1
|
Lindemann C, Thomanek N, Kuhlmann K, Meyer HE, Marcus K, Narberhaus F. Next-Generation Trapping of Protease Substrates by Label-Free Proteomics. Methods Mol Biol 2018; 1841:189-206. [PMID: 30259488 DOI: 10.1007/978-1-4939-8695-8_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AAA+ proteases (ATPases associated with various cellular activities) shape the cellular protein pool in response to environmental conditions. A prerequisite for understanding the underlying recognition and degradation principles is the identification of as many protease substrates as possible. Most previous studies made use of inactive protease variants to trap substrates, which were identified by 2D-gel based proteomics. Since this method is known for limitations in the identification of low-abundant proteins or proteins with many transmembrane domains, we established a trapping approach that overcomes these limitations. We used a proteolytically inactive FtsH variant (FtsHtrap) of Escherichia coli (E. coli) that is still able to bind and translocate substrates into the proteolytic chamber but no longer able to degrade proteins. Proteins associated with FtsHtrap or FtsHwt (proteolytically active FtsH) were purified, concentrated by an 1D-short gel, and identified by LC-coupled mass spectrometry (LC-MS) followed by label-free quantification. The identification of four known FtsH substrates validated this approach and suggests that it is generally applicable to AAA+ proteases.
Collapse
Affiliation(s)
- Claudia Lindemann
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Nikolas Thomanek
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Katja Kuhlmann
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Helmut E Meyer
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Franz Narberhaus
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Bochum, Germany.
| |
Collapse
|
2
|
Narberhaus F, Obrist M, Führer F, Langklotz S. Degradation of cytoplasmic substrates by FtsH, a membrane-anchored protease with many talents. Res Microbiol 2009; 160:652-9. [DOI: 10.1016/j.resmic.2009.08.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/17/2009] [Accepted: 08/17/2009] [Indexed: 12/01/2022]
|
3
|
Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response. Microbiol Mol Biol Rev 2008; 72:545-54. [PMID: 18772288 DOI: 10.1128/mmbr.00007-08] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The heat shock response (HSR) is a homeostatic response that maintains the proper protein-folding environment in the cell. This response is universal, and many of its components are well conserved from bacteria to humans. In this review, we focus on the regulation of one of the most well-characterized HSRs, that of Escherichia coli. We show that even for this simple model organism, we still do not fully understand the central component of heat shock regulation, a chaperone-mediated negative feedback loop. In addition, we review other components that contribute to the regulation of the HSR in E. coli and discuss how these additional components contribute to regulation. Finally, we discuss recent genomic experiments that reveal additional functional aspects of the HSR.
Collapse
|
4
|
Dual role of FtsH in regulating lipopolysaccharide biosynthesis in Escherichia coli. J Bacteriol 2008; 190:7117-22. [PMID: 18776015 DOI: 10.1128/jb.00871-08] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In Escherichia coli, FtsH (HflB) is a membrane-bound, ATP-dependent metalloendoprotease belonging to the AAA family (ATPases associated with diverse cellular activities). FtsH has a limited spectrum of known substrates, including the transcriptional activator sigma32. FtsH is the only known E. coli protease that is essential, as it regulates the concentration of LpxC, which carries out the first committed step in the synthesis of lipid A. Here we identify a new FtsH substrate--3-deoxy-D-manno-octulosonate (KDO) transferase--which carries out the attachment of two KDO residues to the lipid A precursor (lipid IVA) to form the minimal essential structure of the lipopolysaccharide (LPS) (KDO2-lipid A). Thus, FtsH regulates the concentration of the lipid moiety of LPS (lipid A) as well as the sugar moiety (KDO-based core oligosaccharides), ensuring a balanced synthesis of LPS.
Collapse
|
5
|
Srinivasan R, Rajeswari H, Ajitkumar P. Analysis of degradation of bacterial cell division protein FtsZ by the ATP-dependent zinc-metalloprotease FtsH in vitro. Microbiol Res 2008; 163:21-30. [PMID: 16638632 DOI: 10.1016/j.micres.2006.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 02/13/2006] [Accepted: 03/06/2006] [Indexed: 11/30/2022]
Abstract
The identity of protease(s), which would degrade bacterial cell division protein FtsZ in vivo, remains unknown. However, we had earlier demonstrated that Escherichia coli metalloprotease FtsH degrades E. coli cell division protein FtsZ in an ATP- and Zn(2+)-dependent manner in vitro. In this study, we examined FtsH protease-mediated degradation of FtsZ in vitro in detail using seven different deletion mutants of FtsZ as the substrates, which lack different extents of specific regions at the N- or C-terminus. FtsH protease assay in vitro on these mutants revealed that FtsH could degrade all the seven deletion mutants irrespective of the deletions or the extent of deletions at the N- or C-terminus. These observations indicated that neither the N-terminus nor the C-terminus was required for the degradation of FtsZ, like already known in the case of the FtsH substrate sigma(32) protein. The recombinant clones expressing full-length FtsZ protein and FtsZ deletion mutant proteins would be useful in investigating the possibility of FtsZ as a potential in vivo substrate for FtsH in ftsH-null cells carrying ftsH suppressor function and ectopically expressed FtsH protease.
Collapse
Affiliation(s)
- Ramanujam Srinivasan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
6
|
Srinivasan R, Ajitkumar P. Bacterial cell division protein FtsZ is stable against degradation by AAA family protease FtsH in Escherichia coli cells. J Basic Microbiol 2007; 47:251-9. [PMID: 17518418 DOI: 10.1002/jobm.200610236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have found that FtsH protease of Escherichia coli could degrade E. coli cell division protein FtsZ in an ATP- and Zn(2+)-dependent manner in vitro and that the degradation did not show specificity for the N-terminus or C-terminus of FtsZ, like in the case of degradation of its conventional substrate sigma(32) protein. In continuation of these observations, in the present study, we examined whether FtsH would affect the stability and turnover of FtsZ in vivo. We found that FtsZ levels were not elevated in E. coli AR754 (ftsH1 ts) cells at nonpermissive temperature as compared to the levels in an FtsH-active isogenic AR753 strain. Neither did FtsH degrade ectopically expressed FtsZ in AR754 strain nor did ectopic expression of FtsH reduced FtsZ levels in E. coli AR5090 ftsH null strain (ftsH::kan, sfhC21). Pulse chase experiments in AR754 and AR5090 strains showed that there were no compensatory changes in FtsZ turnover, in case FtsZ degradation had occurred. Even under cell division arrested conditions, wherein FtsZ was not required, FtsH protease did not degrade unutilized FtsZ. These experiments demonstrate that either FtsH protease may not have a role in regulating the levels of FtsZ in vivo under the conditions tested or that some cellular component(s) might be stabilising FtsZ against FtsH protease.
Collapse
Affiliation(s)
- Ramanujam Srinivasan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore - 560012, India
| | | |
Collapse
|
7
|
Obrist M, Milek S, Klauck E, Hengge R, Narberhaus F. Region 2.1 of the Escherichia coli heat-shock sigma factor RpoH (σ
32) is necessary but not sufficient for degradation by the FtsH protease. Microbiology (Reading) 2007; 153:2560-2571. [PMID: 17660420 DOI: 10.1099/mic.0.2007/007047-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cellular level of the Escherichia coli heat-shock sigma factor RpoH (sigma32) is negatively controlled by chaperone-mediated proteolysis through the essential metalloprotease FtsH. Point mutations in the highly conserved region 2.1 stabilize RpoH in vivo. To assess the importance of this turnover element, hybrid proteins were constructed between E. coli RpoH and Bradyrhizobium japonicum RpoH1, a stable RpoH protein that differs from region 2.1 of E. coli RpoH at several positions. Nine amino acids forming a putative alpha-helix were exchanged between the two proteins. Both hybrids were active sigma factors and showed intermediate protein stability. Introduction of RpoH region 2.1 into the general stress sigma factor RpoS, which is a substrate of the ClpXP protease, did not render RpoS susceptible to FtsH. Hence, region 2.1 alone is not sufficient to confer FtsH sensitivity to other proteins. Region 2.1 is not a major chaperone-binding site since DnaK and DnaJ bound efficiently to all RpoH variants. The in vivo stability of the mutated RpoH proteins correlated with their stability in a purified in vitro degradation system, suggesting that region 2.1 might be directly involved in the interaction with the FtsH protease.
Collapse
Affiliation(s)
- Markus Obrist
- Institute of Microbial Biology, Ruhr University Bochum, D-44780 Bochum, Germany
- Institute of Microbiology, ETH Zürich, Switzerland
| | - Sonja Milek
- Institute of Microbial Biology, Ruhr University Bochum, D-44780 Bochum, Germany
| | | | - Regine Hengge
- Institute of Microbiology, Free University Berlin, Germany
| | - Franz Narberhaus
- Institute of Microbial Biology, Ruhr University Bochum, D-44780 Bochum, Germany
- Institute of Microbiology, ETH Zürich, Switzerland
| |
Collapse
|
8
|
Führer F, Langklotz S, Narberhaus F. The C-terminal end of LpxC is required for degradation by the FtsH protease. Mol Microbiol 2006; 59:1025-36. [PMID: 16420369 DOI: 10.1111/j.1365-2958.2005.04994.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipopolysaccharide (LPS) biosynthesis is essential in Gram negative bacteria. LpxC, the key enzyme in LPS formation, catalyses the limiting reaction and controls the ratio between LPS and phospholipids. As overproduction of LPS is toxic, the cellular amount of LpxC must be regulated carefully. The membrane-bound protease FtsH controls the level of LpxC via proteolysis making FtsH the only essential protease of Escherichia coli. We found that the chaperones DnaK and DnaJ co-purified with LpxC. However, degradation of LpxC was DnaK/J-independent in contrast to turnover of the heat shock sigma factor sigma32 (RpoH). The stability of LpxC in a bacterial one-hybrid system suggested that a terminus of LpxC might be important for degradation. Different LpxC truncations and extensions were constructed. Removal of at least five amino acids from the C-terminus abolished degradation by FtsH in vivo. While addition of two aspartic acids to LpxC did not alter its half-life, the exchange of the last two residues against aspartic acids resulted in stabilization. All stable LpxC enzymes were active in vivo as assayed by their high toxicity. Our data demonstrate that the C-terminus of LpxC contains a signal sequence necessary for FtsH-dependent degradation.
Collapse
Affiliation(s)
- Frank Führer
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Bochum, Germany
| | | | | |
Collapse
|
9
|
Abstract
FtsH is a cytoplasmic membrane protein that has N-terminally located transmembrane segments and a main cytosolic region consisting of AAA-ATPase and Zn2+-metalloprotease domains. It forms a homo-hexamer, which is further complexed with an oligomer of the membrane-bound modulating factor HflKC. FtsH degrades a set of short-lived proteins, enabling cellular regulation at the level of protein stability. FtsH also degrades some misassembled membrane proteins, contributing to their quality maintenance. It is an energy-utilizing and processive endopeptidase with a special ability to dislocate membrane protein substrates out of the membrane, for which its own membrane-embedded nature is essential. We discuss structure-function relationships of this intriguing enzyme, including the way it recognizes the soluble and membrane-integrated substrates differentially, on the basis of the solved structure of the ATPase domain as well as extensive biochemical and genetic information accumulated in the past decade on this enzyme.
Collapse
Affiliation(s)
- Koreaki Ito
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan.
| | | |
Collapse
|
10
|
Obrist M, Narberhaus F. Identification of a turnover element in region 2.1 of Escherichia coli sigma32 by a bacterial one-hybrid approach. J Bacteriol 2005; 187:3807-13. [PMID: 15901705 PMCID: PMC1112070 DOI: 10.1128/jb.187.11.3807-3813.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Induction of the heat shock response in Escherichia coli requires the alternative sigma factor sigma32 (RpoH). The cellular concentration of sigma32 is controlled by proteolysis involving FtsH, other proteases, and the DnaKJ chaperone system. To identify individual sigma32 residues critical for degradation, we used a recently developed bacterial one-hybrid system and screened for stabilized versions of sigma32. The five single point mutations that rendered the sigma factor more stable mapped to positions L47, A50, and I54 in region 2.1. Strains expressing the stabilized sigma32 variants exhibited elevated transcriptional activity, as determined by a groE-lacZ fusion. Structure calculations predicted that the three mutated residues line up on the same face of an alpha-helix in region 2.1, suggesting that they are positioned to interact with proteins of the degradation machinery.
Collapse
Affiliation(s)
- Markus Obrist
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | |
Collapse
|
11
|
Abstract
The cellular stress response is a universal mechanism of extraordinary physiological/pathophysiological significance. It represents a defense reaction of cells to damage that environmental forces inflict on macromolecules. Many aspects of the cellular stress response are not stressor specific because cells monitor stress based on macromolecular damage without regard to the type of stress that causes such damage. Cellular mechanisms activated by DNA damage and protein damage are interconnected and share common elements. Other cellular responses directed at re-establishing homeostasis are stressor specific and often activated in parallel to the cellular stress response. All organisms have stress proteins, and universally conserved stress proteins can be regarded as the minimal stress proteome. Functional analysis of the minimal stress proteome yields information about key aspects of the cellular stress response, including physiological mechanisms of sensing membrane lipid, protein, and DNA damage; redox sensing and regulation; cell cycle control; macromolecular stabilization/repair; and control of energy metabolism. In addition, cells can quantify stress and activate a death program (apoptosis) when tolerance limits are exceeded.
Collapse
Affiliation(s)
- Dietmar Kültz
- Physiological Genomics Group, Department of Animal Sciences, University of California, Davis, California 95616, USA.
| |
Collapse
|
12
|
Bang IS, Frye JG, McClelland M, Velayudhan J, Fang FC. Alternative sigma factor interactions inSalmonella: σEand σHpromote antioxidant defences by enhancing σSlevels. Mol Microbiol 2005; 56:811-23. [PMID: 15819634 DOI: 10.1111/j.1365-2958.2005.04580.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hierarchical interactions between alternative sigma factors control sequential gene expression in Gram-positive bacteria, whereas alternative sigma factors in Gram-negative bacteria are generally regarded to direct expression of discrete gene subsets. In Salmonella enterica serovar Typhimurium (S. Typhimurium), sigma(E) responds to extracytoplasmic stress, whereas sigma(H) responds to heat shock and sigma(S) is induced during nutrient limitation. Deficiency of sigma(E), sigma(H) or sigma(S) increases S. Typhimurium susceptibility to oxidative stress, but an analysis of double and triple mutants suggested that antioxidant actions of sigma(E) and sigma(H) might be dependent on sigma(S). Transcriptional profiling of mutant Salmonella lacking sigma(E) revealed reduced expression of genes dependent on sigma(H) and sigma(S) in addition to sigma(E). Further investigation demonstrated that sigma(E) augments sigma(S) levels during stationary phase via enhanced expression of sigma(H) and the RNA-binding protein Hfq, leading to increased expression of sigma(S)-dependent genes and enhanced resistance to oxidative stress. Maximal expression of the sigma(S)-regulated gene katE required sigma(E) in Salmonella-infected macrophages as well as stationary-phase cultures. Interactions between alternative sigma factors permit the integration of diverse stress signals to produce coordinated genetic responses.
Collapse
Affiliation(s)
- Iel-Soo Bang
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
13
|
Okuno T, Yamada-Inagawa T, Karata K, Yamanaka K, Ogura T. Spectrometric analysis of degradation of a physiological substrate sigma32 by Escherichia coli AAA protease FtsH. J Struct Biol 2004; 146:148-54. [PMID: 15037246 DOI: 10.1016/j.jsb.2003.10.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Revised: 10/17/2003] [Indexed: 11/16/2022]
Abstract
We have established a fluorescence polarization assay system by which degradation of sigma32, a physiological substrate, by FtsH can be monitored spectrometrically. Using the system, it was found that an FtsH hexamer degrades approximately 0.5 molecules of Cy3-sigma32 per min at 42 degrees C and hydrolyzes approximately 140 ATP molecules during the degradation of a single molecule of Cy3-sigma32. Evidence also suggests that degradation of sigma32 proceeds from the N-terminus to the C-terminus. Although FtsH does not have a robust enough unfoldase activity to unfold a tightly folded proteins such as green fluorescent protein, it can unfold proteins with lower T(m)s such as glutathione S-transferase (T(m) = 52 degrees C).
Collapse
Affiliation(s)
- Takashi Okuno
- Division of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 862-0976, Japan
| | | | | | | | | |
Collapse
|
14
|
Horikoshi M, Yura T, Tsuchimoto S, Fukumori Y, Kanemori M. Conserved region 2.1 of Escherichia coli heat shock transcription factor sigma32 is required for modulating both metabolic stability and transcriptional activity. J Bacteriol 2004; 186:7474-80. [PMID: 15516558 PMCID: PMC524881 DOI: 10.1128/jb.186.22.7474-7480.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli heat shock transcription factor sigma32 is rapidly degraded in vivo, with a half-life of about 1 min. A set of proteins that includes the DnaK chaperone team (DnaK, DnaJ, GrpE) and ATP-dependent proteases (FtsH, HslUV, etc.) are involved in degradation of sigma32. To gain further insight into the regulation of sigma32 stability, we isolated sigma32 mutants that were markedly stabilized. Many of the mutants had amino acid substitutions in the N-terminal half (residues 47 to 55) of region 2.1, a region highly conserved among bacterial sigma factors. The half-lives ranged from about 2-fold to more than 10-fold longer than that of the wild-type protein. Besides greater stability, the levels of heat shock proteins, such as DnaK and GroEL, increased in cells producing stable sigma32. Detailed analysis showed that some stable sigma32 mutants have higher transcriptional activity than the wild type. These results indicate that the N-terminal half of region 2.1 is required for modulating both metabolic stability and the activity of sigma32. The evidence suggests that sigma32 stabilization does not result from an elevated affinity for core RNA polymerase. Region 2.1 may, therefore, be involved in interactions with the proteolytic machinery, including molecular chaperones.
Collapse
Affiliation(s)
- Mina Horikoshi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | | | | | | | | |
Collapse
|
15
|
Narberhaus F, Balsiger S. Structure-function studies of Escherichia coli RpoH (sigma32) by in vitro linker insertion mutagenesis. J Bacteriol 2003; 185:2731-8. [PMID: 12700252 PMCID: PMC154415 DOI: 10.1128/jb.185.9.2731-2738.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sigma factor RpoH (sigma(32)) is the key regulator of the heat shock response in Escherichia coli. Many structural and functional properties of the sigma factor are poorly understood. To gain further insight into RpoH regions that are either important or dispensable for its cellular activity, we generated a collection of tetrapeptide insertion variants by a recently established in vitro linker insertion mutagenesis technique. Thirty-one distinct insertions were obtained, and their sigma factor activity was analyzed by using a groE-lacZ reporter fusion in an rpoH-negative background. Our study provides a map of permissive sites which tolerate linker insertions and of functionally important regions at which a linker insertion impairs sigma factor activity. Selected linker insertion mutants will be discussed in the light of known sigma factor properties and in relation to a modeled structure of an RpoH fragment containing region 2.
Collapse
Affiliation(s)
- Franz Narberhaus
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, CH-8092 Zürich, Switzerland.
| | | |
Collapse
|
16
|
Muratani M, Tansey WP. How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol 2003; 4:192-201. [PMID: 12612638 DOI: 10.1038/nrm1049] [Citation(s) in RCA: 623] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gene transcription and ubiquitin-mediated proteolysis are two processes that have seemingly nothing in common: transcription is the first step in the life of any protein and proteolysis the last. Despite the disparate nature of these processes, a growing body of evidence indicates that ubiquitin and the proteasome are intimately involved in gene control. Here, we discuss the deep mechanistic connections between transcription and the ubiquitin-proteasome system, and highlight how the intersection of these processes tightly controls expression of the genetic information.
Collapse
Affiliation(s)
- Masafumi Muratani
- Cold Spring Harbor Laboratory, 1 Bungtown Road, PO Box 100, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
17
|
Kobiler O, Koby S, Teff D, Court D, Oppenheim AB. The phage lambda CII transcriptional activator carries a C-terminal domain signaling for rapid proteolysis. Proc Natl Acad Sci U S A 2002; 99:14964-9. [PMID: 12397182 PMCID: PMC137528 DOI: 10.1073/pnas.222172499] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATP-dependent proteases, like FtsH (HflB), recognize specific protein substrates. One of these is the lambda CII protein, which plays a key role in the phage lysis-lysogeny decision. Here we provide evidence that the conserved C-terminal end of CII acts as a necessary and sufficient cis-acting target for rapid proteolysis. Deletions of this conserved tag, or a mutation that confers two aspartic residues at its C terminus do not affect the structure or activity of CII. However, the mutations abrogate CII degradation by FtsH. We have established an in vitro assay for the lambda CIII protein and demonstrated that CIII directly inhibits proteolysis by FtsH to protect CII and CII mutants from degradation. Phage lambda carrying mutations in the C terminus of CII show increased frequency of lysogenization, which indicates that this segment of CII may itself be sensitive to regulation that affects the lysis-lysogeny development. In addition, the region coding for the C-terminal end of CII overlaps with a gene that encodes a small antisense RNA called OOP. We show that deletion of the end of the cII gene can prevent OOP RNA, supplied in trans, interfering with CII activity. These findings provide an example of a gene that carries a region that modulates stability at the level of mRNA and protein.
Collapse
Affiliation(s)
- Oren Kobiler
- Department of Molecular Genetics and Biotechnology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
18
|
Tomoyasu T, Arsène F, Ogura T, Bukau B. The C terminus of sigma(32) is not essential for degradation by FtsH. J Bacteriol 2001; 183:5911-7. [PMID: 11566990 PMCID: PMC99669 DOI: 10.1128/jb.183.20.5911-5917.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A key step in the regulation of heat shock genes in Escherichia coli is the stress-dependent degradation of the heat shock promoter-specific sigma(32) subunit of RNA polymerase by the AAA protease, FtsH. Previous studies implicated the C termini of protein substrates, including sigma(32), as degradation signals for AAA proteases. We investigated the role of the C terminus of sigma(32) in FtsH-dependent degradation by analysis of C-terminally truncated sigma(32) mutant proteins. Deletion of the 5, 11, 15, and 21 C-terminal residues of sigma(32) did not affect degradation in vivo or in vitro. Furthermore, a peptide comprising the C-terminal 21 residues of sigma(32) was not degraded by FtsH in vitro and thus did not serve as a recognition sequence for the protease, while an unrelated peptide of similar length was efficiently degraded. The truncated sigma(32) mutant proteins remained capable of associating with DnaK and DnaJ in vitro but showed intermediate (5-amino-acid deletion) and strong (11-, 15-, and 21-amino-acid deletions) defects in association with RNA polymerase in vitro and biological activity in vivo. These results indicate an important role for the C terminus of sigma(32) in RNA polymerase binding but no essential role for FtsH-dependent degradation and association of chaperones.
Collapse
Affiliation(s)
- T Tomoyasu
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|