1
|
Chen Y, Luo S, Hu Y, Mao B, Wang X, Lu Z, Shan Q, Zhang J, Wang S, Feng G, Wang C, Liang C, Tang N, Niu R, Wang J, Han J, Yang N, Wang H, Zhou Q, Li W. All-RNA-mediated targeted gene integration in mammalian cells with rationally engineered R2 retrotransposons. Cell 2024; 187:4674-4689.e18. [PMID: 38981481 DOI: 10.1016/j.cell.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/17/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
All-RNA-mediated targeted gene integration methods, rendering reduced immunogenicity, effective deliverability with non-viral vehicles, and a low risk of random mutagenesis, are urgently needed for next-generation gene addition technologies. Naturally occurring R2 retrotransposons hold promise in this context due to their site-specific integration profile. Here, we systematically analyzed the biodiversity of R2 elements and screened several R2 orthologs capable of full-length gene insertion in mammalian cells. Robust R2 system gene integration efficiency was attained using combined donor RNA and protein engineering. Importantly, the all-RNA-delivered engineered R2 system showed effective integration activity, with efficiency over 60% in mouse embryos. Unbiased high-throughput sequencing demonstrated that the engineered R2 system exhibited high on-target integration specificity (99%). In conclusion, our study provides engineered R2 tools for applications based on hit-and-run targeted DNA integration and insights for further optimization of retrotransposon systems.
Collapse
Affiliation(s)
- Yangcan Chen
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Shengqiu Luo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanping Hu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Bangwei Mao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinge Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongbao Lu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingtong Shan
- Northeast Agricultural University, Harbin 150030, China
| | - Jin Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siqi Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Guihai Feng
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chenxin Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chen Liang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Tang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Rui Niu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqiang Wang
- Northeast Agricultural University, Harbin 150030, China
| | - Jiabao Han
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Yang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoyi Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Qi Zhou
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Wei Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
2
|
Nguyen LT, Rakestraw NR, Pizzano BLM, Young CB, Huang Y, Beerensson KT, Fang A, Antal SG, Anamisis KV, Peggs CMD, Yan J, Jing Y, Burdine RD, Adamson B, Toettcher JE, Myhrvold C, Jain PK. Efficient Genome Editing with Chimeric Oligonucleotide-Directed Editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602710. [PMID: 39026836 PMCID: PMC11257564 DOI: 10.1101/2024.07.09.602710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Prime editing has emerged as a precise and powerful genome editing tool, offering a favorable gene editing profile compared to other Cas9-based approaches. Here we report new nCas9-DNA polymerase fusion proteins to create chimeric oligonucleotide-directed editing (CODE) systems for search-and-replace genome editing. Through successive rounds of engineering, we developed CODEMax and CODEMax(exo+) editors that achieve efficient genome modifications in human cells with low unintended edits. CODEMax and CODEMax(exo+) contain an engineered Bst DNA polymerase derivative known for its robust strand displacement ability. Additionally, CODEMax(exo+) features a 5' to 3' exonuclease activity that promotes effective strand invasion and repair outcomes favoring the incorporation of the desired edit. We demonstrate CODEs can perform small insertions, deletions, and substitutions with improved efficiency compared to PEMax at many loci. Overall, CODEs complement existing prime editors to expand the toolbox for genome manipulations without double-stranded breaks.
Collapse
Affiliation(s)
- Long T Nguyen
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Noah R Rakestraw
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Brianna L M Pizzano
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Cullen B Young
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yujia Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Kate T Beerensson
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Anne Fang
- Department of Chemical Biology, University of Florida, Gainesville, FL, USA
| | - Sydney G Antal
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Katerina V Anamisis
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Coleen M D Peggs
- Health Services Research, Management and Policy, University of Florida, Gainesville, FL, USA
| | - Jun Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yangwode Jing
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Rebecca D Burdine
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Britt Adamson
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, USA
| | - Cameron Myhrvold
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Piyush K Jain
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
- Health Cancer Center, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Farooqui AK, Ahmad H, Rehmani MU, Husain A. Quick and easy method for extraction and purification of Pfu-Sso7d, a high processivity DNA polymerase. Protein Expr Purif 2023; 208-209:106276. [PMID: 37156451 DOI: 10.1016/j.pep.2023.106276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023]
Abstract
The polymerase chain reaction is an extensively used technique with numerous applications in the field of biological sciences. In addition to naturally occurring DNA polymerases with varying processivity and fidelity, genetically engineered recombinant DNA polymerases are also used in PCR. The Pfu-Sso7d, a fusion DNA polymerase, is obtained by the fusion of Sso7d, a small DNA binding protein, to the polymerase domain of the Pfu DNA polymerase. Pfu-Sso7d is known for its high processivity, efficiency, and fidelity. Expensive commercial variants of Pfu-Sso7d are sold under various trade names. Here, we report a quick, cost and time-efficient purification protocol and an optimized buffer system for Pfu-Sso7d. We evaluated precipitation efficiencies of varying concentrations of ethanol and acetone and compared the activities of the precipitated enzyme. Although both the solvents efficiently precipitated Pfu-Sso7d, acetone showed better precipitation efficiency. Purified Pfu-Sso7d showed excellent activities in the PCR of templates with varying lengths and GC contents. We also report a buffer system that works with Pfu-Sso7d as efficiently as commercially available buffers. This quick and efficient purification scheme and buffer system will provide researchers cost-efficient access to fusion polymerases.
Collapse
Affiliation(s)
- Afreen Kamal Farooqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Haleema Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohd Umar Rehmani
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Afzal Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
4
|
Oscorbin IP, Wong PF, Boyarskikh UA, Khrapov EA, Filipenko ML. The attachment of a DNA-binding Sso7d-like protein improves processivity and resistance to inhibitors of M-MuLV reverse transcriptase. FEBS Lett 2020; 594:4338-4356. [PMID: 32970841 DOI: 10.1002/1873-3468.13934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/23/2020] [Accepted: 09/08/2020] [Indexed: 11/09/2022]
Abstract
Reverse transcriptases (RTs) are a standard tool in both fundamental studies and diagnostics. RTs should possess elevated temperature optimum, high thermal stability, processivity and tolerance to contaminants. Here, we constructed a set of chimeric RTs, based on the combination of the Moloney murine leukaemia virus (M-MuLV) RT and either of two DNA-binding domains: the DNA-binding domain of the DNA ligase from Pyrococcus abyssi or the DNA-binding Sto7d protein from Sulfolobus tokodaii. The processivity and efficiency of cDNA synthesis of the chimeric RT with Sto7d at the C-end are increased several fold. The attachment of Sto7d enhances the tolerance of M-MuLV RT to the most common amplification inhibitors: NaCl, urea, guanidinium chloride, formamide, components of human whole blood and human blood plasma. Thus, fusing M-MuLV RT with an additional domain results in more robust and efficient RTs.
Collapse
Affiliation(s)
- Igor P Oscorbin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Pei Fong Wong
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Ulyana A Boyarskikh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Evgeny A Khrapov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Maksim L Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
5
|
Bassani F, Zink IA, Pribasnig T, Wolfinger MT, Romagnoli A, Resch A, Schleper C, Bläsi U, La Teana A. Indications for a moonlighting function of translation factor aIF5A in the crenarchaeum Sulfolobus solfataricus. RNA Biol 2019; 16:675-685. [PMID: 30777488 PMCID: PMC6546411 DOI: 10.1080/15476286.2019.1582953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/14/2019] [Accepted: 02/08/2019] [Indexed: 01/02/2023] Open
Abstract
Translation factor a/eIF5A is highly conserved in Eukarya and Archaea. The eukaryal eIF5A protein is required for transit of ribosomes across consecutive proline codons, whereas the function of the archaeal orthologue remains unknown. Here, we provide a first hint for an involvement of Sulfolobus solfataricus (Sso) aIF5A in translation. CRISPR-mediated knock down of the aif5A gene resulted in strong growth retardation, underlining a pivotal function. Moreover, in vitro studies revealed that Sso aIF5A is endowed with endoribonucleolytic activity. Thus, aIF5A appears to be a moonlighting protein that might be involved in protein synthesis as well as in RNA metabolism.
Collapse
Affiliation(s)
- Flavia Bassani
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Isabelle Anna Zink
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Thomas Pribasnig
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | | | - Alice Romagnoli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Armin Resch
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Christa Schleper
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Anna La Teana
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
6
|
Märtens B, Sharma K, Urlaub H, Bläsi U. The SmAP2 RNA binding motif in the 3'UTR affects mRNA stability in the crenarchaeum Sulfolobus solfataricus. Nucleic Acids Res 2017; 45:8957-8967. [PMID: 28911098 PMCID: PMC5587771 DOI: 10.1093/nar/gkx581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/28/2017] [Indexed: 01/02/2023] Open
Abstract
Sm and Sm-like proteins represent an evolutionarily conserved family with key roles in RNA metabolism in Pro- and Eukaryotes. In this study, a collection of 53 mRNAs that co-purified with Sulfolobus solfataricus (Sso) SmAP2 were surveyed for a specific RNA binding motif (RBM). SmAP2 was shown to bind with high affinity to the deduced consensus RNA binding motif (SmAP2-cRBM) in vitro. Residues in SmAP2 interacting with the SmAP2-cRBM were mapped by UV-induced crosslinking in combination with mass-spectrometry, and verified by mutational analyses. The RNA-binding site on SmAP2 includes a modified uracil binding pocket containing a unique threonine (T40) located on the L3 face and a second residue, K25, located in the pore. To study the function of the SmAP2-RBM in vivo, three authentic RBMs were inserted in the 3′UTR of a lacS reporter gene. The presence of the SmAP2-RBM in the reporter-constructs resulted in decreased LacS activity and reduced steady state levels of lacS mRNA. Moreover, the presence of the SmAP2-cRBM in and the replacement of the lacS 3′UTR with that of Sso2194 encompassing a SmAP2-RBM apparently impacted on the stability of the chimeric transcripts. These results are discussed in light of the function(s) of eukaryotic Lsm proteins in RNA turnover.
Collapse
Affiliation(s)
- Birgit Märtens
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Vienna Biocenter, Dr. Bohrgasse 9, 1030 Vienna, Austria
| | - Kundan Sharma
- Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen, Germany.,Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen, Germany.,Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Vienna Biocenter, Dr. Bohrgasse 9, 1030 Vienna, Austria
| |
Collapse
|
7
|
Märtens B, Hou L, Amman F, Wolfinger MT, Evguenieva-Hackenberg E, Bläsi U. The SmAP1/2 proteins of the crenarchaeon Sulfolobus solfataricus interact with the exosome and stimulate A-rich tailing of transcripts. Nucleic Acids Res 2017; 45:7938-7949. [PMID: 28520934 PMCID: PMC5570065 DOI: 10.1093/nar/gkx437] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 05/03/2017] [Indexed: 01/26/2023] Open
Abstract
The conserved Sm and Sm-like proteins are involved in different aspects of RNA metabolism. Here, we explored the interactome of SmAP1 and SmAP2 of the crenarchaeon Sulfolobus solfataricus (Sso) to shed light on their physiological function(s). Both, SmAP1 and SmAP2 co-purified with several proteins involved in RNA-processing/modification, translation and protein turnover as well as with components of the exosome involved in 3΄ to 5΄ degradation of RNA. In follow-up studies a direct interaction with the poly(A) binding and accessory exosomal subunit DnaG was demonstrated. Moreover, elevated levels of both SmAPs resulted in increased abundance of the soluble exosome fraction, suggesting that they affect the subcellular localization of the exosome in the cell. The increased solubility of the exosome was accompanied by augmented levels of RNAs with A-rich tails that were further characterized using RNASeq. Hence, the observation that the Sso SmAPs impact on the activity of the exosome revealed a hitherto unrecognized function of SmAPs in archaea.
Collapse
Affiliation(s)
- Birgit Märtens
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Vienna Biocenter, Dr. Bohrgasse 9, 1030 Vienna, Austria
| | - Linlin Hou
- Institute of Microbiology and Molecular Biology, Justus Liebig University Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - Fabian Amman
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17/3, 1090 Vienna, Austria
| | - Michael T Wolfinger
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17/3, 1090 Vienna, Austria.,Center for Anatomy and Cell Biology, Medical University of Vienna, Währingerstraße 13, 1090 Vienna, Austria
| | - Elena Evguenieva-Hackenberg
- Institute of Microbiology and Molecular Biology, Justus Liebig University Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Vienna Biocenter, Dr. Bohrgasse 9, 1030 Vienna, Austria
| |
Collapse
|
8
|
Hameş EE, Demir T. Microbial ribonucleases (RNases): production and application potential. World J Microbiol Biotechnol 2015; 31:1853-62. [PMID: 26433394 DOI: 10.1007/s11274-015-1945-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/07/2015] [Indexed: 01/15/2023]
Abstract
Ribonuclease (RNase) is hydrolytic enzyme that catalyzes the cleavage of phosphodiester bonds in RNA. RNases play an important role in the metabolism of cellular RNAs, such as mRNA and rRNA or tRNA maturation. Besides their cellular roles, RNases possess biological activity, cell stimulating properties, cytotoxicity and genotoxicity. Cytotoxic effect of particular microbial RNases was comparable to that of animal derived counterparts. In this respect, microbial RNases have a therapeutic potential as anti-tumor drugs. The significant development of DNA vaccines and the progress of gene therapy trials increased the need for RNases in downstream processes. In addition, RNases are used in different fields, such as food industry for single cell protein preparations, and in some molecular biological studies for the synthesis of specific nucleotides, identifying RNA metabolism and the relationship between protein structure and function. In some cases, the use of bovine or other animal-derived RNases have increased the difficulties due to the safety and regulatory issues. Microbial RNases have promising potential mainly for pharmaceutical purposes as well as downstream processing. Therefore, an effort has been given to determination of optimum fermentation conditions to maximize RNase production from different bacterial and fungal producers. Also immobilization or strain development experiments have been carried out.
Collapse
Affiliation(s)
- E Esin Hameş
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Bornova, Izmir, Turkey.
| | - Tuğçe Demir
- Department of Chemical Engineering, Kocaeli University, Umut Tepe Yerleşkesi, 41380, Kocaeli, Turkey
| |
Collapse
|
9
|
|
10
|
Priyakumar UD. Role of Hydrophobic Core on the Thermal Stability of Proteins—Molecular Dynamics Simulations on a Single Point Mutant of Sso7d. J Biomol Struct Dyn 2012; 29:961-71. [DOI: 10.1080/07391102.2012.10507415] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Xu X, Su J, Chen W, Wang C. Thermal stability and unfolding pathways of Sso7d and its mutant F31A: insight from molecular dynamics simulation. J Biomol Struct Dyn 2011; 28:717-27. [PMID: 21294584 DOI: 10.1080/07391102.2011.10508601] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The thermo-stability and unfolding behaviors of a small hyperthermophilic protein Sso7d as well as its single-point mutation F31A are studied by molecular dynamics simulation at temperatures of 300 K, 371 K and 500 K. Simulations at 300 K show that the F31A mutant displays a much larger flexibility than the wild type, which implies that the mutation obviously decreases the protein's stability. In the simulations at 371 K, although larger fluctuations were observed, both of these two maintain their stable conformations. High temperature simulations at 500 K suggest that the unfolding of these two proteins evolves along different pathways. For the wild-type protein, the C-terminal alpha-helix is melted at the early unfolding stage, whereas it is destroyed much later in the unfolding process of the F31A mutant. The results also show that the mutant unfolds much faster than its parent protein. The deeply buried aromatic cluster in the F31A mutant dissociates quickly relative to the wild-type protein at high temperature. Besides, it is found that the triple-stranded antiparallel β-sheet in the wild-type protein plays an important role in maintaining the stability of the entire structure.
Collapse
Affiliation(s)
- Xianjin Xu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | | | | | | |
Collapse
|
12
|
Gera N, Hussain M, Wright RC, Rao BM. Highly stable binding proteins derived from the hyperthermophilic Sso7d scaffold. J Mol Biol 2011; 409:601-16. [PMID: 21515282 DOI: 10.1016/j.jmb.2011.04.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/08/2011] [Indexed: 12/16/2022]
Abstract
We have shown that highly stable binding proteins for a wide spectrum of targets can be generated through mutagenesis of the Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus. Sso7d is a small (~7 kDa, 63 amino acids) DNA-binding protein that lacks cysteine residues and has a melting temperature of nearly 100 °C. We generated a library of 10(8) Sso7d mutants by randomizing 10 amino acid residues on the DNA-binding surface of Sso7d, using yeast surface display. Binding proteins for a diverse set of model targets could be isolated from this library; our chosen targets included a small organic molecule (fluorescein), a 12 amino acid peptide fragment from the C-terminus of β-catenin, the model proteins hen egg lysozyme and streptavidin, and immunoglobulins from chicken and mouse. Without the application of any affinity maturation strategy, the binding proteins isolated had equilibrium dissociation constants in the nanomolar to micromolar range. Further, Sso7d-derived binding proteins could discriminate between closely related immunoglobulins. Mutant proteins based on Sso7d were expressed at high yields in the Escherichia coli cytoplasm. Despite extensive mutagenesis, Sso7d mutants have high thermal stability; five of six mutants analyzed have melting temperatures >89 °C. They are also resistant to chemical denaturation by guanidine hydrochloride and retain their secondary structure after extended incubation at extreme pH values. Because of their favorable properties, such as ease of recombinant expression, and high thermal, chemical and pH stability, Sso7d-derived binding proteins will have wide applicability in several areas of biotechnology and medicine.
Collapse
Affiliation(s)
- Nimish Gera
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | |
Collapse
|
13
|
Arraiano CM, Andrade JM, Domingues S, Guinote IB, Malecki M, Matos RG, Moreira RN, Pobre V, Reis FP, Saramago M, Silva IJ, Viegas SC. The critical role of RNA processing and degradation in the control of gene expression. FEMS Microbiol Rev 2010; 34:883-923. [PMID: 20659169 DOI: 10.1111/j.1574-6976.2010.00242.x] [Citation(s) in RCA: 260] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The continuous degradation and synthesis of prokaryotic mRNAs not only give rise to the metabolic changes that are required as cells grow and divide but also rapid adaptation to new environmental conditions. In bacteria, RNAs can be degraded by mechanisms that act independently, but in parallel, and that target different sites with different efficiencies. The accessibility of sites for degradation depends on several factors, including RNA higher-order structure, protection by translating ribosomes and polyadenylation status. Furthermore, RNA degradation mechanisms have shown to be determinant for the post-transcriptional control of gene expression. RNases mediate the processing, decay and quality control of RNA. RNases can be divided into endonucleases that cleave the RNA internally or exonucleases that cleave the RNA from one of the extremities. Just in Escherichia coli there are >20 different RNases. RNase E is a single-strand-specific endonuclease critical for mRNA decay in E. coli. The enzyme interacts with the exonuclease polynucleotide phosphorylase (PNPase), enolase and RNA helicase B (RhlB) to form the degradosome. However, in Bacillus subtilis, this enzyme is absent, but it has other main endonucleases such as RNase J1 and RNase III. RNase III cleaves double-stranded RNA and family members are involved in RNA interference in eukaryotes. RNase II family members are ubiquitous exonucleases, and in eukaryotes, they can act as the catalytic subunit of the exosome. RNases act in different pathways to execute the maturation of rRNAs and tRNAs, and intervene in the decay of many different mRNAs and small noncoding RNAs. In general, RNases act as a global regulatory network extremely important for the regulation of RNA levels.
Collapse
Affiliation(s)
- Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Priyakumar UD, Ramakrishna S, Nagarjuna KR, Reddy SK. Structural and Energetic Determinants of Thermal Stability and Hierarchical Unfolding Pathways of Hyperthermophilic Proteins, Sac7d and Sso7d. J Phys Chem B 2010; 114:1707-18. [DOI: 10.1021/jp909122x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- U. Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| | - S. Ramakrishna
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| | - K. R. Nagarjuna
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| | - S. Karunakar Reddy
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| |
Collapse
|
15
|
Evguenieva‐Hackenberg E, Klug G. Chapter 7 RNA Degradation in Archaea and Gram‐Negative Bacteria Different from Escherichia coli. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:275-317. [DOI: 10.1016/s0079-6603(08)00807-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
16
|
Consonni R, Arosio I, Recca T, Fusi P, Zetta L. Structural determinants responsible for the thermostability of Sso7d and its single point mutants. Proteins 2007; 67:766-75. [PMID: 17340638 DOI: 10.1002/prot.21256] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Roberto Consonni
- Istituto per lo Studio delle Macromolecole, lab. NMR, C.N.R., v. Bassini 15, I-20133 Milan, Italy.
| | | | | | | | | |
Collapse
|
17
|
Ladik JJ, Szekeres Z. A study on chirality in biomolecules: the effect of the exchange of L: amino acids to D: ones in Sso7d ribonuclease. J Mol Model 2006; 12:462-7. [PMID: 16437209 DOI: 10.1007/s00894-005-0073-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 10/14/2005] [Indexed: 10/25/2022]
Abstract
In this work, the conformational behavior of ribonuclease Sso7d is studied as a function of chirality of its constituting amino acids. Both optimized structures (using molecular mechanics with the CHARMM force field) and dynamic behavior (obtained by molecular dynamic simulations) are compared.
Collapse
Affiliation(s)
- János J Ladik
- Chair for Theoretical Chemistry and Laboratory of the National Foundation for Cancer Research, Friedrich-Alexander-University-Erlangen, Nürnberg, Egerlandstrasse 3, D-91058, Erlangen, Germany.
| | | |
Collapse
|
18
|
Granata V, Vecchio PD, Barone G, Shehi E, Fusi P, Tortora P, Graziano G. Guanidine-induced unfolding of the Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus. Int J Biol Macromol 2004; 34:195-201. [PMID: 15225992 DOI: 10.1016/j.ijbiomac.2004.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2004] [Indexed: 10/26/2022]
Abstract
The unfolding induced by guanidine hydrochloride of the small protein Sso7d from the hyperthermophilic archaeon Sulfolobus solfataricus has been investigated by means of circular dichroism and fluorescence measurements. At neutral pH and room temperature the midpoint of the transition occurred at 4M guanidine hydrochloride. Thermodynamic information was obtained by means of both the linear extrapolation model and the denaturant binding model, in the assumption of a two-state N<==>D transition. A comparison with thermodynamic data determined from the thermal unfolding of Sso7d indicated that the denaturant binding model has to be preferred. Finally, it is shown that Sso7d is the most stable against both temperature and guanidine hydrochloride among a set of globular proteins possessing a very similar 3D structure.
Collapse
Affiliation(s)
- Vincenzo Granata
- Dipartimento di Chimica, Università di Napoli Federico II, Via Cinthia, 45-80126 Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Merlino A, Graziano G, Mazzarella L. Structural and dynamic effects of α-Helix deletion in Sso7d: Implications for protein thermal stability. Proteins 2004; 57:692-701. [PMID: 15317021 DOI: 10.1002/prot.20270] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sso7d is a 62-residue protein from the hyperthemophilic archaeon Sulfolobus solfataricus with a denaturation temperature close to 100 degrees C around neutral pH. An engineered form of Sso7d truncated at leucine 54 (L54Delta) is significantly less stable, with a denaturation temperature of 53 degrees C. Molecular dynamics (MD) studies of Sso7d and its truncated form at two different temperatures have been performed. The results of the MD simulations at 300 K indicate that: (1) the flexibility of Sso7d chain at 300 K agrees with that detected from X-ray and NMR structural studies; (2) L54Delta remains stable in the native folded conformation and possesses an overall dynamic behavior similar to that of the parent protein. MD simulations performed at 500 K, 10 ns long, indicate that, while Sso7d is in-silico resistant to high temperature, the truncated variant partially unfolds, revealing the early phases of the thermal unfolding pathway of the protein. Analysis of the trajectories of L54Delta suggests that the unzipping of the N-terminal and C-terminal beta-strands should be the first event of the unfolding pathway, and points out the regions more resistant to thermal unfolding. These findings allow one to understand the role played by specific interactions connecting the two ends of the chain for the high thermal stability of Sso7d, and support recent hypotheses on its folding mechanism emerged from site-directed mutagenesis studies.
Collapse
Affiliation(s)
- Antonello Merlino
- Dipartimento di Scienze Farmaceutiche, Università di Salerno, Fisciano, Italy
| | | | | |
Collapse
|
20
|
Shehi E, Granata V, Del Vecchio P, Barone G, Fusi P, Tortora P, Graziano G. Thermal stability and DNA binding activity of a variant form of the Sso7d protein from the archeon Sulfolobus solfataricus truncated at leucine 54. Biochemistry 2003; 42:8362-8. [PMID: 12846585 DOI: 10.1021/bi034520t] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sso7d is a 62-residue, basic protein from the hyperthermophilic archaeon Sulfolobus solfataricus. Around neutral pH, it exhibits a denaturation temperature close to 100 degrees C and a non-sequence-specific DNA binding activity. Here, we report the characterization by circular dichroism and fluorescence measurements of a variant form of Sso7d truncated at leucine 54 (L54Delta). It is shown that L54Delta has a folded conformation at neutral pH and that its thermal unfolding is a reversible process, represented well by the two-state N <=> D transition model, with a denaturation temperature of 53 degrees C. Fluorescence titration experiments indicate that L54Delta binds tightly to calf thymus DNA, even though the binding parameters are smaller than those of the wild-type protein. Therefore, the truncation of eight residues at the C-terminus of Sso7d markedly affects the thermal stability of the protein, which nevertheless retains a folded structure and DNA binding activity.
Collapse
Affiliation(s)
- Erlet Shehi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza, 2-20126 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|