j.neuroscience.2006.08.070] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 07/20/2006] [Accepted: 08/18/2006] [Indexed: 10/25/2022]
Abstract
Oligodendrocytes are crucial to the function of the mammalian brain: they increase the action potential conduction speed for a given axon diameter and thus facilitate the rapid flow of information between different brain areas. The proliferation and differentiation of developing oligodendrocytes, and their myelination of axons, are partly controlled by neurotransmitters. In addition, in models of conditions like stroke, periventricular leukomalacia leading to cerebral palsy, spinal cord injury and multiple sclerosis, oligodendrocytes are damaged by glutamate and, contrary to dogma, it has recently been discovered that this damage is mediated in part by N-methyl-D-aspartate receptors. Mutations in oligodendrocyte neurotransmitter receptors or their interacting proteins may cause defects in CNS function. Here we review the roles of neurotransmitter receptors in the normal function, and malfunction in pathological conditions, of oligodendrocytes.
Collapse
Affiliation(s)
- R Káradóttir
- Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
13
|
Horstkorte R, Rau K, Laabs S, Danker K, Reutter W. Biochemical engineering of theN-acyl side chain of sialic acid leads to increased calcium influx from intracellular compartments and promotes differentiation of HL60 cells. FEBS Lett 2004; 571:99-102. [PMID: 15280024 DOI: 10.1016/j.febslet.2004.06.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 06/22/2004] [Accepted: 06/22/2004] [Indexed: 10/26/2022]
Abstract
Sialylation of glycoconjugates is essential for mammalian cells. Sialic acid is synthesized in the cytosol from N-acetylmannosamine by several consecutive steps. Using N-propanoylmannosamine, a novel precursor of sialic acid, we are able to incorporate unnatural sialic acids with a prolonged N-acyl side chain (e.g., N-propanoylneuraminic acid) into glycoconjugates taking advance of the cellular sialylation machinery. Here, we report that unnatural sialylation of HL60-cells leads to an increased release of intracellular calcium after application of thapsigargin, an inhibitor of SERCA Ca2+-ATPases. Furthermore, this increased intracellular calcium concentration leads to an increased adhesion to fibronectin. Finally, we observed an increase of the lectin galectin-3, a marker of monocytic differentiation of HL60-cells.
Collapse
Affiliation(s)
- Rüdiger Horstkorte
- Institut für Biochemie und Molekularbiologie, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Arnimallee 22, 14195 Berlin-Dahlem, Germany.
| | | | | | | | | |
Collapse
|
14
|
Reutter W, Horstkorte R. Inhibition of Biosynthesis and Biochemical Modulation of N-Acylneuraminic Acid (Biochemical Engineering of Sialoconjugates). A Review. ACTA ACUST UNITED AC 2004. [DOI: 10.1135/cccc20041829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The key enzyme of sialic acid biosynthesis is the bifunctional UDP-GlcNAc 2-epimerase/ ManNAc kinase. Novel inhibitors of this enzyme have been synthesized. TheN-acyl side chain of sialic acid can be biochemically engineered by incubating cells with non-naturalN-acylmannosamine analogues such asN-propionylmannosamine and related compounds. These modified sialic acids lead to various biological changes, such as stimulation of T-lymphocyte proliferation, inhibition of the uptake of influenza A virus, stimulation of neuritic growth, increased expression of sialyl-Lewisxand altered adhesion. A review with 41 references.
Collapse
|
15
|
Abstract
Sialylation is essential for development and regeneration in mammals. Using N-propanoylmannosamine, a novel precursor of sialic acid, we were able to incorporate unnatural sialic acids with a prolonged N-acyl side chain (e.g., N-propanoylneuraminic acid) into cell surface glycoconjugates. Here we report that this biochemical engineering of sialic acid leads to a stimulation of neuronal cells. Both PC12 cells and cerebellar neurons showed a significant increase in neurite outgrowth after treatment with this novel sialic acid precursor. Furthermore, also the reestablishment of the perforant pathway was stimulated in brain slices. In addition, we surprisingly identified several cytosolic proteins with regulatory functions, which are differentially expressed after treatment with N-propanoylmannosamine. Because sialic acid is the only monosaccharide that is activated in the nucleus, we hypothesize that transcription could be modulated by the unnatural CMP-N-propanoylneuraminic acid and that sialic acid activation might be a general tool to regulate cellular functions, such as neurite outgrowth.
Collapse
|
16
|
Artificial Multivalent Sugar Ligands to Understand and Manipulate Carbohydrate-Protein Interactions. HOST-GUEST CHEMISTRY 2002. [DOI: 10.1007/3-540-45010-6_7] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Horstkorte R, Lee HY, Lucka L, Danker K, Mantey L, Reutter W. Biochemical engineering of the side chain of sialic acids increases the biological stability of the highly sialylated cell adhesion molecule CEACAM1. Biochem Biophys Res Commun 2001; 283:31-5. [PMID: 11322763 DOI: 10.1006/bbrc.2001.4750] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The biological half-life time of many glycoproteins is regulated via terminal sialic acids. In this study we determined the half-lives of two different cell adhesion molecules, CEACAM1 and the alpha1-integrin subunit, in PC12-cells before and after biochemical engineering the side chain of sialic acids by the use of N-propanoylmannosamine. Both are transmembrane glycoproteins. While the immunoglobulin superfamily member CEACAM1 mediates homophilic cell-cell adhesion the alpha1-integrin subunit is involved in cell-matrix interactions. We found that the half-life of the highly sialylated CEACAM1 is increased from 26 to 40 h by replacement of the N-acetylneuraminic acid by the novel, engineered N-propanoylneuraminic acids, whereas the half-life of the alpha1-integrin subunit remains unaffected under the same conditions. This demonstrates that biochemical engineering not only modulates the structure of cell surface sialic acids, but that biochemical engineering also influences biological stability of defined glycoproteins.
Collapse
Affiliation(s)
- R Horstkorte
- Institut für Molekularbiologie und Biochemie, Freie Universität Berlin, Arnimallee 22, Berlin-Dahlem, D-14195, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Keppler OT, Horstkorte R, Pawlita M, Schmidt C, Reutter W. Biochemical engineering of the N-acyl side chain of sialic acid: biological implications. Glycobiology 2001; 11:11R-18R. [PMID: 11287396 DOI: 10.1093/glycob/11.2.11r] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
N-Acetylneuraminic acid is the most prominent sialic acid in eukaryotes. The structural diversity of sialic acid is exploited by viruses, bacteria, and toxins and by the sialoglycoproteins and sialoglycolipids involved in cell-cell recognition in their highly specific recognition and binding to cellular receptors. The physiological precursor of all sialic acids is N-acetyl D-mannosamine (ManNAc). By recent findings it could be shown that synthetic N-acyl-modified D-mannosamines can be taken up by cells and efficiently metabolized to the respective N-acyl-modified neuraminic acids in vitro and in vivo. Successfully employed D-mannosamines with modified N-acyl side chains include N-propanoyl- (ManNProp), N-butanoyl- (ManNBut)-, N-pentanoyl- (ManNPent), N-hexanoyl- (ManNHex), N-crotonoyl- (ManNCrot), N-levulinoyl- (ManNLev), N-glycolyl- (ManNGc), and N-azidoacetyl D-mannosamine (ManNAc-azido). All of these compounds are metabolized by the promiscuous sialic acid biosynthetic pathway and are incorporated into cell surface sialoglycoconjugates replacing in a cell type-specific manner 10-85% of normal sialic acids. Application of these compounds to different biological systems has revealed important and unexpected functions of the N-acyl side chain of sialic acids, including its crucial role for the interaction of different viruses with their sialylated host cell receptors. Also, treatment with ManNProp, which contains only one additional methylene group compared to the physiological precursor ManNAc, induced proliferation of astrocytes, microglia, and peripheral T-lymphocytes. Unique, chemically reactive ketone and azido groups can be introduced biosynthetically into cell surface sialoglycans using N-acyl-modified sialic acid precursors, a process offering a variety of applications including the generation of artificial cellular receptors for viral gene delivery. This group of novel sialic acid precursors enabled studies on sialic acid modifications on the surface of living cells and has improved our understanding of carbohydrate receptors in their native environment. The biochemical engineering of the side chain of sialic acid offers new tools to study its biological relevance and to exploit it as a tag for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- O T Keppler
- Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|