1
|
Thornton EL, Paterson SM, Stam MJ, Wood CW, Laohakunakorn N, Regan L. Applications of cell free protein synthesis in protein design. Protein Sci 2024; 33:e5148. [PMID: 39180484 PMCID: PMC11344276 DOI: 10.1002/pro.5148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/26/2024]
Abstract
In protein design, the ultimate test of success is that the designs function as desired. Here, we discuss the utility of cell free protein synthesis (CFPS) as a rapid, convenient and versatile method to screen for activity. We champion the use of CFPS in screening potential designs. Compared to in vivo protein screening, a wider range of different activities can be evaluated using CFPS, and the scale on which it can easily be used-screening tens to hundreds of designed proteins-is ideally suited to current needs. Protein design using physics-based strategies tended to have a relatively low success rate, compared with current machine-learning based methods. Screening steps (such as yeast display) were often used to identify proteins that displayed the desired activity from many designs that were highly ranked computationally. We also describe how CFPS is well-suited to identify the reasons designs fail, which may include problems with transcription, translation, and solubility, in addition to not achieving the desired structure and function.
Collapse
Affiliation(s)
- Ella Lucille Thornton
- Centre for Engineering Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Sarah Maria Paterson
- Centre for Engineering Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Michael J. Stam
- Centre for Engineering Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Christopher W. Wood
- Centre for Engineering Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Nadanai Laohakunakorn
- Centre for Engineering Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Lynne Regan
- Centre for Engineering Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
2
|
Nishizawa C, Aburaya S, Kosaka Y, Sugase K, Aoki W. Optimizing in vitro expression balance of central dogma-related genes using parallel reaction monitoring. J Biosci Bioeng 2024; 138:97-104. [PMID: 38762340 DOI: 10.1016/j.jbiosc.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 05/20/2024]
Abstract
The creation of a self-replicating synthetic cell is an essential to understand life self-replication. One method to create self-replicating artificial cells is to reconstitute the self-replication system of living organisms in vitro. In a living cell, self-replication is achieved via a system called the autonomous central dogma, a system in which central dogma-related factors are autonomously synthesized and genome replication, transcription, and translation are driven by nascent factors. Various studies to reconstitute some processes of the autonomous central dogma in vitro have been conducted. However, in vitro reconstitution of the entire autonomous central dogma system is difficult as it requires balanced expression of several related genes. Therefore, we developed a method to simultaneously quantify and optimize the in vitro expression balance of multiple genes. First, we developed a quantitative mass spectrometry method targeting genome replication-related proteins as a model of central dogma-related factors and acquired in vitro expression profiles of these genes. Additionally, we demonstrated that the in vitro expression balance of these genes can be easily optimized by adjusting the input gene ratio based on the data obtained by the developed method. This study facilitated the easy optimization of the in vitro expression balance of multiple genes. Therefore, extending the scope of this method to other central dogma-related factors will accelerate attempts of self-replicating synthetic cells creation.
Collapse
Affiliation(s)
- Chisato Nishizawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Shunsuke Aburaya
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| | - Yuishin Kosaka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan; Japan Society for the Promotion of Science 606-8502, Kyoto, Japan.
| | - Kenji Sugase
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Wataru Aoki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan; Kyoto Integrated Science & Technology Bio-Analysis Center, Kyoto 600-8815, Japan.
| |
Collapse
|
3
|
Thakur M, Breger JC, Susumu K, Oh E, Spangler JR, Medintz IL, Walper SA, Ellis GA. Self-assembled nanoparticle-enzyme aggregates enhance functional protein production in pure transcription-translation systems. PLoS One 2022; 17:e0265274. [PMID: 35298538 PMCID: PMC8929567 DOI: 10.1371/journal.pone.0265274] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/27/2022] [Indexed: 11/19/2022] Open
Abstract
Cell-free protein synthesis systems (CFPS) utilize cellular transcription and translation (TX-TL) machinery to synthesize proteins in vitro. These systems are useful for multiple applications including production of difficult proteins, as high-throughput tools for genetic circuit screening, and as systems for biosensor development. Though rapidly evolving, CFPS suffer from some disadvantages such as limited reaction rates due to longer diffusion times, significant cost per assay when using commercially sourced materials, and reduced reagent stability over prolonged periods. To address some of these challenges, we conducted a series of proof-of-concept experiments to demonstrate enhancement of CFPS productivity via nanoparticle assembly driven nanoaggregation of its constituent proteins. We combined a commercially available CFPS that utilizes purified polyhistidine-tagged (His-tag) TX-TL machinery with CdSe/CdS/ZnS core/shell/shell quantum dots (QDs) known to readily coordinate His-tagged proteins in an oriented fashion. We show that nanoparticle scaffolding of the CFPS cross-links the QDs into nanoaggregate structures while enhancing the production of functional recombinant super-folder green fluorescent protein and phosphotriesterase, an organophosphate hydrolase; the latter by up to 12-fold. This enhancement, which occurs by an undetermined mechanism, has the potential to improve CFPS in general and specifically CFPS-based biosensors (faster response time) while also enabling rapid detoxification/bioremediation through point-of-concern synthesis of similar catalytic enzymes. We further show that such nanoaggregates improve production in diluted CFPS reactions, which can help to save money and extend the amount of these costly reagents. The results are discussed in the context of what may contribute mechanistically to the enhancement and how this can be applied to other CFPS application scenarios.
Collapse
Affiliation(s)
- Meghna Thakur
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
- College of Science, George Mason University, Fairfax, Virginia, United States of America
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
- Jacobs Corporation, Dallas, Texas, United States of America
| | - Eunkeu Oh
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Joseph R. Spangler
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Gregory A. Ellis
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
- * E-mail:
| |
Collapse
|
4
|
In vitro synthesis of 32 translation-factor proteins from a single template reveals impaired ribosomal processivity. Sci Rep 2021; 11:1898. [PMID: 33479285 PMCID: PMC7820420 DOI: 10.1038/s41598-020-80827-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/24/2020] [Indexed: 12/20/2022] Open
Abstract
The Protein synthesis Using Recombinant Elements (PURE) system enables transcription and translation of a DNA template from purified components. Therefore, the PURE system-catalyzed generation of RNAs and proteins constituting the PURE system itself represents a major challenge toward a self-replicating minimal cell. In this work, we show that all translation factors (except elongation factor Tu) and 20 aminoacyl-tRNA synthetases can be expressed in the PURE system from a single plasmid encoding 32 proteins in 30 cistrons. Cell-free synthesis of all 32 proteins is confirmed by quantitative mass spectrometry-based proteomic analysis using isotopically labeled amino acids. We find that a significant fraction of the gene products consists of proteins missing their C-terminal ends. The per-codon processivity loss that we measure lies between 1.3 × 10-3 and 13.2 × 10-3, depending on the expression conditions, the version of the PURE system, and the coding sequence. These values are 5 to 50 times higher than those measured in vivo in E. coli. With such an impaired processivity, a considerable fraction of the biosynthesis capacity of the PURE system is wasted, posing an unforeseen challenge toward the development of a self-regenerating PURE system.
Collapse
|
5
|
Damiati S, Mhanna R, Kodzius R, Ehmoser EK. Cell-Free Approaches in Synthetic Biology Utilizing Microfluidics. Genes (Basel) 2018; 9:E144. [PMID: 29509709 PMCID: PMC5867865 DOI: 10.3390/genes9030144] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 11/16/2022] Open
Abstract
Synthetic biology is a rapidly growing multidisciplinary branch of science which aims to mimic complex biological systems by creating similar forms. Constructing an artificial system requires optimization at the gene and protein levels to allow the formation of entire biological pathways. Advances in cell-free synthetic biology have helped in discovering new genes, proteins, and pathways bypassing the complexity of the complex pathway interactions in living cells. Furthermore, this method is cost- and time-effective with access to the cellular protein factory without the membrane boundaries. The freedom of design, full automation, and mimicking of in vivo systems reveal advantages of synthetic biology that can improve the molecular understanding of processes, relevant for life science applications. In parallel, in vitro approaches have enhanced our understanding of the living system. This review highlights the recent evolution of cell-free gene design, proteins, and cells integrated with microfluidic platforms as a promising technology, which has allowed for the transformation of the concept of bioprocesses. Although several challenges remain, the manipulation of biological synthetic machinery in microfluidic devices as suitable 'homes' for in vitro protein synthesis has been proposed as a pioneering approach for the development of new platforms, relevant in biomedical and diagnostic contexts towards even the sensing and monitoring of environmental issues.
Collapse
Affiliation(s)
- Samar Damiati
- Department of Biochemistry, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia.
| | - Rami Mhanna
- Biomedical Engineering Program, The American University of Beirut (AUB), Beirut 1107-2020, Lebanon.
| | - Rimantas Kodzius
- Mathematics and Natural Sciences Department, The American University of Iraq, Sulaimani, Sulaymaniyah 46001, Iraq.
- Faculty of Medicine, Ludwig Maximilian University of Munich (LMU), 80539 Munich, Germany.
- Faculty of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany.
| | - Eva-Kathrin Ehmoser
- Department of Nanobiotechnology, Institute for Synthetic Bioarchitecture, University of Natural Resources and Life Sciences, 1190 Vienna, Austria.
| |
Collapse
|
6
|
Li J, Zhang C, Huang P, Kuru E, Forster-Benson ETC, Li T, Church GM. Dissecting limiting factors of the Protein synthesis Using Recombinant Elements (PURE) system. TRANSLATION (AUSTIN, TEX.) 2017; 5:e1327006. [PMID: 28702280 PMCID: PMC5501384 DOI: 10.1080/21690731.2017.1327006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/14/2017] [Accepted: 04/28/2017] [Indexed: 01/10/2023]
Abstract
Reconstituted cell-free protein synthesis systems such as the Protein synthesis Using Recombinant Elements (PURE) system give high-throughput and controlled access to in vitro protein synthesis. Here we show that compared with the commercial S30 crude extract based RTS 100 E. coli HY system, the PURE system has less mRNA degradation and produces up to ∼6-fold full-length proteins. However the majority of polypeptides PURE produces are partially translated or inactive since the signal from firefly luciferase (Fluc) translated in PURE is only ∼2/3rd of that measured using the RTS 100 E. coli HY S30 system. Both of the 2 batch systems suffer from low ribosome recycling efficiency when translating proteins from 82 kD to 224 kD. A systematic fed-batch analysis of PURE shows replenishment of 6 small molecule substrates individually or in combination before energy depletion increased Fluc protein yield by ∼1.5 to ∼2-fold, while creatine phosphate and magnesium have synergistic effects when added to the PURE system. Additionally, while adding EF-P to PURE reduced full-length protein translated, it increased the fraction of functional protein and reduced partially translated protein probably by slowing down the translation process. Finally, ArfA, rather than YaeJ or PrfH, helped reduce ribosome stalling when translating Fluc and improved system productivity in a template-dependent fashion.
Collapse
Affiliation(s)
- Jun Li
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Harvard Institute of Biologically Inspired Engineering, Boston, MA, USA
| | - Chi Zhang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Poyi Huang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Erkin Kuru
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - Taibo Li
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Harvard Institute of Biologically Inspired Engineering, Boston, MA, USA
| |
Collapse
|
7
|
Abstract
Since the development of therapeutic antibodies the demand of recombinant human antibodies is steadily increasing. Traditionally, therapeutic antibodies were generated by immunization of rat or mice, the generation of hybridoma clones, cloning of the antibody genes and subsequent humanization and engineering of the lead candidates. In the last few years, techniques were developed that use transgenic animals with a human antibody gene repertoire. Here, modern recombinant DNA technologies can be combined with well established immunization and hybridoma technologies to generate already affinity maturated human antibodies. An alternative are in vitro technologies which enabled the generation of fully human antibodies from antibody gene libraries that even exceed the human antibody repertoire. Specific antibodies can be isolated from these libraries in a very short time and therefore reduce the development time of an antibody drug at a very early stage.In this review, we describe different technologies that are currently used for the in vitro and in vivo generation of human antibodies.
Collapse
|
8
|
Gagoski D, Polinkovsky ME, Mureev S, Kunert A, Johnston W, Gambin Y, Alexandrov K. Performance benchmarking of four cell-free protein expression systems. Biotechnol Bioeng 2015; 113:292-300. [PMID: 26301602 DOI: 10.1002/bit.25814] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/20/2015] [Accepted: 08/19/2015] [Indexed: 11/10/2022]
Abstract
Over the last half century, a range of cell-free protein expression systems based on pro- and eukaryotic organisms have been developed and have found a range of applications, from structural biology to directed protein evolution. While it is generally accepted that significant differences in performance among systems exist, there is a paucity of systematic experimental studies supporting this notion. Here, we took advantage of the species-independent translation initiation sequence to express and characterize 87 N-terminally GFP-tagged human cytosolic proteins of different sizes in E. coli, wheat germ (WGE), HeLa, and Leishmania-based (LTE) cell-free systems. Using a combination of single-molecule fluorescence spectroscopy, SDS-PAGE, and Western blot analysis, we assessed the expression yields, the fraction of full-length translation product, and aggregation propensity for each of these systems. Our results demonstrate that the E. coli system has the highest expression yields. However, we observe that high expression levels are accompanied by production of truncated species-particularly pronounced in the case of proteins larger than 70 kDa. Furthermore, proteins produced in the E. coli system display high aggregation propensity, with only 10% of tested proteins being produced in predominantly monodispersed form. The WGE system was the most productive among eukaryotic systems tested. Finally, HeLa and LTE show comparable protein yields that are considerably lower than the ones achieved in the E. coli and WGE systems. The protein products produced in the HeLa system display slightly higher integrity, whereas the LTE-produced proteins have the lowest aggregation propensity among the systems analyzed. The high quality of HeLa- and LTE-produced proteins enable their analysis without purification and make them suitable for analysis of multi-domain eukaryotic proteins.
Collapse
Affiliation(s)
- Dejan Gagoski
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia
| | - Mark E Polinkovsky
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia
| | - Sergey Mureev
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia
| | - Anne Kunert
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia
| | - Wayne Johnston
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia
| | - Yann Gambin
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia
| | - Kirill Alexandrov
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia.
| |
Collapse
|
9
|
Bhardwaj A. Investigating the role of site specific synonymous variation in disease association studies. Mitochondrion 2014; 16:83-8. [PMID: 24434286 DOI: 10.1016/j.mito.2013.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 12/15/2013] [Accepted: 12/24/2013] [Indexed: 02/05/2023]
Abstract
Synonymous codon changes may not always be neutral indicating their significance in disease association studies, which is almost always overlooked. Synonymous substitutions may affect protein-folding rates leading to protein misfolding and aggregation. Genome wide analysis of 2301 mitochondrial genomes is performed to evaluate the significance of synonymous codons in disease association studies. The analysis revealed usage of rare codons at several sites in mitochondrial genes with rare codon usage higher for hydrophobic amino acids. The analysis suggests that variation data in association studies should be analyzed using site-specific codon usage values to infer the potential phenotypic impact of synonymous changes.
Collapse
Affiliation(s)
- Anshu Bhardwaj
- Open Source Drug Discovery Unit, Council of Scientific and Industrial Research (CSIR), Delhi 110001, India.
| |
Collapse
|
10
|
Cardoso FC, Roddick JS, Groves P, Doolan DL. Evaluation of approaches to identify the targets of cellular immunity on a proteome-wide scale. PLoS One 2011; 6:e27666. [PMID: 22096610 PMCID: PMC3214079 DOI: 10.1371/journal.pone.0027666] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/21/2011] [Indexed: 11/19/2022] Open
Abstract
Background Vaccine development against malaria and other complex diseases remains a challenge for the scientific community. The recent elucidation of the genome, proteome and transcriptome of many of these complex pathogens provides the basis for rational vaccine design by identifying, on a proteome-wide scale, novel target antigens that are recognized by T cells and antibodies from exposed individuals. However, there is currently no algorithm to effectively identify important target antigens from genome sequence data; this is especially challenging for T cell targets. Furthermore, for some of these pathogens, such as Plasmodium, protein expression using conventional platforms has been problematic but cell-free in vitro transcription translation (IVTT) strategies have recently proved successful. Herein, we report a novel approach for proteome-wide scale identification of the antigenic targets of T cell responses using IVTT products. Principal Findings We conducted a series of in vitro and in vivo experiments using IVTT proteins either unpurified, absorbed to carboxylated polybeads, or affinity purified through nickel resin or magnetic beads. In vitro studies in humans using CMV, EBV, and Influenza A virus proteins showed antigen-specific cytokine production in ELIspot and Cytometric Bead Array assays with cells stimulated with purified or unpurified IVTT antigens. In vitro and in vivo studies in mice immunized with the Plasmodium yoelii circumsporozoite DNA vaccine with or without IVTT protein boost showed antigen-specific cytokine production using purified IVTT antigens only. Overall, the nickel resin method of IVTT antigen purification proved optimal in both human and murine systems. Conclusions This work provides proof of concept for the potential of high-throughput approaches to identify T cell targets of complex parasitic, viral or bacterial pathogens from genomic sequence data, for rational vaccine development against emerging and re-emerging diseases that pose a threat to public health.
Collapse
Affiliation(s)
| | - Joanne S. Roddick
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Penny Groves
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Denise L. Doolan
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
11
|
|
12
|
Hillebrecht JR, Chong S. A comparative study of protein synthesis in in vitro systems: from the prokaryotic reconstituted to the eukaryotic extract-based. BMC Biotechnol 2008; 8:58. [PMID: 18664286 PMCID: PMC2507708 DOI: 10.1186/1472-6750-8-58] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 07/29/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cell-free protein synthesis is not only a rapid and high throughput technology to obtain proteins from their genes, but also provides an in vitro platform to study protein translation and folding. A detailed comparison of in vitro protein synthesis in different cell-free systems may provide insights to their biological differences and guidelines for their applications. RESULTS Protein synthesis was investigated in vitro in a reconstituted prokaryotic system, a S30 extract-based system and a eukaryotic system. Compared to the S30 system, protein synthesis in the reconstituted system resulted in a reduced yield, and was more cold-sensitive. Supplementing the reconstituted system with fractions from a size-exclusion separation of the S30 extract significantly increased the yield and activity, to a level close to that of the S30 system. Though protein synthesis in both prokaryotic and eukaryotic systems showed no significant differences for eukaryotic reporter proteins, drastic differences were observed when an artificial fusion protein was synthesized in vitro. The prokaryotic systems failed to synthesize and correctly fold a significant amount of the full-length fusion protein, even when supplemented with the eukaryotic lysate. The active full-length fusion protein was synthesized only in the eukaryotic system. CONCLUSION The reconstituted bacterial system is sufficient but not efficient in protein synthesis. The S30 system by comparison contains additional cellular factors capable of enhancing protein translation and folding. The eukaryotic translation machinery may have evolved from its prokaryotic counterpart in order to translate more complex (difficult-to-translate) templates into active proteins.
Collapse
|
13
|
Zhang W, Xiao W, Wei H, Zhang J, Tian Z. mRNA secondary structure at start AUG codon is a key limiting factor for human protein expression in Escherichia coli. Biochem Biophys Res Commun 2006; 349:69-78. [PMID: 16930549 DOI: 10.1016/j.bbrc.2006.07.209] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 07/24/2006] [Indexed: 11/25/2022]
Abstract
Codon usage and thermodynamic optimization of the 5'-end of mRNA have been applied to improve the efficiency of human protein production in Escherichia coli. However, high level expression of human protein in E. coli is still a challenge that virtually depends upon each individual target genes. Using human interleukin 10 (huIL-10) and interferon alpha (huIFN-alpha) coding sequences, we systematically analyzed the influence of several major factors on expression of human protein in E. coli. The results from huIL-10 and reinforced by huIFN-alpha showed that exposing AUG initiator codon from base-paired structure within mRNA itself significantly improved the translation of target protein, which resulted in a 10-fold higher protein expression than the wild-type genes. It was also noted that translation process was not affected by the retained short-range stem-loop structure at Shine-Dalgarno (SD) sequences. On the other hand, codon-optimized constructs of huIL-10 showed unimproved levels of protein expression, on the contrary, led to a remarkable RNA degradation. Our study demonstrates that exposure of AUG initiator codon from long-range intra-strand secondary structure at 5'-end of mRNA may be used as a general strategy for human protein production in E. coli.
Collapse
Affiliation(s)
- Weici Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | | | | | | | | |
Collapse
|
14
|
Yan X, Xu Z. Ribosome-display technology: applications for directed evolution of functional proteins. Drug Discov Today 2006; 11:911-6. [PMID: 16997141 DOI: 10.1016/j.drudis.2006.08.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 07/26/2006] [Accepted: 08/15/2006] [Indexed: 11/18/2022]
Abstract
In vitro display technologies, especially ribosome display, are valuable tools for many applications. In this paper, ribosome display technology and its applications for directed evolution of functional proteins will be reviewed. Ribosome display has great potential for directed evolution of protein stability and affinity, the generation of high-quality libraries by in vitro preselection, the selection of enzymatic activities, and the display of cDNA and random-peptide libraries. Ribosome display is carried out fully in vitro, which overcomes some of the limitations of cell-based display systems. We anticipate that ribosome display will have a great impact on applications in biotechnology, medicine and proteomics.
Collapse
Affiliation(s)
- Xianghua Yan
- Antibody Engineering Center, Key Laboratory of Animal Molecular Nutrition, Ministry of Education, Feed Science Institute, Zhejiang University, Hangzhou, 310029, P.R. China
| | | |
Collapse
|
15
|
Falzon L, Suzuki M, Inouye M. Finding one of a kind: advances in single-protein production. Curr Opin Biotechnol 2006; 17:347-52. [PMID: 16828276 DOI: 10.1016/j.copbio.2006.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 05/10/2006] [Accepted: 06/26/2006] [Indexed: 12/01/2022]
Abstract
An ultimate goal for any protein production system is to express only the protein of interest without producing other cellular proteins. To date, there are only two established methods that will allow the successful expression of only the protein of interest: the cell-free in vitro protein synthesis system and the in vivo single-protein production (SPP) system. Although single-protein production can be achieved in cell-free systems, it is not easy to completely suppress the production of cellular proteins during the production of a protein of interest in a living cell. However, the finding of a unique sequence-specific mRNA interferase in Escherichia coli led to the development of the SPP system by converting living cells into a bioreactor that produces only a single protein of interest without producing any cellular proteins. This technology not only provides a new high expression system for proteins, but also offers a novel avenue for protein structural studies.
Collapse
Affiliation(s)
- Liliana Falzon
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
16
|
Abstract
Ribosome display presents an innovative in vitro technology for the rapid isolation and evolution of high-affinity peptides or proteins. Displayed proteins are bound to and recovered from target molecules in multiple rounds of selection in order to enrich for specific binding proteins. No transformation step is necessary, which could lead to a loss of library diversity. A cycle of display and selection can be performed in one day, enabling the existing gene repertoire to be rapidly scanned. Proteins isolated from the panning rounds can be further modified through random or directed molecular evolution for affinity maturation, as well as selected for characteristics such as protein stability, folding and functional activity. Recently, the field of display technologies has become more prominent due to the generation of new scaffolds for ribosome display, isolation of high-affinity human antibodies by phage display, and their implementation in the discovery of novel protein-protein interactions. Applications for this technology extend into the broad field of antibody engineering, proteomics, and synthetic enzymes for diagnostics and therapeutics in cancer, autoimmune and infectious diseases, neurodegenerative diseases and inflammatory disorders. This review highlights the role of ribosome display in drug discovery, discusses advantages and disadvantages of the system, and attempts to predict the future impact of ribosome display technology on the development of novel engineered biopharmaceutical products for biological therapies.
Collapse
Affiliation(s)
- Achim Rothe
- CSIRO Molecular and Health Technologies, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
17
|
Jungbauer LM, Bakke CK, Cavagnero S. Experimental and Computational Analysis of Translation Products in Apomyoglobin Expression. J Mol Biol 2006; 357:1121-43. [PMID: 16483602 DOI: 10.1016/j.jmb.2006.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/24/2005] [Accepted: 01/03/2006] [Indexed: 11/21/2022]
Abstract
This work focuses on the experimental analysis of the time-course of protein expression in a cell-free system, in conjunction with the development of a computational model, denoted as progressive chain buildup (PCB), able to simulate translation kinetics and product formation as a function of starting reactant concentrations. Translation of the gene encoding the apomyoglobin (apoMb) model protein was monitored in an Escherichia coli cell-free system under different experimental conditions. Experimentally observed protein expression yields, product accumulation time-course and expression completion times match with the predictions by the PCB model. This algorithm regards elementary single-residue elongations as apparent second-order events and it accounts for aminoacyl-tRNA regeneration during translation. We have used this computational approach to model full-length protein expression and to explore the kinetic behavior of incomplete chains generated during protein biosynthesis. Most of the observed incomplete chains are non-obligatory dead-end species, in that their formation is not mandatory for full-length protein expression, and that they are unable to convert to the expected final translation product. These truncated polypeptides do not arise from post-translational degradation of full-length protein, but from a distinct subpopulation of chains which expresses intrinsically more slowly than the population leading to full-length product. The PCB model is a valuable tool to predict full-length and incomplete chain populations and formulate experimentally testable hypotheses on their origin. PCB simulations are applicable to E.coli cell-free expression systems (both in batch and dialysis mode) under the control of T7 RNA polymerase and to other environments where transcription and translation can be regarded as kinetically decoupled.
Collapse
Affiliation(s)
- Lisa M Jungbauer
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | | | | |
Collapse
|
18
|
Murthy TVS, Wu W, Qiu QQ, Shi Z, LaBaer J, Brizuela L. Bacterial cell-free system for high-throughput protein expression and a comparative analysis of Escherichia coli cell-free and whole cell expression systems. Protein Expr Purif 2005; 36:217-25. [PMID: 15249043 DOI: 10.1016/j.pep.2004.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 03/26/2004] [Indexed: 11/16/2022]
Abstract
Sixty-three proteins of Pseudomonas aeruginosa in the size range of 18-159 kDa were tested for expression in a bacterial cell-free system. Fifty-one of the 63 proteins could be expressed and partially purified under denaturing conditions. Most of the expressed proteins showed yields greater than 500 ng after a single affinity purification step from 50 microl in vitro protein synthesis reactions. The in vitro protein expression plus purification in a 96-well format and analysis of the proteins by SDS-PAGE were performed by one person in 4 h. A comparison of in vitro and in vivo expression suggests that despite lower yields and less pure protein preparations, bacterial in vitro protein expression coupled with single-step affinity purification offers a rapid, efficient alternative for the high-throughput screening of clones for protein expression and solubility.
Collapse
Affiliation(s)
- T V S Murthy
- Harvard Institute of Proteomics, 320 Charles street, Cambridge, MA 02141, USA
| | | | | | | | | | | |
Collapse
|
19
|
Griswold KE, Mahmood NA, Iverson BL, Georgiou G. Effects of codon usage versus putative 5'-mRNA structure on the expression of Fusarium solani cutinase in the Escherichia coli cytoplasm. Protein Expr Purif 2003; 27:134-42. [PMID: 12509995 DOI: 10.1016/s1046-5928(02)00578-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Matching the codon usage of recombinant genes to that of the expression host is a common strategy for increasing the expression of heterologous proteins in bacteria. However, while developing a cytoplasmic expression system for Fusarium solani cutinase in Escherichia coli, we found that altering codons to those preferred by E. coli led to significantly lower expression compared to the wild-type fungal gene, despite the presence of several rare E. coli codons in the fungal sequence. On the other hand, expression in the E. coli periplasm using a bacterial PhoA leader sequence resulted in high levels of expression for both the E. coli optimized and wild-type constructs. Sequence swapping experiments as well as calculations of predicted mRNA secondary structure provided support for the hypothesis that differential cytoplasmic expression of the E. coli optimized versus wild-type cutinase genes is due to differences in 5(') mRNA secondary structures. In particular, our results indicate that increased stability of 5(') mRNA secondary structures in the E. coli optimized transcript prevents efficient translation initiation in the absence of the phoA leader sequence. These results underscore the idea that potential 5(') mRNA secondary structures should be considered along with codon usage when designing a synthetic gene for high level expression in E. coli.
Collapse
Affiliation(s)
- Karl E Griswold
- Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
20
|
Kramer G, Ramachandiran V, Horowitz PM, Hardesty B. The molecular chaperone DnaK is not recruited to translating ribosomes that lack trigger factor. Arch Biochem Biophys 2002; 403:63-70. [PMID: 12061803 DOI: 10.1016/s0003-9861(02)00213-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The molecular chaperone DnaK and trigger factor (TF), a ribosome-associated protein with folding activity, have been implicated in assisting nascent polypeptides to acquire a three-dimensional structure on Escherichia coli ribosomes. We asked whether ribosomes that lack trigger factor would recruit DnaK for synthesis and folding of nascent peptides. For these analyses, translating ribosomes with a homogeneous population of nascent peptides were isolated. Truncated forms of rhodanese and E. coli translation initiation factor 3 (IF3) were generated with tandem rare arginine codons in the coding sequence. These codons cause strong translational pausing during coupled transcription/translation in E. coli extracts, generating nascent polypeptides on ribosomes. Protein synthesis in the TF(-) extract was initiated with biotin-Met-tRNA(f). Ribosomes with nascent polypeptides were isolated by interaction of the N-terminal biotin with streptavidin on magnetobeads. These translating ribosomes that lack TF contain the molecular chaperone DnaK in considerably less than stoichiometric amounts.
Collapse
Affiliation(s)
- Gisela Kramer
- Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA.
| | | | | | | |
Collapse
|
21
|
Ramachandiran V, Kramer G, Horowitz PM, Hardesty B. Single synonymous codon substitution eliminates pausing during chloramphenicol acetyl transferase synthesis on Escherichia coli ribosomes in vitro. FEBS Lett 2002; 512:209-12. [PMID: 11852081 DOI: 10.1016/s0014-5793(02)02261-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The coding sequence for chloramphenicol acetyl transferase (CAT) contains several rare codons; three of them are ATA encoding isoleucine in positions 13, 84 and 119 of the amino acid sequence. Expression of CAT on Escherichia coli ribosomes in vitro results in mostly full-length product but also distinct smaller polypeptides from less than 3 kDa to over 20 kDa. As reported earlier, the smaller polypeptides are the predominant products, if translation is initiated with fluorophore-Met-tRNA(f). All this translational pausing is eliminated when the first ATA codon is mutated to ATC, a frequently used codon for isoleucine in E. coli. Addition of large amounts of E. coli tRNA to the coupled transcription/translation reaction does not reduce the number of pause-site peptides seen in the expression of wild-type CAT. Thus we hypothesize that the mRNA structure may be an important determinant for translational pausing.
Collapse
|