1
|
Salivary and Lacrimal Gland Alterations of the Epidermal Fatty Acid-Binding Protein (E-FABP) in Non-Obese Diabetic Mice. Int J Mol Sci 2022; 23:ijms23073491. [PMID: 35408851 PMCID: PMC8998856 DOI: 10.3390/ijms23073491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to investigate the changes in E-FABP in the salivary and lacrimal glands of the Sjögren syndrome (SS) model non-obese diabetic mice (NOD). Cotton thread and ocular vital staining tests were performed on 10-week NOD male mice (n = 24) and age- and sex-matched wild-type (WT) mice (n = 25). Tear and saliva samples were collected at sacrifice for E-FABP ELISA assays. Salivary and lacrimal gland specimens underwent immunohistochemistry stainings for E-FABP. Real-time RT-PCR was also performed for the quantification of mRNA expression levels in the salivary and lacrimal glands. Corneal vital staining scores in the NOD mice were significantly higher compared with those for the wild-type mice (p = 0.0001). The mean tear E-FABP level showed a significantly lower concentration in the NOD mice (p = 0.001). The mean saliva E-FABP level also showed a significantly lower concentration in the NOD mice (p = 0.04). Immunohistochemistry revealed intense E-FABP staining in the LG acinar epithelium and less intense staining in the acinar epitheliae of the SGs in the NOD mice compared to the WT mice. Real-time RT-PCR for the mRNA expression of E-FABP showed a significantly decreased expression in the SG and a significant increase in the LG of the NOD mice compared to the WT mice. In conclusion, the E-FABP showed marked alterations in the tear film, saliva, lacrimal, and salivary glands of the NOD mouse, which may help explain the ocular surface changes in relation to the dry eye disease in this SS model mouse and keratoconjunctivitis sicca in SS patients.
Collapse
|
2
|
Abstract
ABSTRACT Sjögren syndrome (SS) is a chronic inflammatory autoimmune disease of the lacrimal and salivary glands. Salivary gland biopsy is still one of the most valuable and acceptable diagnostic tests for SS, which however, is an invasive test. Therefore, noninvasive diagnostic biomarkers with high specificity and sensitivity are required for the diagnosis and assessment of SS. Because ophthalmological testing constitutes to an important part for the diagnosis of SS. Tears harbor biomarkers with a high potential to be used for differential diagnosis and assessment of treatment in many systemic disorders, including SS. This review aims to summarize recent advances in the identification of tear biomarkers of SS, trying to identify reliable, sensitive, and specific biomarkers that can be used to guide treatment decisions.
Collapse
Affiliation(s)
- Cem Simsek
- Department of Ophthalmology (C.S.), Mugla Sitki Kocman University School of Medicine, Mugla, Turkey ; and Department of Ophthalmology (M.D.), Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
3
|
Shahrokh S, Razzaghi Z, Mansouri V, Ahmadi N. The Impact of Proteomic Investigations on the Development and Improvement of Skin Laser Therapy: A Review Article. J Lasers Med Sci 2019; 10:S90-S95. [PMID: 32021680 DOI: 10.15171/jlms.2019.s16] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Different molecular approaches have contributed to finding various responses of skin to external and internal tensions such as laser irradiation and many important mediators of skin disease have been identified through these approaches. However, different essential signals of skin biomarker pathways and proteins are partially detected or completely unknown. In the present study, the impact of proteomics on the evaluation of laser therapy for the treatment of skin diseases is investigated. Methods: The keywords of "Proteomics", "Laser therapy", "Skin", and "Skin disease" were searched in Google Scholar, Scopus and PubMed search engines. After screening, 53 documents were included in the study. Results: The global assessments revealed that different proteins in different signaling pathways of skin metabolism in terms of health or illness after laser therapy are expressed differentially. The results indicated that the application of proteomics is a useful method for promoting the results of laser interventions. Conclusion: This kind of research dealt with the practical proteomics of skin diseases and skin laser therapy.
Collapse
Affiliation(s)
- Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nayebali Ahmadi
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Epidermal Fatty Acid-Binding Protein: A Novel Marker in the Diagnosis of Dry Eye Disease in Sjögren Syndrome. Int J Mol Sci 2018; 19:ijms19113463. [PMID: 30400384 PMCID: PMC6274910 DOI: 10.3390/ijms19113463] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 10/23/2018] [Accepted: 10/27/2018] [Indexed: 12/17/2022] Open
Abstract
Purpose: Sjögren syndrome (SS) is a chronic inflammatory autoimmune disease of the lacrimal and salivary glands. This study compared the concentrations of epidermal fatty-acid binding protein (E-FABP) in the saliva, serum, and tears of SS patients with dry eye and dry mouth, with those of healthy adults to investigate the usefulness of E-FABP as a diagnostic marker for SS. Design: Prospective, observational case series. Participants: The subjects were 11 new patients with untreated Sjogren syndrome and 12 healthy control individuals. Methods: The diagnosis of SS was in accordance with the Ministry of Health, Labour and Welfare (Japan) Diagnostic Criteria (1999). Saliva, serum, and tear specimens were collected during internal medicine, dental, and ophthalmological examinations. The ophthalmological tests included the Dry Eye-related Quality of life Score (DEQS), tear break-up time (BUT), vital staining with fluorescein (FS) and lissamine green (LG), and the Schirmer test-1. The E-FABP concentration in the tears, saliva, and serum was measured by enzyme-linked immunosorbent assay (ELISA). Main outcome measure: The E-FABP concentrations were compared between patients and controls. Results: There were significant differences between the patient and healthy control groups in all ophthalmological test results. There were no significant differences between the groups in the E-FABP concentrations in the saliva (p = 0.1513) or the serum (p = 0.4799), but the E-FABP concentration in the tears significantly differed between groups. The E-FABP concentration in tears tended to be significantly lower in patients with SS (mean, 323.5 ± 325.6 pg/mL) than healthy control subjects (mean, 4076 pg/mL; p = 0.0136). The E-FABP concentration in tears significantly correlated with the results of dry eye parameters. Conclusion: The E-FABP concentration in tears appears to be related to ocular surface epithelial damage and tear stability and may be a promising novel biomarker in the diagnosis of SS.
Collapse
|
5
|
Stem Cells as Potential Candidates for Psoriasis Cell-Replacement Therapy. Int J Mol Sci 2017; 18:ijms18102182. [PMID: 29053579 PMCID: PMC5666863 DOI: 10.3390/ijms18102182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 02/08/2023] Open
Abstract
Recent years have seen considerable progress in explaining the mechanisms of the pathogenesis of psoriasis, with a significant role played in it by the hyper-reactivity of Th1 and Th17 cells, Treg function disorder, as well as complex relationships between immune cells, keratinocytes, and vascular endothelium. The effect of stem cells in the epidermis and stem cells on T cells has been identified and the dysfunction of various types of stem cells may be a prime cause of dysregulation of the inflammatory response in psoriasis. However, exploring these mechanisms in detail could provide a chance to develop new therapeutic strategies. In this paper, the authors reviewed data on the role played by stem cells in the pathogenesis of psoriasis and initial attempts at using them in treatment.
Collapse
|
6
|
Roshan A, Murai K, Fowler J, Simons BD, Nikolaidou-Neokosmidou V, Jones PH. Human keratinocytes have two interconvertible modes of proliferation. Nat Cell Biol 2016; 18:145-56. [PMID: 26641719 PMCID: PMC4872834 DOI: 10.1038/ncb3282] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 11/05/2015] [Indexed: 02/08/2023]
Abstract
Single stem cells, including those in human epidermis, have a remarkable ability to reconstitute tissues in vitro, but the cellular mechanisms that enable this are ill-defined. Here we used live imaging to track the outcome of thousands of divisions in clonal cultures of primary human epidermal keratinocytes. Two modes of proliferation were seen. In 'balanced' mode, similar proportions of proliferating and differentiating cells were generated, achieving the 'population asymmetry' that sustains epidermal homeostasis in vivo. In 'expanding' mode, an excess of cycling cells was produced, generating large expanding colonies. Cells in expanding mode switched their behaviour to balanced mode once local confluence was attained. However, when a confluent area was wounded in a scratch assay, cells near the scratch switched back to expanding mode until the defect was closed. We conclude that the ability of a single epidermal stem cell to reconstitute an epithelium is explained by two interconvertible modes of proliferation regulated by confluence.
Collapse
Affiliation(s)
- Amit Roshan
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, United Kingdom CB2 0XZ
- Present address: Norfolk & Norwich University Hospital, Colney Lane, Norwich, United Kingdom NR4 7UY
| | - Kasumi Murai
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom CB10 1SA
| | - Joanna Fowler
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom CB10 1SA
| | - Benjamin D Simons
- Cavendish Laboratory, TCM, University of Cambridge, JJ Thomson Avenue, Cambridge, United Kingdom CB3 0HE
- Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road Cambridge, United Kingdom CB2 1QN
| | - Varvara Nikolaidou-Neokosmidou
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, United Kingdom CB2 0XZ
| | - Philip H Jones
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, United Kingdom CB2 0XZ
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom CB10 1SA
| |
Collapse
|
7
|
Dallaglio K, Marconi A, Truzzi F, Lotti R, Palazzo E, Petrachi T, Saltari A, Coppini M, Pincelli C. E-FABP induces differentiation in normal human keratinocytes and modulates the differentiation process in psoriatic keratinocytes in vitro. Exp Dermatol 2013; 22:255-61. [PMID: 23528210 DOI: 10.1111/exd.12111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2013] [Indexed: 12/17/2022]
Abstract
Epidermal fatty acid-binding protein (E-FABP) is a lipid carrier, originally discovered in human epidermis. We show that E-FABP is almost exclusively expressed in postmitotic (PM) keratinocytes, corresponding to its localization in the highest suprabasal layers, while it is barely expressed in keratinocyte stem cells (KSC) and transit amplifying (TA) keratinocytes. Transfection of normal human keratinocytes with recombinant (r) E-FABP induces overexpression of K10 and involucrin. On the other hand, E-FABP inhibition by siRNA downregulates K10 and involucrin expression in normal keratinocytes through NF-κB and JNK signalling pathways. E-FABP is highly expressed in psoriatic epidermis, and it is mainly localized in stratum spinosum. Psoriatic PM keratinocytes overexpress E-FABP as compared to the same population in normal epidermis. E-FABP inhibition in psoriatic keratinocytes markedly reduces differentiation, while it upregulates psoriatic markers such as survivin and K16. However, under high-calcium conditions, E-FABP silencing downregulates K10 and involucrin, while survivin and K16 expression is completely abolished. These data strongly indicate that E-FABP plays an important role in keratinocyte differentiation. Moreover, E-FABP modulates differentiation in psoriatic keratinocytes.
Collapse
Affiliation(s)
- Katiuscia Dallaglio
- Institute of Dermatology, School of Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chen R, Feng C, Xu Y. Cyclin-dependent kinase-associated protein Cks2 is associated with bladder cancer progression. J Int Med Res 2011; 39:533-40. [PMID: 21672358 DOI: 10.1177/147323001103900222] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this observational retrospective study, expression of possible cancer-related genes was measured in patients with a pathological diagnosis of superficial bladder cancer. Further measurements were made in those who subsequently developed muscle-invasive cancer. Seven of the 45 patients with superficial bladder cancer progressed to muscle-invasive cancer. Expression of fatty acid binding protein 5 (FABP5), poly(A) binding protein cytoplasmic 1 (PABPC1), DEAD box polypeptide 5 (DDX5), splicing factor 3b subunit 1 (SF3B1), murine mammary tumour integration site 6 (EIF3S6), tropomyosin 2β (TPM2), transgelin (TAGLN) and cyclin-dependent kinase-associated protein (Cks2) genes was measured in bladder samples using real-time reverse transcription-polymerase chain reaction. FABP5, PABPC1, DDX5, SF3B1, EIF3S6 and Cks2 expression levels were significantly increased, and TPM2 and TAGLN were significantly decreased, in superficial bladder cancer compared with normal bladder tissue. In patients who developed muscle-invasive cancer, the Cks2 gene showed significantly increased expression after, compared with before, invasion. The Cks2 gene may have potential as a biomarker for predicting superficial bladder cancer progression to muscle-invasive cancer.
Collapse
Affiliation(s)
- R Chen
- Department of Urological Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | | | | |
Collapse
|
9
|
Epidermal FABP (FABP5) Regulates Keratinocyte Differentiation by 13(S)-HODE-Mediated Activation of the NF-κB Signaling Pathway. J Invest Dermatol 2011; 131:604-12. [DOI: 10.1038/jid.2010.342] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Pastar I, Stojadinovic O, Krzyzanowska A, Barrientos S, Stuelten C, Zimmerman K, Blumenberg M, Brem H, Tomic-Canic M. Attenuation of the transforming growth factor beta-signaling pathway in chronic venous ulcers. Mol Med 2010; 16:92-101. [PMID: 20069132 DOI: 10.2119/molmed.2009.00149] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 01/04/2010] [Indexed: 01/22/2023] Open
Abstract
Transforming growth factor beta (TGFbeta) is important in inflammation, angiogenesis, reepithelialization and connective tissue regeneration during wound healing. We analyzed components of TGFbeta signaling pathway in biopsies from 10 patients with nonhealing venous ulcers (VUs). Using comparative genomics of transcriptional profiles of VUs and TGFbeta-treated keratinocytes, we found deregulation of TGFbeta target genes in VUs. Using quantitative polymerase chain reaction (qPCR) and immunohistochemical analysis, we found suppression of TGFbeta RI, TGFbeta RII and TGFbeta RIII, and complete absence of phosphorylated Smad2 (pSmad2) in VU epidermis. In contrast, pSmad2 was induced in the cells of the migrating epithelial tongue of acute wounds. TGFbeta-inducible transcription factors (GADD45beta , ATF3 and ZFP36L1) were suppressed in VUs. Likewise, genes suppressed by TGFbeta (FABP5, CSTA and S100A8) were induced in nonhealing VUs. An inhibitor of Smad signaling, Smad7 was also downregulated in VUs. We conclude that TGFbeta signaling is functionally blocked in VUs by downregulation of TGFbeta receptors and attenuation of Smad signaling resulting in deregulation of TGFbeta target genes and consequent hyperproliferation. These data suggest that application of exogenous TGFbeta may not be a beneficial treatment for VUs.
Collapse
Affiliation(s)
- Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Collins CA, Watt FM. Dynamic regulation of retinoic acid-binding proteins in developing, adult and neoplastic skin reveals roles for beta-catenin and Notch signalling. Dev Biol 2008; 324:55-67. [PMID: 18805411 DOI: 10.1016/j.ydbio.2008.08.034] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 08/26/2008] [Accepted: 08/29/2008] [Indexed: 10/21/2022]
Abstract
Retinoic acid (RA) signalling is essential for epidermal differentiation; however, the mechanisms by which it acts are largely unexplored. Partitioning of RA between different nuclear receptors is regulated by RA-binding proteins. We show that cellular RA-binding proteins CRABP1 and CRABP2 and the fatty acid-binding protein FABP5 are dynamically expressed during skin development and in adult tissue. CRABP1 is expressed in embryonic dermis and in the stroma of skin tumours, but confined to the hair follicle dermal papilla in normal postnatal skin. CRABP2 and FABP5 are expressed in the differentiating cells of sebaceous gland, interfollicular epidermis and hair follicles, with FABP5 being a prominent marker of sebaceous glands and anagen follicle bulbs. All three proteins are upregulated in response to RA treatment or Notch activation and are negatively regulated by Wnt/beta-catenin signalling. Ectopic follicles induced by beta-catenin arise from areas of the sebaceous gland that have lost CRABP2 and FABP5; conversely, inhibition of hair follicle formation by N-terminally truncated Lef1 results in upregulation of CRABP2 and FABP5. Our findings demonstrate that there is dynamic regulation of RA signalling in different regions of the skin and provide evidence for interactions between the RA, beta-catenin and Notch pathways.
Collapse
Affiliation(s)
- Charlotte A Collins
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | |
Collapse
|
12
|
Romanowska M, al Yacoub N, Seidel H, Donandt S, Gerken H, Phillip S, Haritonova N, Artuc M, Schweiger S, Sterry W, Foerster J. PPARdelta enhances keratinocyte proliferation in psoriasis and induces heparin-binding EGF-like growth factor. J Invest Dermatol 2007; 128:110-24. [PMID: 17637826 DOI: 10.1038/sj.jid.5700943] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Psoriasis is a common skin disease involving keratinocyte proliferation and altered differentiation, as well as T-cell activation. Here, we show that altered gene transcription in psoriatic skin lesions is highly reproducible between independent data sets. Analysis of gene expression confirmed dysregulation in all expected functional categories, such as IFN signaling and keratinocyte differentiation, and allowed molecular fingerprinting of a previously characterized dendritic cell subset associated with psoriasis tumor necrosis factor alpha (TNF-alpha)- and inducible nitric oxide synthase (iNOS)-producing CD11b(INT) DC (Tip-DC). Unexpectedly, a large group of dysregulated transcripts was related to fatty acid signaling and adipocyte differentiation, exhibiting a pattern consistent with the activation of peroxisome proliferator-activated receptor delta (PPARdelta). PPARdelta itself was strongly induced in psoriasis in vivo. In primary keratinocytes, PPARdelta was induced by the transcription factor activator protein 1, in particular by junB, but not by canonical WNT signaling, in contrast to its regulation in colon carcinoma cells. Activation of PPARdelta enhanced proliferation of keratinocytes, while this was inhibited by knockdown of PPARdelta. Finally, heparin-binding EGF-like growth factor (HB-EGF), known to induce epidermal hyperplasia and itself overexpressed in psoriasis, was identified as a direct target gene of PPARdelta. The present data suggest that activation of PPARdelta is a major event in psoriasis, contributing to the hyperproliferative phenotype by induction of HB-EGF.
Collapse
|
13
|
Watt FM, Lo Celso C, Silva-Vargas V. Epidermal stem cells: an update. Curr Opin Genet Dev 2006; 16:518-24. [PMID: 16919447 DOI: 10.1016/j.gde.2006.08.006] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 08/03/2006] [Indexed: 12/17/2022]
Abstract
The mammalian epidermis is a highly accessible tissue in which to study the properties of adult stem cells. Global gene expression profiling has revealed new markers and regulators of the stem cell compartment. Although stem cells have the potential to differentiate into multiple lineages, their progeny follow a more restricted number of lineages in undamaged epidermis as a result of local microenvironmental cues. The response of the epidermis to a particular signal depends on signal strength and duration. Recent advances in the field have led to elucidation of the mechanisms by which stem cells are maintained and the pathways that interact with Wnt signalling to specify lineage choice as cells leave the stem cell compartment. This work has also yielded new insights into skin tumour development.
Collapse
Affiliation(s)
- Fiona M Watt
- Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK.
| | | | | |
Collapse
|
14
|
Jensen KB, Watt FM. Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence. Proc Natl Acad Sci U S A 2006; 103:11958-63. [PMID: 16877544 PMCID: PMC1567680 DOI: 10.1073/pnas.0601886103] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Considerable progress has been made in characterizing epidermal stem cells by microarray analysis of FACS-selected populations. One limitation of this approach is that the gene expression profiles represent the average of the cell population, potentially masking cellular heterogeneity of functional significance. To overcome this problem, we have performed single-cell expression profiling. We have generated cDNA libraries from single human epidermal cells, designated as stem or transit-amplifying cells on the basis of Delta1 and melanoma-associated chondroitin sulfate proteoglycan expression. Of the 14 putative stem cell markers identified, we selected one, the EGF receptor antagonist leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1), for further study. Lrig1 was expressed in groups of basal cells in human interfollicular epidermis previously identified as enriched for stem cells. Overexpression of Lrig1 decreased keratinocyte proliferation but did not affect the proportion of stem and transit-amplifying cells, as judged by clonal growth characteristics. Down-regulation of Lrig1 using siRNA increased cell-surface EGF receptor levels, enhanced activation of downstream pathways, and stimulated proliferation. Lrig1 acted in part by negatively regulating the Myc promoter. We propose that Lrig1 maintains epidermal stem cells in a quiescent nondividing state, and that Lrig1 down-regulation triggers proliferation.
Collapse
Affiliation(s)
- Kim B. Jensen
- Keratinocyte Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | - Fiona M. Watt
- Keratinocyte Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
15
|
Lemaître G, Gonnet F, Vaigot P, Gidrol X, Martin MT, Tortajada J, Waksman G. CD98, a novel marker of transient amplifying human keratinocytes. Proteomics 2006; 5:3637-45. [PMID: 16097038 DOI: 10.1002/pmic.200401224] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Identification of plasma membrane markers of basal keratinocytes is essential for sorting basal cells and, subsequently, adult epidermal stem cells. In this study, we isolated caveolin-1-enriched microdomains from human HaCaT keratinocytes and identified proteins representing potential cell surface markers of the epidermis by a proteomic approach. The purification of this caveolae domain allowed us to characterize 53 proteins of which 26% were transmembrane and 32% associated-membrane proteins. One of them, CD98, was found to be co-localized with beta1 integrin at the plasma membrane of the basal keratinocytes of healthy human epidermis. We then isolated CD98-positive keratinocytes from fresh skin biopsies. Using clonogenic assays, we demonstrate that CD98 may be considered as a marker of transient amplifying human keratinocytes.
Collapse
|
16
|
Kusakari Y, Ogawa E, Owada Y, Kitanaka N, Watanabe H, Kimura M, Tagami H, Kondo H, Aiba S, Okuyama R. Decreased keratinocyte motility in skin wound on mice lacking the epidermal fatty acid binding protein gene. Mol Cell Biochem 2006; 284:183-8. [PMID: 16411018 DOI: 10.1007/s11010-005-9048-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Accepted: 09/01/2005] [Indexed: 01/09/2023]
Abstract
Fatty acids are shown to be important in various skin functions. Fatty acid binding protein (FABP) is postulated to serve as a lipid shuttle, solubilizing hydrophobic fatty acids and delivering them to the appropriate metabolic system. Among the FABP family proteins, epidermal-type FABP (E-FABP) is solely expressed in keratinocyte but its specific role in skin is not yet fully established. We found an elevated expression of E-FABP in regenerative keratinocytes of healing wounds. However, E-FABP null mice showed no marked differences compared to wild type mice in the process of wound closure, in vivo. On the other hand, in keratinocyte culture, E-FABP gene disruption decreased the cell motility, but did not affect the cell proliferation. E-FABP deletion may be compensated for in vivo by the microenvironment comprised of various cells such as fibroblasts and endothelial cells around the wound. Our analyses suggest that the E-FABP elevation may be necessary for the activation of cell motility within regenerative epidermis during wound healing.
Collapse
Affiliation(s)
- Yoshiyuki Kusakari
- Department of Dermatology, Tohoku University Graduate School of Medicine, Tohoku, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nourani MR, Owada Y, Kitanaka N, Abdelwahab SA, Iwasa H, Sakagami H, Spener F, Kondo H. Localization of epidermal-type fatty acid binding protein in macrophages in advanced atretic follicles of adult mice. J Mol Histol 2006; 36:391-400. [PMID: 16400526 DOI: 10.1007/s10735-005-9005-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 07/27/2005] [Indexed: 12/21/2022]
Abstract
The localization of epidermal-type fatty acid binding protein (E-FABP) in the mature mouse ovary was examined by immuno-light and electron microscopy. Numerous macrophages immunopositive for both anti-E-FABP and F4/80 antibodies, together with immunonegative cells, were found in advanced atretic follicles that had eccentric lumens containing deformed ova. While some E-FABP-immunopositive macrophages were spider in shape and appeared singly, others, especially close to the lumen, were round and voluminous and tended to be aggregated. The voluminous macrophages contained phagosomes of various sizes and they were regarded as those actively involved in the phagocytosis of apoptotic granulosa cells. E-FABP-immunopositive macrophages and their processes were often apposed to adjacent immunonegative cells, and some of them lined the lumen containing deformed ova. On the other hand, E-FABP-immunonegative cells in the atretic follicles were classified into two types: the one, a minority, was characterized by small mitochondria containing non-tubular cristae and presumably represented residual granulosa cells, while the other dominant type was characterized by large mitochondria containing tubular cristae and presumably represented theca cells originally surrounding the follicles to be atretic. The present detection of E-FABP-immunopositivity selectively in macrophages of the atretic follicles suggests possible involvement of E-FABP and/or its ligand fatty acids in the process of follicular atresia, and it makes more reliable the identification of the advanced atretic follicles with the antral spaces obliterated, which could provide further details on the histology of the follicular atresia than before.
Collapse
Affiliation(s)
- Mohammad Reza Nourani
- Division of Histology, Department of Cell Biology, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Current understanding of the biology of epidermal stem cells opens a totally new perspective in the function of the epidermis and adjacent epithelial structures. A number of pathogenetic as well as clinical-therapeutic approaches against a variety of dermatoses may become possible with knowledge about keratinocyte proliferation, differentiation and regeneration. The reservoir of epidermal stem cells is located in the interfollicular epidermis, the hair follicle area and the germinal hair follicle matrix. Endogenous stem cell clones exist here, giving rise to transient amplifying cells and postmitotic cells. The stem cell clones are organized in clusters and display high expression of adhesion proteins, which guarantee their stability in a specific environment consisting of different cell types and extracellular substrates in the stratum basale. Differentiation is determined by a specific cascade of chemical signals from the stem cell environment and from the genetic program of the cell. The clinical relevance of stem cells lies primarily in their therapeutic potential with reconstruction of epithelia by reimplantation of autologous stem cells or gene therapeutic applications such as targeted transfection. However, the benefit-to-risk ratio cannot yet be accurately estimated.
Collapse
Affiliation(s)
- Karin Rzepka
- Institut für angewandte Dermatopharmazie, Martin-Luther-Universität Halle-Wittenberg
| | | | | | | |
Collapse
|
19
|
Arai Y, Funatsu N, Numayama-Tsuruta K, Nomura T, Nakamura S, Osumi N. Role of Fabp7, a downstream gene of Pax6, in the maintenance of neuroepithelial cells during early embryonic development of the rat cortex. J Neurosci 2005; 25:9752-61. [PMID: 16237179 PMCID: PMC6725737 DOI: 10.1523/jneurosci.2512-05.2005] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2005] [Revised: 09/11/2005] [Accepted: 09/11/2005] [Indexed: 01/28/2023] Open
Abstract
Pax6 is a transcription factor with key functional roles in the developing brain. Pax6 promotes neuronal differentiation via transcriptional regulation of the Neurogenin2 (Ngn2) gene, although Pax6 expression appears in proliferating neuroepithelial cells before the onset of neurogenesis. Here, we identified Fabp7 (BLBP/B-FABP), a member of the fatty acid-binding protein (FABP) family, as a downregulated gene in the embryonic brain of Pax6 mutant rat (rSey2/rSey2) by microarray analysis. Marked reduction of Fabp7 expression was confirmed by quantitative PCR. Spatiotemporal expression patterns of Fabp7 in the wild-type rat embryos from embryonic day 10.5 (E10.5) to E14.5 were similar to those of Pax6, and expression of Fabp7 was undetectable in the rSey2/rSey2 cortex. The expression pattern of Fabp7 in the wild-type mouse embryo at E10.5 (corresponding to E12.5 rat) was different from that in the rat embryo, and no change of expression was observed in the Sey/Sey mouse embryo. Overexpression of exogenous Pax6 mainly induced ectopic expression of Fabp7, rather than of Ngn2, in the early cortical primordium. Interestingly, knocking-down FABP7 function by electroporation of Fabp7 small interfering RNA severely curtailed cell proliferation but promoted neuronal differentiation. We conclude that Fabp7 is a downstream gene of Pax6 transcription factor in the developing rat cortex and essential for maintenance of neuroepithelial cells during early cortical development.
Collapse
Affiliation(s)
- Yoko Arai
- Division of Developmental Neuroscience, Department of Functional Genomics, Center for Translational and Advanced Animal Research, Tohoku University School of Medicine, Sendai 980-8575, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Huang CM, Elmets CA, van Kampen KR, Desilva TS, Barnes S, Kim H, Tang DCC. Prospective highlights of functional skin proteomics. MASS SPECTROMETRY REVIEWS 2005; 24:647-660. [PMID: 15376279 DOI: 10.1002/mas.20037] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although a wide variety of protein profiles have been extensively constructed via proteomic analysis, the comprehensive proteomic profiling of the skin, which is considered to be the largest organ of the human body, is still far from complete. Our efforts to establish the functional skin proteome, a protein database describing the protein networks that underlie biological processes, has set in motion the identification and characterization of proteins expressed in the epidermis and dermis of the BALB/c mice. In this review, we will highlight various cutaneous proteins we have characterized and discuss their biological functions associated with skin distress, immunity, and cancer. This type of research into functional skin proteomics will provide a critical step toward understanding disease and developing successful therapeutic strategies.
Collapse
Affiliation(s)
- Chun-Ming Huang
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Iizuka H, Takahashi H, Ishida-Yamamoto A. Psoriatic architecture constructed by epidermal remodeling. J Dermatol Sci 2005; 35:93-9. [PMID: 15265521 DOI: 10.1016/j.jdermsci.2004.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 01/09/2004] [Accepted: 01/13/2004] [Indexed: 01/09/2023]
Abstract
Epidermal remodeling is the concept that epidermal architecture is determined by a simple self-organizing mechanism; epidermal hyperproliferation constructs typical psoriatic architecture. This is based on the assumption that the enlargements in both the two-dimensional proliferative compartment (basal cell layer) and three-dimensional whole epidermal volume coexist. During this process, the dermal papillae become markedly, but passively, expanded by enlargement of the proliferative compartment. This creates a considerable shrinkage force against the crowded basal cell layer, which is forced to lose adherence to the dermal extracellular matrix (ECM). This results in anoikis, a type of apoptosis characterized by cell detachment, and, consequently, a markedly diminished epidermal turnover time in psoriasis. The papillary shrinkage force also explains the fact that dermal papillary height does not exceed a certain limit. At the cessation of hyperproliferation a normalisation remodeling takes place toward normal tissue architecture. Thus the concept of epidermal remodeling explains the self-organizing mechanism of the architectural change in psoriasis, which is essentially a reversible disorder depending on epidermal hyperproliferation.
Collapse
Affiliation(s)
- Hajime Iizuka
- Department of Dermatology, Asahikawa Medical College, Midorigaoka-Higashi 2-1-1, Asahikawa, Japan.
| | | | | |
Collapse
|
22
|
Franssen MEJ, Zeeuwen PLJM, Vierwinden G, van de Kerkhof PCM, Schalkwijk J, van Erp PEJ. Phenotypical and Functional Differences in Germinative Subpopulations Derived from Normal and Psoriatic Epidermis. J Invest Dermatol 2005; 124:373-83. [PMID: 15675957 DOI: 10.1111/j.0022-202x.2004.23612.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A model that explains how maintenance of normal homeostasis in human epidermis is achieved describes a heterogeneous cell population of stem cells (SC) and transit amplifying cells (TAC). There must be a tightly regulated balance between SC self-renewal and the generation of TAC that undergo a limited number of divisions before giving rise to postmitotic, terminally differentiated cells. To investigate whether this balance is disturbed in psoriatic epidermis, we have characterized flow sorted enriched SC and TAC using immunocytochemistry, flow cytometry, and real-time quantitative PCR. Our data demonstrate phenotypical and functional differences in SC (beta(1)-integrin bright) and TAC (beta(1)-integrin dim) enriched fractions between normal and psoriatic keratinocytes. Some of these were expected, such as mRNA levels of keratins 6 and 10 and of the Ki-67 antigen. Most remarkable were differences in phenotype of the psoriatic TAC compared with TAC from normal skin. These subpopulations also displayed striking differences following culture. Downregulation of markers associated with the regenerative phenotype (psoriasin, elafin, psoriasis-associated fatty acid binding protein) in cultured psoriatic dim cells in the absence of hyperproliferation suggests that proliferation and regenerative maturation are coupled. From these results, in combination with our earlier findings, we propose a model for epidermal growth control in which TAC play a crucial role.
Collapse
Affiliation(s)
- Manon E J Franssen
- Department of Dermatology, University Medical Centre Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
23
|
Lemaître G, Lamartine J, Pitaval A, Vaigot P, Garin J, Bouet S, Petat C, Soularue P, Gidrol X, Martin MT, Waksman G. Expression profiling of genes and proteins in HaCaT keratinocytes: Proliferating versus differentiated state. J Cell Biochem 2004; 93:1048-62. [PMID: 15389883 DOI: 10.1002/jcb.20212] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The knowledge of the mechanism of keratinocyte differentiation in culture is still uncompleted. The emergence of new technologies, such as cDNA microarrays or 2D electrophoresis followed by mass spectrometry analysis, has allowed the identification of genes and proteins expressed in biological processes in keratinocytes. Here, we report a genome wide analysis of proliferating versus differentiated human HaCaT keratinocytes. We found that genes and proteins which take part in the cell cycle control, carbohydrate metabolism, cell auto-immunity, adhesion and cytokine signal transduction pathways were regulated in differentiated HaCaT keratinocytes. In addition, we identified seven proteins and 33 transcripts that had not been previously described as differentially expressed in proliferating versus differentiated HaCaT cells. Furthermore, some of these transcripts or proteins were similarly regulated in human primary keratinocytes and in human epidermis. The present study opens new areas of investigation in the comprehension of keratinocyte differentiation.
Collapse
Affiliation(s)
- Gilles Lemaître
- Service de Génomique Fonctionnelle, CEA, Département de Radiobiologie et Radiopathologie, Evry, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Liang L, Chinnathambi S, Stern M, Tomanek-Chalkley A, Manuel TD, Bickenbach JR. As epidermal stem cells age they do not substantially change their characteristics. J Investig Dermatol Symp Proc 2004; 9:229-37. [PMID: 15369218 DOI: 10.1111/j.1087-0024.2004.09309.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
In this study, we ask the basic question: do stem cells age? We demonstrated that epidermal stem cells isolated from neonatal mice had the capacity to form multiple cell lineages during development. Here we demonstrate the cell lineages are clonal, and that epidermal stem cells isolated from the footpad epithelium of old mice have similar capabilities. Using Hoechst dye exclusion and cell size, we isolated viable homogenous populations of epidermal stem and transit-amplifying (TA) cells from GFP-transgenic mice, and injected these cells into 3.5-d blastocysts. Only the stem-injected blastocysts produced mice with GFP+ cells in their tissues. Furthermore, aged and young stem cells showed similar gene and protein expression profiles that showed some differences from the TA cell profiles. These data suggest that there may be a fundamental difference between somatic stem and TA cells, and that an epidermal stem cell placed in a developmental environment can alter its fate determination no matter what its age.
Collapse
Affiliation(s)
- Luchuan Liang
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
25
|
Morrison RS, Kinoshita Y, Johnson MD, Conrads TP. Proteomics in the postgenomic age. ADVANCES IN PROTEIN CHEMISTRY 2004; 65:1-23. [PMID: 12964364 DOI: 10.1016/s0065-3233(03)01014-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Technical developments in the field of proteomics are poised to generate advances in our understanding of protein structure, function, and organization in complex signaling and regulatory networks. Improvements in mass spectrometry instrumentation, the implementation of protein arrays, and the development of robust informatics software are providing sensitive, high-throughput technologies for large-scale identification and quantitation of protein expression, protein modifications, subcellular localization, protein function, and protein-protein interactions. These advances have significant implications for understanding how cellular proteomes are regulated in health and disease.
Collapse
Affiliation(s)
- Richard S Morrison
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Lipid rafts are dynamic membrane microdomains enriched in cholesterol and sphingolipids and are involved in the regulation of a variety of cellular processes, such as proliferation, apoptosis and cell motility. We have previously described that large lipid raft aggregates are readily detectable on cultured keratinocyte cell line HaCaT by staining with the fluorescein-tagged cholera toxin (CTx-FITC). In this paper we adopted this method for the detection of lipid rafts in human epidermis and keratinocytes in culture. Double labelling of showed the non-overlapping clusters of basal cells in human epidermis: CD29dimCTx-FITCbright cells in the deep rate ridges and CD29brightCTx-FITCdim cells at the tips of dermal papillae. A similar patchy, non-overlapping staining pattern was observed in cultured keratinocytes in vitro. CTx-FITCbright cells are mitotically active whereas a large proportion of CTx-FITCdim cells are quiescent. We conclude that the epidermal stem-like cells, previously shown to occupy the tips of dermal papillae and to exhibit high density of membrane beta1 integrin have a low content of lipid rafts. In contrast, the putative transit amplifying cells in deep rate ridges show enrichment in lipid rafts. Thus, lipid rafts may be a factor controlling the mitotic activity of epidermal keratinocytes and possibly the differentiation of stem cells into the transit amplifying cells.
Collapse
Affiliation(s)
- Robert Gniadecki
- Department of Dermatology D92, Bispebjerg Hospital, Bispebjerg bake 23, University of Copenhagen, DK-2400 Copenhagen NV, Denmark.
| | | |
Collapse
|
27
|
Brouard MC, Saurat JH, Ghanem G, Siegenthaler G. Urinary excretion of epidermal-type fatty acid-binding protein and S100A7 protein in patients with cutaneous melanoma. Melanoma Res 2002; 12:627-31. [PMID: 12459653 DOI: 10.1097/00008390-200212000-00013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Epidermal-type fatty acid-binding protein (E-FABP), a protein related to the intracellular trafficking of fatty acids, is expressed in melanocytic tumours but not in normal human melanocytes. E-FABP interacts with S100A7. The presence of these two proteins was investigated in the urine of patients with cutaneous melanoma or other types of cancer, and healthy controls. The first voided morning urine samples of 31 patients with melanoma, 73 patients with other types of cancer and 17 healthy controls were concentrated and submitted to sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) immunoblotting for protein detection. In the healthy controls, the incidences of urinary detection of these proteins were higher in females than in males, being 50% (five out of 10) versus 0% (zero out of seven) for E-FABP ( < 0.05), and 70% (seven out of 10) versus 0% (zero out of seven) for S100A7 ( < 0.05). Both proteins were detected in the urine of patients with melanoma. The incidence of S100A7 was higher in the urine of patients with melanoma (77%, 24 out of 31) compared with healthy controls (41%, seven out of 17) and patients with other types of cancer (53%, 39 out of 73) ( < 0.03). In contrast, the incidence of E-FABP was the same among the melanoma group (39%, 12 out of 31), healthy controls (29%, five out of 17) and patients with other types of cancer (23%, 17 out of 73). Surprisingly, E-FABP was always detected in the urine of females with stage I/II or III melanoma, but was no longer detectable in the urine of patients with stage IV melanoma. Urinary S100A7 may have some specificity to the host response to melanoma since its incidence was not increased in other cancers. The lack of E-FABP detection in the urine of patients with distant metastases suggests an inverse relationship between E-FABP release and the spread of melanoma.
Collapse
Affiliation(s)
- M C Brouard
- Department of Dermatology, University Hospital, Geneva, Switzerland.
| | | | | | | |
Collapse
|
28
|
Morrison RS, Kinoshita Y, Johnson MD, Uo T, Ho JT, McBee JK, Conrads TP, Veenstra TD. Proteomic analysis in the neurosciences. Mol Cell Proteomics 2002; 1:553-60. [PMID: 12376570 DOI: 10.1074/mcp.r200004-mcp200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteomics is a field of study directed toward providing a comprehensive view of the characteristics and activity of every cellular protein. Rapid innovations in the core technologies required to characterize proteins on a global scale are poised to bring about a comprehensive understanding of how dynamic changes in protein expression, post-translational modification, and function affect complex signaling and regulatory networks. These advances have significant implications for understanding the multitude of pathways that govern behavior and cognition and the response of the nervous system to injury and disease.
Collapse
Affiliation(s)
- Richard S Morrison
- Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98195-6470, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The clinical implications of understanding epidermal stem cell biology abound. Thousands of burns victims across the world have benefited from early research into the proliferation of epidermal keratinocytes in vitro. Advances now indicate there are a number of stem cell repositories within the epidermis, two of which, the interfollicular epidermis and the bulge region of the hair follicle, may supply each other when damaged. This review details the progress made in the identification and characterisation of stem cells within the epidermis and discusses the molecules involved in the epidermal stem cell's choice of fate. Finally, the skin, like bone marrow, could be a readily accessible source of stem cells for therapeutic intervention and evidence of skin stem cell plasticity is highlighted.
Collapse
Affiliation(s)
- Sam M Janes
- Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
| | | | | |
Collapse
|
30
|
Yu LR, Johnson MD, Conrads TP, Smith RD, Morrison RS, Veenstra TD. Proteome analysis of camptothecin-treated cortical neurons using isotope-coded affinity tags. Electrophoresis 2002; 23:1591-8. [PMID: 12179976 DOI: 10.1002/1522-2683(200206)23:11<1591::aid-elps1591>3.0.co;2-#] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Isotope-coded affinity tags (ICATs) were employed to identify and quantitate changes in protein expression between control and camptothecin-treated mouse cortical neurons. Proteins extracted from control cortical neurons and those treated with camptothecin were labeled with the light and heavy isotopic versions of the ICAT reagents, respectively. ICAT-labeled samples were combined, proteolytically digested, and the derivatized peptides isolated using immobilized avidin chromatography. The peptides thus isolated were analyzed by reversed-phase liquid chromatography coupled directly to either a conventional ion-trap mass spectrometer (IT-MS) or a Fourier transform ion cyclotron resonance mass spectrometer (FTICR). While a majority of the peptide identifications were accomplished using IT-MS, FTICR was used to quantitate the relative abundances of the ICAT-labeled peptides taking advantage of its high resolution, sensitivity, and duty cycle. By using this combination of MS technologies we have thus far identified and quantified the expression of greater than 125 proteins from control and camptothecin-treated mouse cortical neurons. While proteins from most functional classes of proteins were identified, a particularly large percentage of the enzymes involved in glycolysis and the tricarboxylic acid cycle were observed.
Collapse
Affiliation(s)
- Li-Rong Yu
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
In this review, I summarise recent work from my laboratory in which we have been examining the distribution of stem cells in human interfollicular epidermis and the factors that regulate stem cell fate in vitro. The non-random distribution of stem cells is emphasised and beta1 integrins and Delta1 are suggested to play a role in stem cell patterning. beta1 integrins, Notch, c-Myc and beta-catenin all regulate the size of the stem cell compartment in vitro and recent evidence from transgenic mice suggests that they are also important in vivo.
Collapse
|
32
|
Owada Y, Takano H, Yamanaka H, Kobayashi H, Sugitani Y, Tomioka Y, Suzuki I, Suzuki R, Terui T, Mizugaki M, Tagami H, Noda T, Kondo H. Altered water barrier function in epidermal-type fatty acid binding protein-deficient mice. J Invest Dermatol 2002; 118:430-5. [PMID: 11874481 DOI: 10.1046/j.0022-202x.2001.01616.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have generated mutant mice for epidermal-type fatty acid binding protein by the gene targeting technique and examined the phenotype in detail. Despite a lack in the expression of epidermal-type fatty acid binding protein mRNA and its protein in the skin and other tissues of the mutant mice, the animals appeared normal in gross and histologic examination. Northern blot analysis of other fatty acid binding proteins revealed a distinct elevated gene expression of heart-type fatty acid binding protein in the skin of the homozygous mice. In analyses of the skin, no differences were observed in contents of major fatty acids, electron microscopic appearance as well as inflammatory responses in ear skin between the mutant and wild-type mice. Basal transepidermal water loss of homozygous mice was lower than that of the wild mice. When acetone was applied to the skin for disruption of the water permeability barrier, recovery in transepidermal water loss was delayed, although maximum transepidermal water loss upon acetone treatment was similar between homozygous and wild-type mice in terms of size and time course. The molecular mechanism by which epidermal-type fatty acid binding protein contributes to the water barrier function of the skin remains to be elucidated.
Collapse
Affiliation(s)
- Yuji Owada
- Division of Histology, Division of Molecular Genetics, Department of Cell Biology, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
O'Shaughnessy RF, Christiano AM. Stem cells in the epidermis. SKIN PHARMACOLOGY AND APPLIED SKIN PHYSIOLOGY 2001; 14:350-7. [PMID: 11598434 DOI: 10.1159/000056368] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The epidermis consists of three actively proliferating units, the interfollicular epidermis, the hair follicle, and the sebaceous gland. Stem cells in the epidermis have the capacity to produce all three of these units. The fate of the epidermal stem cells and some of their progeny can be altered, dependent on the environment in which they reside and the genes they express. In this review, we describe the major experiments that have contributed to the understanding of the epidermal stem cells and the control of their fate.
Collapse
Affiliation(s)
- R F O'Shaughnessy
- Department of Dermatology, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
34
|
Abstract
Recent studies highlight characteristics of epidermal stem cells that were not fully appreciated before. Stem cells are multipotential and signals exchanged with their neighbours help to regulate exit from the stem cell compartment and differentiation along specific lineages. Stem cells exhibit a high degree of spatial organisation, and cell clustering and motility contribute to the assembly and maintenance of the epidermis.
Collapse
Affiliation(s)
- F M Watt
- Keratinocyte Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, WC2A 3PX, London, UK.
| |
Collapse
|