1
|
Korostelev AA. Diversity and Similarity of Termination and Ribosome Rescue in Bacterial, Mitochondrial, and Cytoplasmic Translation. BIOCHEMISTRY (MOSCOW) 2021; 86:1107-1121. [PMID: 34565314 DOI: 10.1134/s0006297921090066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
When a ribosome encounters the stop codon of an mRNA, it terminates translation, releases the newly made protein, and is recycled to initiate translation on a new mRNA. Termination is a highly dynamic process in which release factors (RF1 and RF2 in bacteria; eRF1•eRF3•GTP in eukaryotes) coordinate peptide release with large-scale molecular rearrangements of the ribosome. Ribosomes stalled on aberrant mRNAs are rescued and recycled by diverse bacterial, mitochondrial, or cytoplasmic quality control mechanisms. These are catalyzed by rescue factors with peptidyl-tRNA hydrolase activity (bacterial ArfA•RF2 and ArfB, mitochondrial ICT1 and mtRF-R, and cytoplasmic Vms1), that are distinct from each other and from release factors. Nevertheless, recent structural studies demonstrate a remarkable similarity between translation termination and ribosome rescue mechanisms. This review describes how these pathways rely on inherent ribosome dynamics, emphasizing the active role of the ribosome in all translation steps.
Collapse
Affiliation(s)
- Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Palma M, Lejeune F. Deciphering the molecular mechanism of stop codon readthrough. Biol Rev Camb Philos Soc 2020; 96:310-329. [PMID: 33089614 DOI: 10.1111/brv.12657] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 12/11/2022]
Abstract
Recognition of the stop codon by the translation machinery is essential to terminating translation at the right position and to synthesizing a protein of the correct size. Under certain conditions, the stop codon can be recognized as a coding codon promoting translation, which then terminates at a later stop codon. This event, called stop codon readthrough, occurs either by error, due to a dedicated regulatory environment leading to generation of different protein isoforms, or through the action of a readthrough compound. This review focuses on the mechanisms of stop codon readthrough, the nucleotide and protein environments that facilitate or inhibit it, and the therapeutic interest of stop codon readthrough in the treatment of genetic diseases caused by nonsense mutations.
Collapse
Affiliation(s)
- Martine Palma
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020 - U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Fabrice Lejeune
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020 - U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| |
Collapse
|
3
|
Polshakov VI, Eliseev BD, Frolova LY, Chang CF, Huang TH. Backbone (1)H, (13)C and (15)N resonance assignments of the human eukaryotic release factor eRF1. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:37-42. [PMID: 24452424 DOI: 10.1007/s12104-014-9540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 01/04/2014] [Indexed: 06/03/2023]
Abstract
Eukaryotic translation termination is mediated by two interacting release factors, eukaryotic class 1 release factor (eRF1) and eukaryotic class 3 release factor (eRF3), which act cooperatively to ensure efficient stop codon recognition and fast polypeptide release. eRF1 consisting of three well-defined functional domains recognizes all three mRNA stop codons located in the A site of the small ribosomal subunit and triggers hydrolysis of the ester bond of peptidyl-tRNA in the peptidyl transfer center of the large ribosomal subunit. Nevertheless, various aspects of molecular mechanism of translation termination in eukaryotes remain unclear. Elucidation of the structure and dynamics of eRF1 in solution is essential for understanding molecular mechanism of its function in translation termination. To approach this problem, here we report NMR backbone signal assignments of the human eRF1 (437 a.a., 50 kDa).
Collapse
Affiliation(s)
- Vladimir I Polshakov
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia,
| | | | | | | | | |
Collapse
|
4
|
Nizhnikov AA, Antonets KS, Inge-Vechtomov SG, Derkatch IL. Modulation of efficiency of translation termination in Saccharomyces cerevisiae. Prion 2014; 8:247-60. [PMID: 25486049 DOI: 10.4161/pri.29851] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nonsense suppression is a readthrough of premature termination codons. It typically occurs either due to the recognition of stop codons by tRNAs with mutant anticodons, or due to a decrease in the fidelity of translation termination. In the latter case, suppressors usually promote the readthrough of different types of nonsense codons and are thus called omnipotent nonsense suppressors. Omnipotent nonsense suppressors were identified in yeast Saccharomyces cerevisiae in 1960s, and most of subsequent studies were performed in this model organism. Initially, omnipotent suppressors were localized by genetic analysis to different protein- and RNA-encoding genes, mostly the components of translational machinery. Later, nonsense suppression was found to be caused not only by genomic mutations, but also by epigenetic elements, prions. Prions are self-perpetuating protein conformations usually manifested by infectious protein aggregates. Modulation of translational accuracy by prions reflects changes in the activity of their structural proteins involved in different aspects of protein synthesis. Overall, nonsense suppression can be seen as a "phenotypic mirror" of events affecting the accuracy of the translational machine. However, the range of proteins participating in the modulation of translation termination fidelity is not fully elucidated. Recently, the list has been expanded significantly by findings that revealed a number of weak genetic and epigenetic nonsense suppressors, the effect of which can be detected only in specific genetic backgrounds. This review summarizes the data on the nonsense suppressors decreasing the fidelity of translation termination in S. cerevisiae, and discusses the functional significance of the modulation of translational accuracy.
Collapse
Affiliation(s)
- Anton A Nizhnikov
- a Department of Genetics and Biotechnology ; St. Petersburg State University ; St. Petersburg , Russia
| | | | | | | |
Collapse
|
5
|
Xu L, Hao Y, Li C, Shen Q, Chai B, Wang W, Liang A. Identification of amino acids responsible for stop codon recognition for polypeptide chain release factor. Biochem Cell Biol 2013; 91:155-64. [PMID: 23668788 DOI: 10.1139/bcb-2012-0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One factor involved in eukaryotic translation termination is class 1 release factor in eukaryotes (eRF1), which functions to decode stop codons. Variant code species, such as ciliates, frequently exhibit altered stop codon recognition. Studies revealed that some class-specific residues in the eRF1 N-terminal domain are responsible for stop codon reassignment in ciliates. Here, we investigated the effects on stop codon recognition of chimeric eRF1s containing the N-terminal domain of Euplotes octocarinatus and Blepharisma japonicum eRF1 fused to Saccharomyces cerevisiae M and C domains using dual luciferase read-through assays. Mutation of class-specific residues in different eRF1 classes was also studied to identify key residues and motifs involved in stop codon decoding. As expected, our results demonstrate that 3 pockets within the eRF1 N-terminal domain were involved in decoding stop codon nucleotides. However, allocation of residues to each pocket was revalued. Our data suggest that hydrophobic and class-specific surface residues participate in different functions: modulation of pocket conformation and interaction with stop codon nucleotides, respectively. Residues conserved across all eRF1s determine the relative orientation of the 3 pockets according to stop codon nucleotides. However, quantitative analysis of variant ciliate and yeast eRF1 point mutants did not reveal any correlation between evolutionary conservation of class-specific residues and termination-related functional specificity and was limited in elucidating a detailed mechanism for ciliate stop codon reassignment. Thus, based on isolation of suppressor tRNAs from Euplotes and Tetrahymena, we propose that stop codon reassignment in ciliates may be controlled by cooperation between eRF1 and suppressor tRNAs.
Collapse
Affiliation(s)
- Lijun Xu
- a Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, China; and Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | | | | | | | | | | | | |
Collapse
|
6
|
A Single Amino Acid Substitution Alters Omnipotent eRF1 of Dileptus to Euplotes-type Dualpotent eRF1: Standard Codon Usage May be Advantageous in Raptorial Ciliates. Protist 2013; 164:440-9. [DOI: 10.1016/j.protis.2013.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 02/19/2013] [Accepted: 02/19/2013] [Indexed: 11/23/2022]
|
7
|
Kryuchkova P, Grishin A, Eliseev B, Karyagina A, Frolova L, Alkalaeva E. Two-step model of stop codon recognition by eukaryotic release factor eRF1. Nucleic Acids Res 2013; 41:4573-86. [PMID: 23435318 PMCID: PMC3632111 DOI: 10.1093/nar/gkt113] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Release factor eRF1 plays a key role in the termination of protein synthesis in eukaryotes. The eRF1 consists of three domains (N, M and C) that perform unique roles in termination. Previous studies of eRF1 point mutants and standard/variant code eRF1 chimeras unequivocally demonstrated a direct involvement of the highly conserved N-domain motifs (NIKS, YxCxxxF and GTx) in stop codon recognition. In the current study, we extend this work by investigating the role of the 41 invariant and conserved N-domain residues in stop codon decoding by human eRF1. Using a combination of the conservative and non-conservative amino acid substitutions, we measured the functional activity of >80 mutant eRF1s in an in vitro reconstituted eukaryotic translation system and selected 15 amino acid residues essential for recognition of different stop codon nucleotides. Furthermore, toe-print analyses provide evidence of a conformational rearrangement of ribosomal complexes that occurs during binding of eRF1 to messenger RNA and reflects stop codon decoding activity of eRF1. Based on our experimental data and molecular modelling of the N-domain at the ribosomal A site, we propose a two-step model of stop codon decoding in the eukaryotic ribosome.
Collapse
Affiliation(s)
- Polina Kryuchkova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
8
|
Conard SE, Buckley J, Dang M, Bedwell GJ, Carter RL, Khass M, Bedwell DM. Identification of eRF1 residues that play critical and complementary roles in stop codon recognition. RNA (NEW YORK, N.Y.) 2012; 18:1210-21. [PMID: 22543865 PMCID: PMC3358643 DOI: 10.1261/rna.031997.111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/15/2012] [Indexed: 05/31/2023]
Abstract
The initiation and elongation stages of translation are directed by codon-anticodon interactions. In contrast, a release factor protein mediates stop codon recognition prior to polypeptide chain release. Previous studies have identified specific regions of eukaryotic release factor one (eRF1) that are important for decoding each stop codon. The cavity model for eukaryotic stop codon recognition suggests that three binding pockets/cavities located on the surface of eRF1's domain one are key elements in stop codon recognition. Thus, the model predicts that amino acid changes in or near these cavities should influence termination in a stop codon-dependent manner. Previous studies have suggested that the TASNIKS and YCF motifs within eRF1 domain one play important roles in stop codon recognition. These motifs are highly conserved in standard code organisms that use UAA, UAG, and UGA as stop codons, but are more divergent in variant code organisms that have reassigned a subset of stop codons to sense codons. In the current study, we separately introduced TASNIKS and YCF motifs from six variant code organisms into eRF1 of Saccharomyces cerevisiae to determine their effect on stop codon recognition in vivo. We also examined the consequences of additional changes at residues located between the TASNIKS and YCF motifs. Overall, our results indicate that changes near cavities two and three frequently mediated significant effects on stop codon selectivity. In particular, changes in the YCF motif, rather than the TASNIKS motif, correlated most consistently with variant code stop codon selectivity.
Collapse
Affiliation(s)
- Sara E. Conard
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Jessica Buckley
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Mai Dang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Gregory J. Bedwell
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Richard L. Carter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Mohamed Khass
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - David M. Bedwell
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| |
Collapse
|
9
|
Polshakov VI, Eliseev BD, Birdsall B, Frolova LY. Structure and dynamics in solution of the stop codon decoding N-terminal domain of the human polypeptide chain release factor eRF1. Protein Sci 2012; 21:896-903. [PMID: 22517631 DOI: 10.1002/pro.2067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/15/2012] [Accepted: 03/17/2012] [Indexed: 11/07/2022]
Abstract
The high-resolution NMR structure of the N-domain of human eRF1, responsible for stop codon recognition, has been determined in solution. The overall fold of the protein is the same as that found in the crystal structure. However, the structures of several loops, including those participating in stop codon decoding, are different. Analysis of the NMR relaxation data reveals that most of the regions with the highest structural discrepancy between the solution and solid states undergo internal motions on the ps-ns and ms time scales. The NMR data show that the N-domain of human eRF1 exists in two conformational states. The distribution of the residues having the largest chemical shift differences between the two forms indicates that helices α2 and α3, with the NIKS loop between them, can switch their orientation relative to the β-core of the protein. Such structural plasticity may be essential for stop codon recognition by human eRF1.
Collapse
Affiliation(s)
- Vladimir I Polshakov
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
| | | | | | | |
Collapse
|
10
|
Functional characterization of polypeptide release factor 1b in the ciliate Euplotes. Biosci Rep 2010; 30:425-31. [DOI: 10.1042/bsr20090154] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In higher eukaryotes, RF-I (class I release factor) [eRF1 (eukaryotic release factor 1)] is responsible for stop codon recognition and promotes nascent polypeptide release from the ribosome. Interestingly, two class I RFs, eRF1a and eRF1b, have been identified among the ciliates Euplotes, which are variant code organisms. In the present study, we analysed the comparative expression of eRF1a and eRF1b in Euplotes cells, demonstrating that the expression of eRF1b was higher than that of eRF1a. An interaction between eRF1b and eRF3 was confirmed, suggesting that an eRF1b function is facilitated by eRF3. Co-localization of both eRF1s indicated that they function in the same subcellular location in Euplotes cells. We also analysed the characteristics of stop codon discrimination by eRF1b. Like eRF1a, eRF1b recognized UAA and UAG as stop codons, but not UGA. This finding disagreed with the deduced characteristics of eRF1a/eRF1b from the classic hypothesis of ‘anticodon-mimicry’ proposed by Muramatsu et al. [Muramatsu, Heckmann, Kitanaka and Kuchino (2001) FEBS Lett. 488, 105–109]. Mutagenesis experiments indicated that the absolutely conserved amino acid motif ‘G31T32’ (numbered as for human eRF1) in eRF1b was the key to efficient stop codon recognition by eRF1b. In conclusion, these findings support and improve the ‘cavity model’ of stop codon discrimination by eRF1 proposed by Bertram et al. [Bertram, Bell, Ritchie, Fullerton and Stansfield (2000) RNA 6, 1236–1247] and Inagaki et al. [Inagaki, Blouin, Doolittle and Roger (2002) Nucleic Acids Res. 30, 532–544].
Collapse
|
11
|
Eliseev B, Kryuchkova P, Alkalaeva E, Frolova L. A single amino acid change of translation termination factor eRF1 switches between bipotent and omnipotent stop-codon specificity. Nucleic Acids Res 2010; 39:599-608. [PMID: 20860996 PMCID: PMC3025575 DOI: 10.1093/nar/gkq759] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In eukaryotes a single class-1 translation termination factor eRF1 decodes the three stop codons: UAA, UAG and UGA. Some ciliates, like Euplotes, have a variant code, and here eRF1s exhibit UAR-only specificity, whereas UGA is reassigned as a sense codon. Since eukaryote eRF1 stop-codon recognition is associated with its N-terminal domain, structural features should exist in the N domain of ciliate eRF1s that restrict their stop-codon specificity. Using an in vitro reconstituted eukaryotic translation system we demonstrate here that a chimeric eRF1 composed of the N domain of Euplotes aediculatus eRF1 fused to the MC domains of human eRF1 exhibits UAR-only specificity. Functional analysis of eRF1 chimeras constructed by swapping Euplotes N domain sequences with the cognate regions from human eRF1 as well as site-directed mutagenesis of human eRF1 highlighted the crucial role of the alanine residue in position 70 of E. aediculatus eRF1 in restricting UGA decoding. Switching the UAR-only specificity of E. aediculatus eRF1 to omnipotent mode is due to a single point mutation. Furthermore, we examined the influence of eRF3 on the ability of chimeric and mutant eRF1s to induce peptide release in response to different stop codons.
Collapse
Affiliation(s)
- Boris Eliseev
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, Russia
| | | | | | | |
Collapse
|
12
|
Merritt GH, Naemi WR, Mugnier P, Webb HM, Tuite MF, von der Haar T. Decoding accuracy in eRF1 mutants and its correlation with pleiotropic quantitative traits in yeast. Nucleic Acids Res 2010; 38:5479-92. [PMID: 20444877 PMCID: PMC2938225 DOI: 10.1093/nar/gkq338] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 03/24/2010] [Accepted: 04/17/2010] [Indexed: 12/03/2022] Open
Abstract
Translation termination in eukaryotes typically requires the decoding of one of three stop codons UAA, UAG or UGA by the eukaryotic release factor eRF1. The molecular mechanisms that allow eRF1 to decode either A or G in the second nucleotide, but to exclude UGG as a stop codon, are currently not well understood. Several models of stop codon recognition have been developed on the basis of evidence from mutagenesis studies, as well as studies on the evolutionary sequence conservation of eRF1. We show here that point mutants of Saccharomyces cerevisiae eRF1 display significant variability in their stop codon read-through phenotypes depending on the background genotype of the strain used, and that evolutionary conservation of amino acids in eRF1 is only a poor indicator of the functional importance of individual residues in translation termination. We further show that many phenotypes associated with eRF1 mutants are quantitatively unlinked with translation termination defects, suggesting that the evolutionary history of eRF1 was shaped by a complex set of molecular functions in addition to translation termination. We reassess current models of stop-codon recognition by eRF1 in the light of these new data.
Collapse
Affiliation(s)
| | | | | | | | | | - Tobias von der Haar
- Kent Fungal Group and Protein Science Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| |
Collapse
|
13
|
Youngman EM, McDonald ME, Green R. Peptide release on the ribosome: mechanism and implications for translational control. Annu Rev Microbiol 2008; 62:353-73. [PMID: 18544041 DOI: 10.1146/annurev.micro.61.080706.093323] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peptide release, the reaction that hydrolyzes a completed protein from the peptidyl-tRNA upon completion of translation, is catalyzed in the active site of the large subunit of the ribosome and requires a class I release factor protein. The ribosome and release factor protein cooperate to accomplish two tasks: recognition of the stop codon and catalysis of peptidyl-tRNA hydrolysis. Although many fundamental questions remain, substantial progress has been made in the past several years. This review summarizes those advances and presents current models for the mechanisms of stop codon specificity and catalysis of peptide release. Finally, we discuss how these views fit into a larger emerging theme in the translation field: the importance of induced fit and conformational changes for progression through the translation cycle.
Collapse
Affiliation(s)
- Elaine M Youngman
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
14
|
Fan-Minogue H, Du M, Pisarev AV, Kallmeyer AK, Salas-Marco J, Keeling KM, Thompson SR, Pestova TV, Bedwell DM. Distinct eRF3 requirements suggest alternate eRF1 conformations mediate peptide release during eukaryotic translation termination. Mol Cell 2008; 30:599-609. [PMID: 18538658 DOI: 10.1016/j.molcel.2008.03.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 02/25/2008] [Accepted: 03/28/2008] [Indexed: 10/22/2022]
Abstract
Organisms that use the standard genetic code recognize UAA, UAG, and UGA as stop codons, whereas variant code species frequently alter this pattern of stop codon recognition. We previously demonstrated that a hybrid eRF1 carrying the Euplotes octocarinatus domain 1 fused to Saccharomyces cerevisiae domains 2 and 3 (Eo/Sc eRF1) recognized UAA and UAG, but not UGA, as stop codons. In the current study, we identified mutations in Eo/Sc eRF1 that restore UGA recognition and define distinct roles for the TASNIKS and YxCxxxF motifs in eRF1 function. Mutations in or near the YxCxxxF motif support the cavity model for stop codon recognition by eRF1. Mutations in the TASNIKS motif eliminated the eRF3 requirement for peptide release at UAA and UAG codons, but not UGA codons. These results suggest that the TASNIKS motif and eRF3 function together to trigger eRF1 conformational changes that couple stop codon recognition and peptide release during eukaryotic translation termination.
Collapse
Affiliation(s)
- Hua Fan-Minogue
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Salas-Marco J, Fan-Minogue H, Kallmeyer AK, Klobutcher LA, Farabaugh PJ, Bedwell DM. Distinct paths to stop codon reassignment by the variant-code organisms Tetrahymena and Euplotes. Mol Cell Biol 2006; 26:438-47. [PMID: 16382136 PMCID: PMC1346903 DOI: 10.1128/mcb.26.2.438-447.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The reassignment of stop codons is common among many ciliate species. For example, Tetrahymena species recognize only UGA as a stop codon, while Euplotes species recognize only UAA and UAG as stop codons. Recent studies have shown that domain 1 of the translation termination factor eRF1 mediates stop codon recognition. While it is commonly assumed that changes in domain 1 of ciliate eRF1s are responsible for altered stop codon recognition, this has never been demonstrated in vivo. To carry out such an analysis, we made hybrid proteins that contained eRF1 domain 1 from either Tetrahymena thermophila or Euplotes octocarinatus fused to eRF1 domains 2 and 3 from Saccharomyces cerevisiae. We found that the Tetrahymena hybrid eRF1 efficiently terminated at all three stop codons when expressed in yeast cells, indicating that domain 1 is not the sole determinant of stop codon recognition in Tetrahymena species. In contrast, the Euplotes hybrid facilitated efficient translation termination at UAA and UAG codons but not at the UGA codon. Together, these results indicate that while domain 1 facilitates stop codon recognition, other factors can influence this process. Our findings also indicate that these two ciliate species used distinct approaches to diverge from the universal genetic code.
Collapse
Affiliation(s)
- Joe Salas-Marco
- Department of Microbiology, BBRB 432/Box 8, 1530 Third Avenue South, The University of Alabama at Birmingham, Birmingham, Alabama 35294-2170, USA
| | | | | | | | | | | |
Collapse
|
16
|
Liu Q. Comparative analysis of base biases around the stop codons in six eukaryotes. Biosystems 2006; 81:281-9. [PMID: 15979780 DOI: 10.1016/j.biosystems.2005.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 05/11/2005] [Accepted: 05/14/2005] [Indexed: 11/17/2022]
Abstract
Using full-length cDNA sequences, a comparative analysis of sequence patterns around the stop codons in six eukaryotes was performed. Here, it was showed that the codon immediately before and after the stop codons (defined as -1 codon and +1 codon, respectively) were much more biased than other examined positions, especially at the second position of -1 codons and the first position of +1 codons which were rich in As/Us and purines, respectively, for most species. The author speculated that strongly biased sequence pattern from position -2 to +4 might act as an extended translation termination signal. Translation termination was catalyzed by release factors that recognized the stop codons. The multiple amino acid sequence alignment of eukaryotic release factor 1 (eRF1) of 20 species showed that there were 16 residue sites that were strictly conserved, especially the invariant amino acids Ile70 and Lys71. Accordingly, it could be inferred that those candidate amino acids might involve in the recognition process. Moreover, the possible stop signal recognition hypothesis was also discussed herein.
Collapse
Affiliation(s)
- Qingpo Liu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China.
| |
Collapse
|
17
|
Kolosov P, Frolova L, Seit-Nebi A, Dubovaya V, Kononenko A, Oparina N, Justesen J, Efimov A, Kisselev L. Invariant amino acids essential for decoding function of polypeptide release factor eRF1. Nucleic Acids Res 2005; 33:6418-25. [PMID: 16282590 PMCID: PMC1283522 DOI: 10.1093/nar/gki927] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 10/08/2005] [Accepted: 10/08/2005] [Indexed: 11/12/2022] Open
Abstract
In eukaryotic ribosome, the N domain of polypeptide release factor eRF1 is involved in decoding stop signals in mRNAs. However, structure of the decoding site remains obscure. Here, we specifically altered the stop codon recognition pattern of human eRF1 by point mutagenesis of the invariant Glu55 and Tyr125 residues in the N domain. The 3D structure of generated eRF1 mutants was not destabilized as demonstrated by calorimetric measurements and calculated free energy perturbations. In mutants, the UAG response was most profoundly and selectively affected. Surprisingly, Glu55Arg mutant completely retained its release activity. Substitution of the aromatic ring in position 125 reduced response toward all stop codons. This result demonstrates the critical importance of Tyr125 for maintenance of the intact structure of the eRF1 decoding site. The results also suggest that Tyr125 is implicated in recognition of the 3d stop codon position and probably forms an H-bond with Glu55. The data point to a pivotal role played by the YxCxxxF motif (positions 125-131) in purine discrimination of the stop codons. We speculate that eRF1 decoding site is formed by a 3D network of amino acids side chains.
Collapse
Affiliation(s)
- Petr Kolosov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences119991 Moscow, Russia
- Institute of Molecular Biology, Aarhus UniversityDenmark
- Institute of Protein ResearchPustchino, 142290 Moscow Region, Russia
| | - Ludmila Frolova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences119991 Moscow, Russia
- Institute of Molecular Biology, Aarhus UniversityDenmark
- Institute of Protein ResearchPustchino, 142290 Moscow Region, Russia
| | - Alim Seit-Nebi
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences119991 Moscow, Russia
- Institute of Molecular Biology, Aarhus UniversityDenmark
- Institute of Protein ResearchPustchino, 142290 Moscow Region, Russia
| | - Vera Dubovaya
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences119991 Moscow, Russia
- Institute of Molecular Biology, Aarhus UniversityDenmark
- Institute of Protein ResearchPustchino, 142290 Moscow Region, Russia
| | - Artem Kononenko
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences119991 Moscow, Russia
- Institute of Molecular Biology, Aarhus UniversityDenmark
- Institute of Protein ResearchPustchino, 142290 Moscow Region, Russia
| | - Nina Oparina
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences119991 Moscow, Russia
- Institute of Molecular Biology, Aarhus UniversityDenmark
- Institute of Protein ResearchPustchino, 142290 Moscow Region, Russia
| | - Just Justesen
- Institute of Molecular Biology, Aarhus UniversityDenmark
| | - Alexandr Efimov
- Institute of Protein ResearchPustchino, 142290 Moscow Region, Russia
| | - Lev Kisselev
- To whom correspondence should be addressed. Tel: +7 095 1356009; Fax: +7 095 1351405;
| |
Collapse
|
18
|
Wang W, Zhi H, Chai B, Liang A. Cloning and sequence analysis of the micronuclear and macronuclear gene encoding Rab protein of Euplotes octocarinatus. Biosci Biotechnol Biochem 2005; 69:649-52. [PMID: 15785000 DOI: 10.1271/bbb.69.649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The DNA in a micronucleus undergoes remarkable rearrangements when it develops into a macronucleus after cell mating in the hypotrichous ciliate. A Rab gene was isolated from the macronuclear plasmid mini-library of Euplotes octocarinatus. A micronuclear version of the Rab gene was amplified by polymerase chain reaction (PCR). The macronuclear DNA molecule carrying the Rab gene is 767 bp long and shows characteristics typical of macronuclear chromosomes of hypotrichous ciliates. Three of the five cysteines are encoded by the opal codon UGA. The deduced protein is a 207-amino acid (aa) with a molecular mass of 23 kDa. The protein shares 36% identity with Rab 1 protein of Plasmodium and yeast. Analysis of the sequences indicated that the micronuclear version of the Rab gene contains two internal eliminated sequences, internal eliminated sequence (IES)1 and IES2. IES1 is flanked by a pair of hepta-nucleotide 5'-AAATTTT-3' direct repeats, and IES2 is flanked by 5'-TA-3' direct repeats.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, P.R. China
| | | | | | | |
Collapse
|
19
|
Liang H, Wong JY, Bao Q, Cavalcanti ARO, Landweber LF. Decoding the decoding region: analysis of eukaryotic release factor (eRF1) stop codon-binding residues. J Mol Evol 2005; 60:337-44. [PMID: 15871044 DOI: 10.1007/s00239-004-0211-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 10/18/2004] [Indexed: 10/25/2022]
Abstract
Peptide synthesis in eukaryotes terminates when eukaryotic release factor 1 (eRF1) binds to an mRNA stop codon and occupies the ribosomal A site. Domain 1 of the eRF1 protein has been implicated in stop codon recognition in a number of experimental studies. In order to further pinpoint the residues of this protein involved in stop codon recognition, we sequenced and compared eRF1 genes from a variety of ciliated protozoan species. We then performed a series of computational analyses to evaluate the conservation, accessibility, and structural environment of each amino acid located in domain 1. With this new dataset and methodology, we were able to identify eight specific amino acid sites important for stop codon recognition and also to propose a set of cooperative paired substitutions that may underlie stop codon reassignment. Our results are more consistent with current experimental data than previously described models.
Collapse
Affiliation(s)
- Han Liang
- Department of Chemistry, Princeton University, NJ 08544, USA.
| | | | | | | | | |
Collapse
|
20
|
Kim OTP, Yura K, Go N, Harumoto T. Newly sequenced eRF1s from ciliates: the diversity of stop codon usage and the molecular surfaces that are important for stop codon interactions. Gene 2005; 346:277-86. [PMID: 15716103 DOI: 10.1016/j.gene.2004.11.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 11/04/2004] [Accepted: 11/26/2004] [Indexed: 11/18/2022]
Abstract
The genetic code of nuclear genes in some ciliates was found to differ from that of other organisms in the assignment of UGA, UAG, and UAA codons, which are normally assigned as stop codons. In some ciliate species, the universal stop codons UAA and UAG instead encode glutamine. In some other ciliates, the universal stop codon UGA appears to be translated as cysteine or tryptophan. Eukaryotic release factor 1 (eRF1) is a key protein in stop codon recognition, thus, the protein is believed to play an important role in the stop codon reassignment in ciliates. We have cloned, sequenced, and analyzed the cDNA of eRF1 from four ciliate species of three different classes: Karyorelictea (Loxodes striatus), Heterotrichea (Blepharisma musculus), and Litostomatea (Didinium nasutum, Dileptus margaritifer). Phylogenetic analysis of these eRF1s supports the hypothesis that the genetic code in ciliates has deviated independently several times from the universal genetic code, and that different ciliate eRF1s may have undergone different processes to change the codon specificity. Using computational methods, we have also suggested areas on the surface of eRF1s that are important for stop codon recognition in ciliate eRF1s.
Collapse
Affiliation(s)
- Oanh Thi Phuong Kim
- The Division of Human Environmental Sciences, Graduate School of Human Culture, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan
| | | | | | | |
Collapse
|
21
|
Chapman B, Brown C. Translation termination in Arabidopsis thaliana: characterisation of three versions of release factor 1. Gene 2004; 341:219-25. [PMID: 15474304 DOI: 10.1016/j.gene.2004.06.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Revised: 05/14/2004] [Accepted: 06/29/2004] [Indexed: 10/26/2022]
Abstract
Translation termination is mediated in all eukaryotes by the two release factors eRF1 and eRF3. Most organisms have a single eRF1 gene, however, three isogenes of eRF1 are found in Arabidopsis thaliana. They have no introns in the coding region which may indicate that some are pseudogenes. However, each was expressed and able to rescue a temperature sensitive eRF1-mutant of Saccharomyces cerevisiae indicating functional redundancy in A. thaliana. While normally a highly accurate process, translation termination can be directed to fail by sequence elements within an messenger RNA (mRNA). Interestingly, a well-characterised readthrough element follows the stop codon in one of these three isogenes (designated eRF1-1). This element was shown to be capable of inducing readthrough in an in vitro assay using a dual luciferase reporter, but surprisingly readthrough could not be detected using the complete gene context. The results highlight the diversity and duplication of genes within plant genomes, but also emphasize the conservation of the translation process across kingdoms.
Collapse
Affiliation(s)
- Bernice Chapman
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| | | |
Collapse
|
22
|
Abstract
Great advances have been made in the past three decades in understanding the molecular mechanics underlying protein synthesis in bacteria, but our understanding of the corresponding events in eukaryotic organisms is only beginning to catch up. In this review we describe the current state of our knowledge and ignorance of the molecular mechanics underlying eukaryotic translation. We discuss the mechanisms conserved across the three kingdoms of life as well as the important divergences that have taken place in the pathway.
Collapse
Affiliation(s)
- Lee D Kapp
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA.
| | | |
Collapse
|
23
|
Dubourg C, Toutain B, Le Gall JY, Le Treut A, Guenet L. Promoter analysis of the human translation termination factor 1 gene. Gene 2004; 316:91-101. [PMID: 14563555 DOI: 10.1016/s0378-1119(03)00742-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The human translation termination factor 1 (ETF1) gene encodes a class-1 release factor, eRF1, which catalyses termination of protein synthesis at all three stop codons. In this report, we describe the functional organization of the 5'-region of the gene. Primer extension and ribonuclease protection mapping revealed three transcription start sites clustered within approximately 10 bp. DNase I-hypersensitive site analysis identified five hypersensitive sites, one of which was located downstream of the initiation start sites. We used transient expression assays to define the 5'-regulating regions and in vivo and in vitro footprinting analysis to identify potential cis-acting regulatory elements. A basal promoter, spanning nucleotides -210/+117, contained no TATA box but a putative initiator element (Inr) and multiple potential Sp1/Sp3 binding sites, and thus displayed some of the features of a housekeeping gene. An additional upstream promoter containing positive and negative regulatory elements also regulated ETF1 gene expression. Real-time quantitative RT-PCR analysis showed tissue-specific expression of ETF1 transcripts in mouse tissues. Our results are suggestive of a constitutive expression of the human ETF1 gene but with possible cell- and tissue-specific regulation.
Collapse
Affiliation(s)
- Christèle Dubourg
- Département de Biochimie et Biologie Moléculaire, UMR 6061 "Génétique et Développement", Faculté de Médecine, CS 34317, 2 Avenue du Pr. Leon Bernard, 35043 Cedex, Rennes, France
| | | | | | | | | |
Collapse
|
24
|
Chavatte L, Frolova L, Laugâa P, Kisselev L, Favre A. Stop codons and UGG promote efficient binding of the polypeptide release factor eRF1 to the ribosomal A site. J Mol Biol 2003; 331:745-58. [PMID: 12909007 DOI: 10.1016/s0022-2836(03)00813-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To investigate the codon dependence of human eRF1 binding to the mRNA-ribosome complex, we examined the formation of photocrosslinks between ribosomal components and mRNAs bearing a photoactivable 4-thiouridine probe in the first position of the codon located in the A site. Addition of eRF1 to the phased mRNA-ribosome complexes triggers a codon-dependent quenching of crosslink formation. The concentration of eRF1 triggering half quenching ranges from low for the three stop codons, to intermediate for s4UGG and high for other near-cognate triplets. A theoretical analysis of the photochemical processes occurring in a two-state bimolecular model raises a number of stringent conditions, fulfilled by the system studied here, and shows that in any case sound KD values can be extracted if the ratio mT/KD<<1 (mT is total concentration of mRNA added). Considering the KD values obtained for the stop, s4UGG and sense codons (approximately 0.06 microM, 0.45 microM and 2.3 microM, respectively) and our previous finding that only the stop and s4UGG codons are able to promote formation of an eRF1-mRNA crosslink, implying a role for the NIKS loop at the tip of the N domain, we propose a two-step model for eRF1 binding to the A site: a codon-independent bimolecular step is followed by an isomerisation step observed solely with stop and s4UGG codons. Full recognition of the stop codons by the N domain of eRF1 triggers a rearrangement of bound eRF1 from an open to a closed conformation, allowing the universally conserved GGQ loop at the tip of the M domain to come into close proximity of the peptidyl transferase center of the ribosome. UGG is expected to behave as a cryptic stop codon, which, owing to imperfect eRF1-codon recognition, does not allow full reorientation of the M domain of eRF1. As far as the physical steps of eRF1 binding to the ribosome are considered, they appear to closely mimic the behaviour of the tRNA/EF-Tu/GTP complex, but clearly eRF1 is endowed with a greater conformational flexibility than tRNA.
Collapse
Affiliation(s)
- Laurent Chavatte
- Institut Jacques Monod, UMR 7592 CNRS-Universités Paris 7-Paris 6, 2 place Jussieu Tour 43, 75251 Paris, France
| | | | | | | | | |
Collapse
|
25
|
Chavatte L, Kervestin S, Favre A, Jean-Jean O. Stop codon selection in eukaryotic translation termination: comparison of the discriminating potential between human and ciliate eRF1s. EMBO J 2003; 22:1644-53. [PMID: 12660170 PMCID: PMC152891 DOI: 10.1093/emboj/cdg146] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During eukaryotic translation termination, eRF1 responds to three stop codons. However, in ciliates with variant genetic codes, only one or two codons function as a stop signal. To localize the region of ciliate eRF1 implicated in stop codon discrimination, we have constructed ciliate-human hybrid eRF1s by swapping regions of human eRF1 for the equivalent region of ciliate Euplotes eRF1. We have examined the formation of a cross-link between recombinant eRF1s and mRNA analogs containing the photoactivable 4-thiouridine (s(4)U) at the first position of stop and control sense codons. With human eRF1, this cross-link can be detected only when either stop or UGG codons are located in the ribosomal A site. Here we show that the cross-link of the Euplotes-human hybrid eRF1 is restricted to mRNAs containing UAG and UAA codons, and that the entire N-terminal domain of Euplotes eRF1 is involved in discriminating against UGA and UGG. On the basis of these results, we discuss the steps of the selection process that determine the accuracy of stop codon recognition in eukaryotes.
Collapse
Affiliation(s)
- Laurent Chavatte
- Institut Jacques Monod, UMR 7592 CNRS-Universités Paris 7-Paris 6, France
| | | | | | | |
Collapse
|
26
|
Abstract
Recent work suggests that there is a high frequency of programmed +1 translational frameshifting in ciliates of the Euplotes genus. Frequent frameshifting may have been potentiated by stop codon reassignment, which is also a feature of this group.
Collapse
Affiliation(s)
- Lawrence A Klobutcher
- Department of Biochemistry, University of Connecticut Health Center, Farmington, CT 06032, USA.
| | | |
Collapse
|
27
|
Chavatte L, Seit-Nebi A, Dubovaya V, Favre A. The invariant uridine of stop codons contacts the conserved NIKSR loop of human eRF1 in the ribosome. EMBO J 2002; 21:5302-11. [PMID: 12356746 PMCID: PMC129024 DOI: 10.1093/emboj/cdf484] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To unravel the region of human eukaryotic release factor 1 (eRF1) that is close to stop codons within the ribosome, we used mRNAs containing a single photoactivatable 4-thiouridine (s(4)U) residue in the first position of stop or control sense codons. Accurate phasing of these mRNAs onto the ribosome was achieved by the addition of tRNA(Asp). Under these conditions, eRF1 was shown to crosslink exclusively to mRNAs containing a stop or s(4)UGG codon. A procedure that yielded (32)P-labeled eRF1 deprived of the mRNA chain was developed; analysis of the labeled peptides generated after specific cleavage of both wild-type and mutant eRF1s maps the crosslink in the tripeptide KSR (positions 63-65 of human eRF1) and points to K63 located in the conserved NIKS loop as the main crosslinking site. These data directly show the interaction of the N-terminal (N) domain of eRF1 with stop codons within the 40S ribosomal subunit and provide strong support for the positioning of the eRF1 middle (M) domain on the 60S subunit. Thus, the N and M domains mimic the tRNA anticodon and acceptor arms, respectively.
Collapse
Affiliation(s)
- Laurent Chavatte
- Institut Jacques Monod, UMR 7592 CNRS-Universités Paris 7–Paris 6, 2 place Jussieu, F-75251 Paris cedex 05, France and Engelhardt Institute of Molecular Biology, Moscow 119991, Russia Present address: Cleveland Clinic Foundation, 9500 Euclid Avenue NC-10, Cleveland, OH 44195, USA Corresponding author e-mail:
| | - Alim Seit-Nebi
- Institut Jacques Monod, UMR 7592 CNRS-Universités Paris 7–Paris 6, 2 place Jussieu, F-75251 Paris cedex 05, France and Engelhardt Institute of Molecular Biology, Moscow 119991, Russia Present address: Cleveland Clinic Foundation, 9500 Euclid Avenue NC-10, Cleveland, OH 44195, USA Corresponding author e-mail:
| | - Vera Dubovaya
- Institut Jacques Monod, UMR 7592 CNRS-Universités Paris 7–Paris 6, 2 place Jussieu, F-75251 Paris cedex 05, France and Engelhardt Institute of Molecular Biology, Moscow 119991, Russia Present address: Cleveland Clinic Foundation, 9500 Euclid Avenue NC-10, Cleveland, OH 44195, USA Corresponding author e-mail:
| | - Alain Favre
- Institut Jacques Monod, UMR 7592 CNRS-Universités Paris 7–Paris 6, 2 place Jussieu, F-75251 Paris cedex 05, France and Engelhardt Institute of Molecular Biology, Moscow 119991, Russia Present address: Cleveland Clinic Foundation, 9500 Euclid Avenue NC-10, Cleveland, OH 44195, USA Corresponding author e-mail:
| |
Collapse
|
28
|
Seit-Nebi A, Frolova L, Kisselev L. Conversion of omnipotent translation termination factor eRF1 into ciliate-like UGA-only unipotent eRF1. EMBO Rep 2002; 3:881-6. [PMID: 12189178 PMCID: PMC1084231 DOI: 10.1093/embo-reports/kvf178] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In eukaryotic ribosomes, termination of translation is triggered by class 1 polypeptide release factor, eRF1. In organisms with a universal code, eRF1 responds to three stop codons, whereas, in ciliates with variant codes, only one or two codon(s) remain(s) as stop signals. By mutagenesis of the Y-C-F minidomain of the N domain, we converted an omnipotent human eRF1 recognizing all three stop codons into a unipotent 'ciliate-like' UGA-only eRF1. The conserved Cys127 located in the Y-C-F minidomain plays a critical role in stop codon recognition. The UGA-only response has also been achieved by concomitant substitutions of four other amino acids located at the Y-C-F and NIKS minidomains of eRF1. We suggest that for eRF1 the stop codon decoding is of a non-linear (non-protein-anticodon) type and explores a combination of positive and negative determinants. We assume that stop codon recognition is profoundly different by eukaryotic and prokaryotic class 1 RFs.
Collapse
Affiliation(s)
- Alim Seit-Nebi
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | | | | |
Collapse
|
29
|
Ito K, Frolova L, Seit-Nebi A, Karamyshev A, Kisselev L, Nakamura Y. Omnipotent decoding potential resides in eukaryotic translation termination factor eRF1 of variant-code organisms and is modulated by the interactions of amino acid sequences within domain 1. Proc Natl Acad Sci U S A 2002; 99:8494-9. [PMID: 12084909 PMCID: PMC124286 DOI: 10.1073/pnas.142690099] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In eukaryotes, a single translational release factor, eRF1, deciphers three stop codons, although its decoding mechanism remains puzzling. In the ciliate Tetrahymena thermophila, UAA and UAG codons are reassigned to Gln codons. A yeast eRF1-domain swap containing Tetrahymena domain 1 responded only to UGA in vitro and failed to complement a defect in yeast eRF1 in vivo at 37 degrees C. This finding demonstrates that decoding specificity of eRF1 from variant code organisms resides at domain 1. However, the wild-type eRF1 hybrid fully restored the growth of eRF1-deficient yeast at 30 degrees C. Tetrahymena eRF1 contains a variant sequence, KATNIKD, at the tip of domain 1. The TASNIKD variant of hybrid eRF1 rendered the eRF1-nullified yeast viable, although in an in vitro assay, the same hybrid eRF1 responded only to UGA. Nevertheless, the yeast eRF1 bearing the KATNIKD motif instead of the TASNIKS heptapeptide present in higher eukaryotes remains omnipotent in vivo. Collectively, these data suggest that variant genetic code organisms like Tetrahymena have an intrinsic potential to decode three stop codons in vivo, and that interaction within domain 1 between the KAT tripeptide and other sequences modulates the decoding specificity of Tetrahymena eRF1.
Collapse
Affiliation(s)
- Koichi Ito
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Inagaki Y, Blouin C, Doolittle WF, Roger AJ. Convergence and constraint in eukaryotic release factor 1 (eRF1) domain 1: the evolution of stop codon specificity. Nucleic Acids Res 2002; 30:532-44. [PMID: 11788716 PMCID: PMC99827 DOI: 10.1093/nar/30.2.532] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Class 1 release factor in eukaryotes (eRF1) recognizes stop codons and promotes peptide release from the ribosome. The 'molecular mimicry' hypothesis suggests that domain 1 of eRF1 is analogous to the tRNA anticodon stem-loop. Recent studies strongly support this hypothesis and several models for specific interactions between stop codons and residues in domain 1 have been proposed. In this study we have sequenced and identified novel eRF1 sequences across a wide diversity of eukaryotes and re-evaluated the codon-binding site by bioinformatic analyses of a large eRF1 dataset. Analyses of the eRF1 structure combined with estimates of evolutionary rates at amino acid sites allow us to define the residues that are under structural (i.e. those involved in intramolecular interactions) versus non-structural selective constraints. Furthermore, we have re-assessed convergent substitutions in the ciliate variant code eRF1s using maximum likelihood-based phylogenetic approaches. Our results favor the model proposed by Bertram et al. that stop codons bind to three 'cavities' on the protein surface, although we suggest that the stop codon may bind in the opposite orientation to the original model. We assess the feasibility of this alternative binding orientation with a triplet stop codon and the eRF1 domain 1 structures using molecular modeling techniques.
Collapse
Affiliation(s)
- Yuji Inagaki
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada.
| | | | | | | |
Collapse
|
31
|
Beier H, Grimm M. Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res 2001; 29:4767-82. [PMID: 11726686 PMCID: PMC96686 DOI: 10.1093/nar/29.23.4767] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Translational stop codon readthrough provides a regulatory mechanism of gene expression that is extensively utilised by positive-sense ssRNA viruses. The misreading of termination codons is achieved by a variety of naturally occurring suppressor tRNAs whose structure and function is the subject of this survey. All of the nonsense suppressors characterised to date (with the exception of selenocysteine tRNA) are normal cellular tRNAs that are primarily needed for reading their cognate sense codons. As a consequence, recognition of stop codons by natural suppressor tRNAs necessitates unconventional base pairings in anticodon-codon interactions. A number of intrinsic features of the suppressor tRNA contributes to the ability to read non-cognate codons. Apart from anticodon-codon affinity, the extent of base modifications within or 3' of the anticodon may up- or down-regulate the efficiency of suppression. In order to out-compete the polypeptide chain release factor an absolute prerequisite for the action of natural suppressor tRNAs is a suitable nucleotide context, preferentially at the 3' side of the suppressed stop codon. Three major types of viral readthrough sites, based on similar sequences neighbouring the leaky stop codon, can be defined. It is discussed that not only RNA viruses, but also the eukaryotic host organism might gain some profit from cellular suppressor tRNAs.
Collapse
Affiliation(s)
- H Beier
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Biozentrum, Am Hubland, D-97074 Würzburg, Germany.
| | | |
Collapse
|
32
|
Kervestin S, Frolova L, Kisselev L, Jean-Jean O. Stop codon recognition in ciliates: Euplotes release factor does not respond to reassigned UGA codon. EMBO Rep 2001; 2:680-4. [PMID: 11463747 PMCID: PMC1083993 DOI: 10.1093/embo-reports/kve156] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In eukaryotes, the polypeptide release factor 1 (eRF1) is involved in translation termination at all three stop codons. However, the mechanism for decoding stop codons remains unknown. A direct interaction of eRF1 with the stop codons has been postulated. Recent studies focus on eRF1 from ciliates in which some stop codons are reassigned to sense codons. Using an in vitro assay based on mammalian ribosomes, we show that eRF1 from the ciliate Euplotes aediculatus responds to UAA and UAG as stop codons and lacks the capacity to decipher the UGA codon, which encodes cysteine in this organism. This result strongly suggests that in ciliates with variant genetic codes eRF1 does not recognize the reassigned codons. Recent hypotheses describing stop codon discrimination by eRF1 are not fully consistent with the set of eRF1 sequences available so far and require direct experimental testing.
Collapse
Affiliation(s)
- S Kervestin
- Unité de Biochimie Cellulaire, CNRS FRE 2219, Université Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
| | | | | | | |
Collapse
|