1
|
Boyette JL, Bell RC, Fujita MK, Thomas KN, Streicher JW, Gower DJ, Schott RK. Diversity and Molecular Evolution of Nonvisual Opsin Genes across Environmental, Developmental, and Morphological Adaptations in Frogs. Mol Biol Evol 2024; 41:msae090. [PMID: 38736374 PMCID: PMC11181710 DOI: 10.1093/molbev/msae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024] Open
Abstract
Nonvisual opsins are transmembrane proteins expressed in the eyes and other tissues of many animals. When paired with a light-sensitive chromophore, nonvisual opsins form photopigments involved in various nonvisual, light-detection functions including circadian rhythm regulation, light-seeking behaviors, and seasonal responses. Here, we investigate the molecular evolution of nonvisual opsin genes in anuran amphibians (frogs and toads). We test several evolutionary hypotheses including the predicted loss of nonvisual opsins due to nocturnal ancestry and potential functional differences in nonvisual opsins resulting from environmental light variation across diverse anuran ecologies. Using whole-eye transcriptomes of 81 species, combined with genomes, multitissue transcriptomes, and independently annotated genes from an additional 21 species, we identify which nonvisual opsins are present in anuran genomes and those that are also expressed in the eyes, compare selective constraint among genes, and test for potential adaptive evolution by comparing selection between discrete ecological classes. At the genomic level, we recovered all 18 ancestral vertebrate nonvisual opsins, indicating that anurans demonstrate the lowest documented amount of opsin gene loss among ancestrally nocturnal tetrapods. We consistently found expression of 14 nonvisual opsins in anuran eyes and detected positive selection in a subset of these genes. We also found shifts in selective constraint acting on nonvisual opsins in frogs with differing activity periods, habitats, distributions, life histories, and pupil shapes, which may reflect functional adaptation. Although many nonvisual opsins remain poorly understood, these findings provide insight into the diversity and evolution of these genes across anurans, filling an important gap in our understanding of vertebrate opsins and setting the stage for future research on their functional evolution across taxa.
Collapse
Affiliation(s)
- John L Boyette
- Department of Biological Sciences, The Pennsylvania State University, State College, PA, USA
- Department of Biology, Berry College, Rome, GA, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC, USA
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC, USA
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| | - Matthew K Fujita
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| | - Kate N Thomas
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
- Natural History Museum, London, UK
| | | | | | - Ryan K Schott
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC, USA
- Department of Biology & Centre for Vision Research, York University, Toronto, ON, Canada
| |
Collapse
|
2
|
Karthikeyan R, Davies WI, Gunhaga L. Non-image-forming functional roles of OPN3, OPN4 and OPN5 photopigments. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
|
3
|
Vöcking O, Macias-Muñoz A, Jaeger SJ, Oakley TH. Deep Diversity: Extensive Variation in the Components of Complex Visual Systems across Animals. Cells 2022; 11:cells11243966. [PMID: 36552730 PMCID: PMC9776813 DOI: 10.3390/cells11243966] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Understanding the molecular underpinnings of the evolution of complex (multi-part) systems is a fundamental topic in biology. One unanswered question is to what the extent do similar or different genes and regulatory interactions underlie similar complex systems across species? Animal eyes and phototransduction (light detection) are outstanding systems to investigate this question because some of the genetics underlying these traits are well characterized in model organisms. However, comparative studies using non-model organisms are also necessary to understand the diversity and evolution of these traits. Here, we compare the characteristics of photoreceptor cells, opsins, and phototransduction cascades in diverse taxa, with a particular focus on cnidarians. In contrast to the common theme of deep homology, whereby similar traits develop mainly using homologous genes, comparisons of visual systems, especially in non-model organisms, are beginning to highlight a "deep diversity" of underlying components, illustrating how variation can underlie similar complex systems across taxa. Although using candidate genes from model organisms across diversity was a good starting point to understand the evolution of complex systems, unbiased genome-wide comparisons and subsequent functional validation will be necessary to uncover unique genes that comprise the complex systems of non-model groups to better understand biodiversity and its evolution.
Collapse
Affiliation(s)
- Oliver Vöcking
- Department of Biology, University of Kentucky, Lexington, KY 40508, USA
| | - Aide Macias-Muñoz
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Stuart J. Jaeger
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Todd H. Oakley
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
- Correspondence:
| |
Collapse
|
4
|
Convergent evolution of a blood-red nectar pigment in vertebrate-pollinated flowers. Proc Natl Acad Sci U S A 2022; 119:2114420119. [PMID: 35074876 PMCID: PMC8812537 DOI: 10.1073/pnas.2114420119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 11/18/2022] Open
Abstract
Beyond sugars, many types of nectar solutes play important ecological roles; however, the molecular basis for the diversity of nectar composition across species is less explored. One rare trait among flowering plants is the production of colored nectar, which may function to attract and guide prospective pollinators. Our findings indicate convergent evolution of a red-colored nectar has occurred across two distantly related plant species. Behavioral data show that the red pigment attracts diurnal geckos, the likely pollinator of one of these plants. These findings join a growing list of examples of distinct biochemical and molecular mechanisms underlying evolutionary convergence and provide a fascinating system for testing how interactions across species drive the evolution of novel pigments in an understudied context. Nearly 90% of flowering plants depend on animals for reproduction. One of the main rewards plants offer to pollinators for visitation is nectar. Nesocodon mauritianus (Campanulaceae) produces a blood-red nectar that has been proposed to serve as a visual attractant for pollinator visitation. Here, we show that the nectar’s red color is derived from a previously undescribed alkaloid termed nesocodin. The first nectar produced is acidic and pale yellow in color, but slowly becomes alkaline before taking on its characteristic red color. Three enzymes secreted into the nectar are either necessary or sufficient for pigment production, including a carbonic anhydrase that increases nectar pH, an aryl-alcohol oxidase that produces a pigment precursor, and a ferritin-like catalase that protects the pigment from degradation by hydrogen peroxide. Our findings demonstrate how these three enzymatic activities allow for the condensation of sinapaldehyde and proline to form a pigment with a stable imine bond. We subsequently verified that synthetic nesocodin is indeed attractive to Phelsuma geckos, the most likely pollinators of Nesocodon. We also identify nesocodin in the red nectar of the distantly related and hummingbird-visited Jaltomata herrerae and provide molecular evidence for convergent evolution of this trait. This work cumulatively identifies a convergently evolved trait in two vertebrate-pollinated species, suggesting that the red pigment is selectively favored and that only a limited number of compounds are likely to underlie this type of adaptation.
Collapse
|
5
|
Bertolesi GE, Debnath N, Malik HR, Man LLH, McFarlane S. Type II Opsins in the Eye, the Pineal Complex and the Skin of Xenopus laevis: Using Changes in Skin Pigmentation as a Readout of Visual and Circadian Activity. Front Neuroanat 2022; 15:784478. [PMID: 35126061 PMCID: PMC8814574 DOI: 10.3389/fnana.2021.784478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/13/2021] [Indexed: 01/17/2023] Open
Abstract
The eye, the pineal complex and the skin are important photosensitive organs. The African clawed frog, Xenopus laevis, senses light from the environment and adjusts skin color accordingly. For example, light reflected from the surface induces camouflage through background adaptation while light from above produces circadian variation in skin pigmentation. During embryogenesis, background adaptation, and circadian skin variation are segregated responses regulated by the secretion of α-melanocyte-stimulating hormone (α-MSH) and melatonin through the photosensitivity of the eye and pineal complex, respectively. Changes in the color of skin pigmentation have been used as a readout of biochemical and physiological processes since the initial purification of pineal melatonin from pigs, and more recently have been employed to better understand the neuroendocrine circuit that regulates background adaptation. The identification of 37 type II opsin genes in the genome of the allotetraploid X. laevis, combined with analysis of their expression in the eye, pineal complex and skin, is contributing to the elucidation of the role of opsins in the different photosensitive organs, but also brings new questions and challenges. In this review, we analyze new findings regarding the anatomical localization and functions of type II opsins in sensing light. The contribution of X. laevis in revealing the neuroendocrine circuits that regulate background adaptation and circadian light variation through changes in skin pigmentation is discussed. Finally, the presence of opsins in X. laevis skin melanophores is presented and compared with the secretory melanocytes of birds and mammals.
Collapse
Affiliation(s)
- Gabriel E. Bertolesi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | | | | | | | | |
Collapse
|
6
|
Bertolesi GE, Debnath N, Atkinson-Leadbeater K, Niedzwiecka A, McFarlane S. Distinct type II opsins in the eye decode light properties for background adaptation and behavioural background preference. Mol Ecol 2021; 30:6659-6676. [PMID: 34592025 DOI: 10.1111/mec.16203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022]
Abstract
Crypsis increases survival by reducing predator detection. Xenopus laevis tadpoles decode light properties from the substrate to induce two responses: a cryptic coloration response where dorsal skin pigmentation is adjusted to the colour of the substrate (background adaptation) and a behavioural crypsis where organisms move to align with a specific colour surface (background preference). Both processes require organisms to detect reflected light from the substrate. We explored the relationship between background adaptation and preference and the light properties able to trigger both responses. We also analysed which retinal photosensor (type II opsin) is involved. Our results showed that these two processes are segregated mechanistically, as there is no correlation between the preference for a specific background with the level of skin pigmentation, and different dorsal retina-localized type II opsins appear to underlie the two crypsis modes. Indeed, inhibition of melanopsin affects background adaptation but not background preference. Instead, we propose pinopsin is the photosensor involved in background preference. pinopsin mRNA is co-expressed with mRNA for the sws1 cone photopigment in dorsally located photoreceptors. Importantly, the developmental onset of pinopsin expression aligns with the emergence of the preference for a white background, but after the background adaptation phenotype appears. Furthermore, white background preference of tadpoles is associated with increased pinopsin expression, a feature that is lost in premetamorphic froglets along with a preference for a white background. Thus, our data show a mechanistic dissociation between background adaptation and background preference, and we suggest melanopsin and pinopsin, respectively, initiate the two responses.
Collapse
Affiliation(s)
- Gabriel E Bertolesi
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Nilakshi Debnath
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | | | - Anna Niedzwiecka
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Sarah McFarlane
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Pinto BJ, Nielsen SV, Gamble T. Transcriptomic data support a nocturnal bottleneck in the ancestor of gecko lizards. Mol Phylogenet Evol 2019; 141:106639. [PMID: 31586687 DOI: 10.1016/j.ympev.2019.106639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 11/17/2022]
Abstract
Gecko lizards are a species-rich clade of primarily-nocturnal squamate reptiles. In geckos, adaptations to nocturnality have dramatically reshaped the eye. Perhaps the most notable change is the loss of rod cells in the retina and subsequent "transmutation" of cones into a rod-like morphology and physiology. While many studies have noted the absence of some rod-specific genes, such as the visual pigment Rhodopsin (RH1), these studies have focused on just a handful of species that are nested deep in the gecko phylogeny. Thus, it is not clear whether these changes arose through convergence, are homologous and ubiquitous across geckos, or restricted to a subset of species. Here, we used de novo eye transcriptomes from five gecko species, and genomes from two additional gecko species, representing the breadth of extant gecko diversity (i.e. 4 of the 7 gecko families, spanning the deepest divergence of crown Gekkota), to show that geckos lost expression of almost the entire suite of necessary rod-cell phototransduction genes in the eye, distinct from all other squamate reptiles. Geckos are the first vertebrate group to have lost their complete rod-cell expression pathway, not just the visual pigment. In addition, all sampled species have also lost expression of the cone-opsin SWS2 visual pigment. These results strongly suggest a single loss of rod cells and subsequent cone-to-rod transmutation that occurred prior to the diversification of extant geckos.
Collapse
Affiliation(s)
- Brendan J Pinto
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA; Milwaukee Public Museum, Milwaukee, WI, USA.
| | - Stuart V Nielsen
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA; Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA; Milwaukee Public Museum, Milwaukee, WI, USA; Bell Museum of Natural History, University of Minnesota, Saint Paul, MN, USA.
| |
Collapse
|
8
|
Sato K, Yamashita T, Kojima K, Sakai K, Matsutani Y, Yanagawa M, Yamano Y, Wada A, Iwabe N, Ohuchi H, Shichida Y. Pinopsin evolved as the ancestral dim-light visual opsin in vertebrates. Commun Biol 2018; 1:156. [PMID: 30302400 PMCID: PMC6167363 DOI: 10.1038/s42003-018-0164-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/06/2018] [Indexed: 11/13/2022] Open
Abstract
Pinopsin is the opsin most closely related to vertebrate visual pigments on the phylogenetic tree. This opsin has been discovered among many vertebrates, except mammals and teleosts, and was thought to exclusively function in their brain for extraocular photoreception. Here, we show the possibility that pinopsin also contributes to scotopic vision in some vertebrate species. Pinopsin is distributed in the retina of non-teleost fishes and frogs, especially in their rod photoreceptor cells, in addition to their brain. Moreover, the retinal chromophore of pinopsin exhibits a thermal isomerization rate considerably lower than those of cone visual pigments, but comparable to that of rhodopsin. Therefore, pinopsin can function as a rhodopsin-like visual pigment in the retinas of these lower vertebrates. Since pinopsin diversified before the branching of rhodopsin on the phylogenetic tree, two-step adaptation to scotopic vision would have occurred through the independent acquisition of pinopsin and rhodopsin by the vertebrate lineage.
Collapse
Affiliation(s)
- Keita Sato
- Department of Cytology and Histology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.
| | - Keiichi Kojima
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Kazumi Sakai
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Yuki Matsutani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | | | - Yumiko Yamano
- Department of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Akimori Wada
- Department of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Naoyuki Iwabe
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.
- Research Organization for Science and Technology, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
9
|
Boutet A. The evolution of asymmetric photosensitive structures in metazoans and the Nodal connection. Mech Dev 2017; 147:49-60. [PMID: 28986126 DOI: 10.1016/j.mod.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 07/26/2017] [Accepted: 09/25/2017] [Indexed: 01/12/2023]
Abstract
Asymmetries are observed in a great number of taxa in metazoans. More particularly, functional lateralization and neuroanatomical asymmetries within the central nervous system have been a matter of intense research for at least two hundred years. While asymmetries of some paired structures/organs (e.g. eyes, ears, kidneys, legs, arms) constitute random deviations from a pure bilateral symmetry, brain asymmetries such as those observed in the cortex and epithalamus are directional. This means that molecular and anatomical features located on one side of a given structure are observed in most individuals. For instance, in humans, the neuronal tract connecting the language areas is enlarged in the left hemisphere. When asymmetries are fixed, their molecular mechanisms can be studied using mutants displaying different phenotypes: left or right isomerism of the structure, reversed asymmetry or random asymmetry. Our understanding of asymmetry in the nervous system has been widely enriched thanks to the characterization of mutants affecting epithalamus asymmetry. Furthermore, two decades ago, pioneering studies revealed that a specific morphogen, Nodal, active only on one side of the embryo during development is an important molecule in asymmetry patterning. In this review, I have gathered important data bringing insight into the origin and evolution of epithalamus asymmetry and the role of Nodal in metazoans. After a short introduction on brain asymmetries (chapter I), I secondly focus on the molecular and anatomical characteristics of the epithalamus in vertebrates and explore some functional aspects such as its photosensitive ability related to the pineal complex (chapter II). Third, I discuss homology relationship of the parapineal organ among vertebrates (chapter III). Fourth, I discuss the possible origin of the epithalamus, presenting cells displaying photosensitive properties and/or asymmetry in the anterior part of the body in non-vertebrates (chapter IV). Finally, I report Nodal signaling expression data and functional experiments performed in different metazoan groups (chapter V).
Collapse
Affiliation(s)
- Agnès Boutet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 8227, Laboratoire de Biologie Intégrative des Modèles Marins, Station Biologique, F-29688 Roscoff, France.
| |
Collapse
|
10
|
Diversification of non-visual photopigment parapinopsin in spectral sensitivity for diverse pineal functions. BMC Biol 2015; 13:73. [PMID: 26370232 PMCID: PMC4570685 DOI: 10.1186/s12915-015-0174-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/27/2015] [Indexed: 02/08/2023] Open
Abstract
Background Recent genome projects of various animals have uncovered an unexpectedly large number of opsin genes, which encode protein moieties of photoreceptor molecules, in most animals. In visual systems, the biological meanings of this diversification are clear; multiple types of visual opsins with different spectral sensitivities are responsible for color vision. However, the significance of the diversification of non-visual opsins remains uncertain, in spite of the importance of understanding the molecular mechanism and evolution of varied non-visual photoreceptions. Results Here, we investigated the diversification of the pineal photopigment parapinopsin, which serves as the UV-sensitive photopigment for the pineal wavelength discrimination in the lamprey, linking it with other pineal photoreception. Spectroscopic analyses of the recombinant pigments of the two teleost parapinopsins PP1 and PP2 revealed that PP1 is a UV-sensitive pigment, similar to lamprey parapinopsin, but PP2 is a blue-sensitive pigment, with an absorption maximum at 460–480 nm, showing the diversification of non-visual pigment with respect to spectral sensitivity. We also found that PP1 and PP2 exhibit mutually exclusive expressions in the pineal organs of three teleost species. By using transgenic zebrafish in which these parapinopsin-expressing cells are labeled, we found that PP1-expressing cells basically possess neuronal processes, which is consistent with their involvement in wavelength discrimination. Interestingly, however, PP2-expressing cells rarely possess neuronal processes, raising the possibility that PP2 could be involved in non-neural responses rather than neural responses. Furthermore, we found that PP2-expressing cells contain serotonin and aanat2, the key enzyme involved in melatonin synthesis from serotonin, whereas PP1-expressing cells do not contain either, suggesting that blue-sensitive PP2 is instead involved in light-regulation of melatonin secretion. Conclusions In this paper, we have clearly shown the different molecular properties of duplicated non-visual opsins by demonstrating the diversification of parapinopsin with respect to spectral sensitivity. Moreover, we have shown a plausible link between the diversification and its physiological impact by discovering a strong candidate for the underlying pigment in light-regulated melatonin secretion in zebrafish; the diversification could generate a new contribution of parapinopsin to pineal photoreception. Current findings could also provide an opportunity to understand the “color” preference of non-visual photoreception. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0174-9) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Poletini MO, Ramos BC, Moraes MN, Castrucci AML. Nonvisual Opsins and the Regulation of Peripheral Clocks by Light and Hormones. Photochem Photobiol 2015; 91:1046-55. [DOI: 10.1111/php.12494] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/23/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Maristela O. Poletini
- Department of Physiology and Biophysics; Institute of Biological Sciences; Federal University of Minas Gerais; Belo Horizonte Brazil
- Department of Physiology; Institute of Biosciences; University of São Paulo; São Paulo Brazil
| | - Bruno C. Ramos
- Department of Physiology; Institute of Biosciences; University of São Paulo; São Paulo Brazil
| | - Maria Nathalia Moraes
- Department of Physiology; Institute of Biosciences; University of São Paulo; São Paulo Brazil
| | - Ana Maria L. Castrucci
- Department of Physiology; Institute of Biosciences; University of São Paulo; São Paulo Brazil
| |
Collapse
|
12
|
Isayama T, Chen Y, Kono M, Fabre E, Slavsky M, DeGrip WJ, Ma JX, Crouch RK, Makino CL. Coexpression of three opsins in cone photoreceptors of the salamander Ambystoma tigrinum. J Comp Neurol 2014; 522:2249-65. [PMID: 24374736 DOI: 10.1002/cne.23531] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/24/2013] [Accepted: 12/20/2013] [Indexed: 12/12/2022]
Abstract
Although more than one type of visual opsin is present in the retina of most vertebrates, it was thought that each type of photoreceptor expresses only one opsin. However, evidence has accumulated that some photoreceptors contain more than one opsin, in many cases as a result of a developmental transition from the expression of one opsin to another. The salamander UV-sensitive (UV) cone is particularly notable because it contains three opsins (Makino and Dodd [1996] J Gen Physiol 108:27-34). Two opsin types are expressed at levels more than 100 times lower than the level of the primary opsin. Here, immunohistochemical experiments identified the primary component as a UV cone opsin and the two minor components as the short wavelength-sensitive (S) and long wavelength-sensitive (L) cone opsins. Based on single-cell recordings of 156 photoreceptors, the presence of three components in UV cones of hatchlings and terrestrial adults ruled out a developmental transition. There was no evidence for multiple opsin types within rods or S cones, but immunohistochemistry and partial bleaching in conjunction with single-cell recording revealed that both single and double L cones contained low levels of short wavelength-sensitive pigments in addition to the main L visual pigment. These results raise the possibility that coexpression of multiple opsins in other vertebrates was overlooked because a minor component absorbing at short wavelengths was masked by the main visual pigment or because the expression level of a component absorbing at long wavelengths was exceedingly low.
Collapse
Affiliation(s)
- Tomoki Isayama
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, Massachusetts, 02114
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Peirson SN, Halford S, Foster RG. The evolution of irradiance detection: melanopsin and the non-visual opsins. Philos Trans R Soc Lond B Biol Sci 2009; 364:2849-65. [PMID: 19720649 PMCID: PMC2781857 DOI: 10.1098/rstb.2009.0050] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Circadian rhythms are endogenous 24 h cycles that persist in the absence of external time cues. These rhythms provide an internal representation of day length and optimize physiology and behaviour to the varying demands of the solar cycle. These clocks require daily adjustment to local time and the primary time cue (zeitgeber) used by most vertebrates is the daily change in the amount of environmental light (irradiance) at dawn and dusk, a process termed photoentrainment. Attempts to understand the photoreceptor mechanisms mediating non-image-forming responses to light, such as photoentrainment, have resulted in the discovery of a remarkable array of different photoreceptors and photopigment families, all of which appear to use a basic opsin/vitamin A-based photopigment biochemistry. In non-mammalian vertebrates, specialized photoreceptors are located within the pineal complex, deep brain and dermal melanophores. There is also strong evidence in fish and amphibians for the direct photic regulation of circadian clocks in multiple tissues. By contrast, mammals possess only ocular photoreceptors. However, in addition to the image-forming rods and cones of the retina, there exists a third photoreceptor system based on a subset of melanopsin-expressing photosensitive retinal ganglion cells (pRGCs). In this review, we discuss the range of vertebrate photoreceptors and their opsin photopigments, describe the melanopsin/pRGC system in some detail and then finally consider the molecular evolution and sensory ecology of these non-image-forming photoreceptor systems.
Collapse
Affiliation(s)
- Stuart N Peirson
- Nuffield Laboratory of Ophthalmology, University of Oxford, The John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK
| | | | | |
Collapse
|
14
|
Shichida Y, Matsuyama T. Evolution of opsins and phototransduction. Philos Trans R Soc Lond B Biol Sci 2009; 364:2881-95. [PMID: 19720651 DOI: 10.1098/rstb.2009.0051] [Citation(s) in RCA: 305] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Opsins are the universal photoreceptor molecules of all visual systems in the animal kingdom. They can change their conformation from a resting state to a signalling state upon light absorption, which activates the G protein, thereby resulting in a signalling cascade that produces physiological responses. This process of capturing a photon and transforming it into a physiological response is known as phototransduction. Recent cloning techniques have revealed the rich and diverse nature of these molecules, found in organisms ranging from jellyfish to humans, functioning in visual and non-visual phototransduction systems and photoisomerases. Here we describe the diversity of these proteins and their role in phototransduction. Then we explore the molecular properties of opsins, by analysing site-directed mutants, strategically designed by phylogenetic comparison. This site-directed mutant approach led us to identify many key features in the evolution of the photoreceptor molecules. In particular, we will discuss the evolution of the counterion, the reduction of agonist binding to the receptor, and the molecular properties that characterize rod opsins apart from cone opsins. We will show how the advances in molecular biology and biophysics have given us insights into how evolution works at the molecular level.
Collapse
Affiliation(s)
- Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | | |
Collapse
|
15
|
Abstract
Opsins, G-protein-coupled receptors including rhodopsin, are found in animals, and more than a thousand have been identified so far. Most opsins act as pigments that activate G proteins in a light-dependent manner in both visual and non-visual systems. The photosensitive molecule rhodopsin and its relatives consist of a protein moiety - an opsin - and a non-protein moiety - the chromophore retinal. Opsins, which are G-protein-coupled receptors (GPCRs), are found in animals, and more than a thousand have been identified so far. Detailed molecular phylogenetic analyses show that the opsin family is divided into seven subfamilies, which correspond well to functional classifications within the family: the vertebrate visual (transducin-coupled) and non-visual opsin subfamily, the encephalopsin/tmt-opsin subfamily, the Gq-coupled opsin/melanopsin subfamily, the Go-coupled opsin subfamily, the neuropsin subfamily, the peropsin subfamily and the retinal photoisomerase subfamily. The subfamilies diversified before the deuterostomes (including vertebrates) split from the protostomes (most invertebrates), suggesting that a common animal ancestor had multiple opsin genes. Opsins have a seven-transmembrane structure similar to that of other GPCRs, but are distinguished by a lysine residue that is a retinal-binding site in the seventh helix. Accumulated evidence suggests that most opsins act as pigments that activate G proteins in a light-dependent manner in both visual and non-visual systems, whereas a few serve as retinal photoisomerases, generating the chromophore used by other opsins, and some opsins have unknown functions.
Collapse
Affiliation(s)
- Akihisa Terakita
- Department of Biophysics, Graduate School of Science, Kyoto University and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kyoto 606-8502, Japan.
| |
Collapse
|
16
|
Bertolucci C, Foà A. Extraocular photoreception and circadian entrainment in nonmammalian vertebrates. Chronobiol Int 2005; 21:501-19. [PMID: 15470951 DOI: 10.1081/cbi-120039813] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In mammals both the regulation of circadian rhythms and photoperiodic responses depend exclusively upon photic information provided by the lateral eyes; however, nonmammalian vertebrates can also rely on multiple extraocular photoreceptors to perform the same tasks. Extraocular photoreceptors include deep brain photoreceptors located in several distinct brain sites and the pineal complex, involving intracranial (pineal and parapineal) and extracranial (frontal organ and parietal eye) components. This review updates the research field of the most recent acquisitions concerning the roles of extraocular photoreceptors on circadian physiology and behavior, particularly photic entrainment and sun compass orientation.
Collapse
Affiliation(s)
- Cristiano Bertolucci
- Dipartimento di Biologia and Centro di Neuroscienze, Università degli Studi di Ferrara, Ferrara, Italy
| | | |
Collapse
|
17
|
Hisatomi O, Tokunaga F. Molecular evolution of proteins involved in vertebrate phototransduction. Comp Biochem Physiol B Biochem Mol Biol 2002; 133:509-22. [PMID: 12470815 DOI: 10.1016/s1096-4959(02)00127-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vision is one of the most important senses for vertebrates. As a result, vertebrates have evolved a highly organized system of retinal photoreceptors. Light triggers an enzymatic cascade, called the phototransduction cascade, that leads to the hyperpolarization of photoreceptors. It is expected that a systematic comparison of phototransduction cascades of various vertebrates can provide insights into the diversity of vertebrate photoreceptors and into the evolution of vertebrate vision. However, only a few attempts have been made to compare each phototransduction protein participating in this cascade. Here, we determine phylogenetic trees of the vertebrate phototransduction proteins and compare them. It is demonstrated that vertebrate opsin sequences fall into five fundamental subfamilies. It is speculated that this is crucial for the diversity of the spectral sensitivity observed in vertebrate photoreceptors and provides the vertebrates with the molecular tools to discriminate the color of incident light. Other phototransduction proteins can be classified into only a few subfamilies. Cones generally share isoforms of phototransduction proteins that are different from those found in rods. The difference in sensitivity to light between rods and cones is likely due to the difference in the molecular properties of these isoforms. The phototransduction proteins seem to have co-evolved as a system. Switching the expression of these isoforms may characterize individual vertebrate photoreceptors.
Collapse
Affiliation(s)
- Osamu Hisatomi
- Department of Earth and Space Science, Graduate School of Science, Osaka University, Osaka Toyonaka 560-0043, Japan.
| | | |
Collapse
|