1
|
Li S, Paterno GD, Gillespie LL. Insulin and IGF-1, but not 17β-estradiol, alter the subcellular localization of MIER1α in MCF7 breast carcinoma cells. BMC Res Notes 2015; 8:356. [PMID: 26281834 PMCID: PMC4539687 DOI: 10.1186/s13104-015-1336-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 08/12/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND MIER1α is a transcriptional regulator that interacts with estrogen receptor α and inhibits estrogen-stimulated growth of breast carcinoma cells. Interestingly, analysis of MIER1α subcellular localization in breast samples revealed a stepwise shift from the nucleus to the cytoplasm during progression to invasive carcinoma. Previously, we demonstrated that MIER1α is nuclear in MCF7 cells yet it does not contain a nuclear localization signal. Instead MIER1α is targeted to the nucleus through interaction and co-transport with HDAC 1 and 2. RESULTS In this study, we demonstrate that treatment of MCF7 breast carcinoma cells with either insulin or insulin-like growth factor affects the subcellular localization of MIER1α. Both factors reduce the percentage of cells with nuclear MIER1α from 81 and 89 to 41 and 56%, respectively. Treatment with 17β-estradiol, on the other hand, had no effect and MIER1α remained nuclear. CONCLUSIONS Our data demonstrate that insulin and IGF-1 can contribute to loss of nuclear MIER1α in the MCF7 breast carcinoma cell line.
Collapse
Affiliation(s)
- Shengnan Li
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, A1B 3V6, Canada.
| | - Gary D Paterno
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, A1B 3V6, Canada.
| | - Laura L Gillespie
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, A1B 3V6, Canada.
| |
Collapse
|
2
|
Li S, Paterno GD, Gillespie LL. Nuclear localization of the transcriptional regulator MIER1α requires interaction with HDAC1/2 in breast cancer cells. PLoS One 2013; 8:e84046. [PMID: 24376786 PMCID: PMC3869823 DOI: 10.1371/journal.pone.0084046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/20/2013] [Indexed: 11/18/2022] Open
Abstract
MIER1α is a transcriptional regulator that functions in gene repression through its ability to interact with various chromatin modifiers and transcription factors. We have also shown that MIER1α interacts with ERα and inhibits estrogen-stimulated growth. While MIER1α is localized in the nucleus of MCF7 cells, previous studies have shown that it does not contain a nuclear localization signal. In this report, we investigate the mechanism involved in transporting MIER1α into the nucleus. We explored the possibility that MIER1α is transported into the nucleus through a ‘piggyback’ mechanism. One obvious choice is via interaction with ERα, however we demonstrate that nuclear targeting of MIER1α does not require ERα. Knockdown of ERα reduced protein expression to 22% of control, but did not alter the percentage of cells with nuclear MIER1α (98% nuclear with scrambled shRNA vs. 95% with ERα shRNA). Further evidence was obtained using two stable transfectants derived from the ER-negative MDA231 cell line: MC2 (ERα+) and VC5 (ERα-). Confocal analysis showed no difference in MIER1α localization (86% nuclear in MC2 vs. 89% in VC5). These data demonstrate that ERα is not involved in nuclear localization of MIER1α. To identify the critical MIER1α sequence, we performed a deletion analysis and determined that the ELM2 domain was necessary and sufficient for nuclear localization. This domain binds HDAC1 & 2, therefore we investigated their role. Confocal analysis of an MIER1α containing an ELM2 point mutation previously shown to abolish HDAC binding revealed that this mutation results in almost complete loss of nuclear targeting: 10% nuclear vs. 97% with WT-MIER1α. Moreover, double knockdown of HDAC1 and 2 caused a reduction in percent nuclear from 86% to 44%. The results of this study demonstrate that nuclear targeting of MIER1α requires an intact ELM2 domain and is dependent on interaction with HDAC1/2.
Collapse
Affiliation(s)
- Shengnan Li
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Gary D. Paterno
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Laura L. Gillespie
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
- * E-mail:
| |
Collapse
|
3
|
Differential splicing alters subcellular localization of the alpha but not beta isoform of the MIER1 transcriptional regulator in breast cancer cells. PLoS One 2012; 7:e32499. [PMID: 22384264 PMCID: PMC3286477 DOI: 10.1371/journal.pone.0032499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/27/2012] [Indexed: 12/17/2022] Open
Abstract
MIER1 was originally identified in a screen for novel fibroblast growth factor activated early response genes. The mier1 gene gives rise to multiple transcripts encoding protein isoforms that differ in their amino (N-) and carboxy (C-) termini. Much of the work to date has focused on the two C-terminal variants, MIER1α and β, both of which have been shown to function as transcriptional repressors. Our previous work revealed a dramatic shift in MIER1α subcellular localization from nuclear in normal breast tissue to cytoplasmic in invasive breast carcinoma, suggesting that loss of nuclear MIER1α may play a role in breast cancer development. In the present study, we investigated whether alternative splicing to include a cassette exon and produce an N–terminal variant of MIER1α affects its subcellular localization in MCF7 breast carcinoma cells. We demonstrate that this cassette exon, exon 3A, encodes a consensus leucine-rich nuclear export signal (NES). Inclusion of this exon in MIER1α to produce the MIER1-3Aα isoform altered its subcellular distribution in MCF7 cells from 81% nuclear to 2% nuclear and this change in localization was abrogated by mutation of critical leucines within the NES. Treatment with leptomycin B (LMB), an inhibitor of the nuclear export receptor CRM1, resulted in a significant increase in the percentage of cells with nuclear MIER1-3Aα, from 4% to 53%, demonstrating that cytoplasmic localization of this isoform was due to CRM1-dependent nuclear export. Inclusion of exon 3A in MIER1β to produce the N-terminal variant MIER1-3Aβ however had little effect on the nuclear targeting of this isoform. Our results demonstrate that alternative splicing to include exon 3A specifically affects the localization pattern of the α isoform.
Collapse
|
4
|
Thorne LB, McCarthy PL, Paterno GD, Gillespie LL. Protein expression of the transcriptional regulator MI-ER1 alpha in adult mouse tissues. J Mol Histol 2007; 39:15-24. [PMID: 17622490 DOI: 10.1007/s10735-007-9116-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 06/19/2007] [Indexed: 11/29/2022]
Abstract
MI-ER1 is a novel transcriptional regulator that plays a critical role in embryonic development and is differentially expressed in breast carcinoma. The MI-ER1 protein sequence is highly conserved among species, with 95% identity between mouse and humans and 72% between Xenopus and mouse. There are two major protein isoforms, MI-ER1alpha and MI-ER1beta, which differ in the sequence of their C-terminus. MI-ER1alpha is of particular interest because it contains a consensus LXXLL nuclear receptor interaction motif and the current study was undertaken to determine the expression pattern of MI-ER1alpha protein in adult mouse tissues. Immunohistochemical analysis of paraffin-embedded tissue using an MI-ER1alpha-specific antibody revealed that the majority of mouse adult tissues examined showed very weak or no immunoreactivity; these included tissues of the lung, liver, intestine, uterus, spleen, lymph node, bladder as well as skeletal muscle. Interestingly, a subset of endocrine tissues displayed intense staining for MI-ER1alpha. Specifically, the islets of Langerhans, the zona glomerulosa and medulla of the adrenal gland, the ovary and the hypothalamus were intensely stained. In addition, both anterior and posterior pituitary showed moderate immunoreactivity, as did the parafollicular cells of the thyroid gland and Leydig cells and spermatids in the testes. Negative endocrine tissues included follicular cells of the thyroid gland and the X zone of the adrenal cortex. A few non-endocrine tissues displayed moderate immunoreactivity; these included all tubules and collecting ducts in the kidney, myocardial and endocardial layers of the heart, the hippocampal formation, pyramidal neurons in the cortex and the ductal epithelium of the mammary gland. In all cases, MI-ER1alpha immunoreactivity was cytoplasmic. This study represents the first immunohistochemical analysis of MI-ER1alpha expression in mammals and our data suggest that this transcriptional regulator plays a role in specific endocrine pathways.
Collapse
Affiliation(s)
- Leanne B Thorne
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada A1B 3V6
| | | | | | | |
Collapse
|
5
|
Post JN, Luchman HA, Mercer FC, Paterno GD, Gillespie LL. Developmentally regulated cytoplasmic retention of the transcription factor XMI-ER1 requires sequence in the acidic activation domain. Int J Biochem Cell Biol 2005; 37:463-77. [PMID: 15474990 DOI: 10.1016/j.biocel.2004.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 07/28/2004] [Accepted: 07/29/2004] [Indexed: 11/30/2022]
Abstract
Xmi-er1 is a fibroblast growth factor regulated immediate-early gene that is activated during mesoderm induction in Xenopus embryonic explants. This gene encodes a nuclear protein with potent transcriptional regulator activity and overexpression of XMI-ER1 in Xenopus embryos inhibits mesoderm induction and leads to truncations along the anteroposterior axis. We showed previously that XMI-ER1 is retained in the cytoplasm during cleavage stages and only begins to appear in the nucleus at mid-blastula. Such developmentally regulated nuclear translocation may represent an important mechanism for regulating XMI-ER1 activity in the early embryo. Here, we investigate different mechanisms that might control nuclear translocation of XMI-ER1. Using alpha-amanitin to inhibit transcription, we show that nuclear localization is not dependent on zygotic transcription. Nor is it the result of a developmentally regulated import pathway, as the XMI-ER1 nuclear localization signal (NLS) fused to beta-galactosidase (betagal) was able to direct nuclear translocation prior to mid-blastula. Fusion of an additional, heterologous NLS to the N-terminus of XMI-ER1 was not sufficient to overcome cytoplasmic retention, indicating that retention does not involve NLS masking, but rather binding to a cytoplasmic anchor. The anchoring molecule is not an RNA, as microinjection of RNase A did not affect the timing of nuclear translocation. Western blot analysis using antibodies that recognize phosphorylated residues revealed that, while XMI-ER1 is not itself phosphorylated, it is associated with two differentially phosphorylated proteins, suggesting that the anchoring mechanism may involve interaction with a cytoplasmic protein(s). A series of XMI-ER1 deletion mutants was utilized to map the putative retention domain. Our analysis revealed that amino acids 144-175, containing the fourth acidic stretch of the acidic activation domain, are required for retention. These results suggest that XMI-ER1 is retained in the cytoplasm of the early embryo by interaction of the region containing amino acids 144-175 with a cytoplasmic anchor.
Collapse
Affiliation(s)
- Janine N Post
- Terry Fox Cancer Research Laboratories, Division of Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Nfld, A1B 3V6, Canada
| | | | | | | | | |
Collapse
|
6
|
Ding Z, Gillespie LL, Mercer FC, Paterno GD. The SANT Domain of Human MI-ER1 Interacts with Sp1 to Interfere with GC Box Recognition and Repress Transcription from Its Own Promoter. J Biol Chem 2004; 279:28009-16. [PMID: 15117948 DOI: 10.1074/jbc.m403793200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To gain insight into the regulation of hmi-er1 expression, we cloned a human genomic DNA fragment containing one of the two hmi-er1 promoters and consisting of 1460 bp upstream of the translation initiation codon of hMI-ER1. Computer-assisted sequence analysis revealed that the hmi-er1 promoter region contains a CpG island but lacks an identifiable TATA element, initiator sequence and downstream promoter element. This genomic DNA was able to direct transcription of a luciferase reporter gene in a variety of human cell lines, and the minimal promoter was shown to be located within-68/+144 bp. Several putative Sp1 binding sites were identified, and we show that Sp1 can bind to the hmi-er1 minimal promoter and increase transcription, suggesting that the level of hmi-er1 expression may depend on the availability of Sp1 protein. Functional analysis revealed that hMI-ER1 represses Sp1-activated transcription from the minimal promoter by a histone deacetylase-independent mechanism. Chromatin immunoprecipitation analysis demonstrated that both Sp1 and hMI-ER1 are associated with the chromatin of the hmi-er1 promoter and that overexpression of hMI-ER1 in cell lines that allow Tet-On-inducible expression resulted in loss of detectable Sp1 from the endogenous hmi-er1 promoter. The mechanism by which this occurs does not involve binding of hMI-ER1 to cis-acting elements. Instead, we show that hMI-ER1 physically associates with Sp1 and that endogenous complexes containing the two proteins could be detected in vivo. Furthermore, hMI-ER1 specifically interferes with binding of Sp1 to the hmi-er1 minimal promoter as well as to an Sp1 consensus oligonucleotide. Deletion analysis revealed that this interaction occurs through a region containing the SANT domain of hMI-ER1. Together, these data reveal a functional role for the SANT domain in the action of co-repressor regulatory factors and suggest that the association of hMI-ER1 with Sp1 represents a novel mechanism for the negative regulation of Sp1 target promoters.
Collapse
Affiliation(s)
- Zhihu Ding
- Terry Fox Cancer Research Laboratories, Division of Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Phillip Drive, St. John's, Newfoundland A1B 3V6, Canada
| | | | | | | |
Collapse
|
7
|
Teplitsky Y, Paterno GD, Gillespie LL. Proline365 is a critical residue for the activity of XMI-ER1 in Xenopus embryonic development. Biochem Biophys Res Commun 2003; 308:679-83. [PMID: 12927772 DOI: 10.1016/s0006-291x(03)01461-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Xmi-er1 is an immediate-early gene encoding a transcriptional regulator whose expression is activated by fibroblast growth factor (FGF) during mesoderm induction in Xenopus. In this study, we examined the role of xmi-er1 in embryonic development and mesoderm induction and investigated the importance of various functional domains in the protein sequence. Overexpression of xmi-er1 in embryos resulted in truncations of the anteroposterior axis, with most of the abnormal embryos exhibiting deficiencies in both anterior and posterior structures. Whole mount in situ hybridization for the early mesodermal marker brachyury (Xbra) revealed a dramatic reduction of Xbra expression in xmi-er1-injected embryos, while mesoderm induction assays showed that overexpression of xmi-er1 significantly reduced the percentage of explants induced by FGF-2. Site-directed mutagenesis of several functional domains, including the ELM2 domain, the SANT domain, a putative MEK phosphorylation site, and a proline-rich region showed that only proline 365 in the proline-rich region is required for the effect on embryonic development and mesoderm induction. These data demonstrate that XMI-ER1 is a negative regulator of FGF, perhaps serving to limit the extent of mesoderm formation in vivo, and that this activity is mediated by proline 365.
Collapse
Affiliation(s)
- Yoella Teplitsky
- Terry Fox Cancer Research Laboratories, Division of Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Phillip Drive, St. John's, NF, Canada A1B 3V6
| | | | | |
Collapse
|
8
|
Paterno GD, Ding Z, Lew YY, Nash GW, Mercer FC, Gillespie LL. Genomic organization of the human mi-er1 gene and characterization of alternatively spliced isoforms: regulated use of a facultative intron determines subcellular localization. Gene 2003; 295:79-88. [PMID: 12242014 DOI: 10.1016/s0378-1119(02)00823-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
mi-er1 (previously called er1) is a fibroblast growth factor-inducible early response gene activated during mesoderm induction in Xenopus embryos and encoding a nuclear protein that functions as a transcriptional activator. The human orthologue of mi-er1 was shown to be upregulated in breast carcinoma cell lines and breast tumours when compared to normal breast cells. In this report, we investigate the structure of the human mi-er1 (hmi-er1) gene and characterize the alternatively spliced transcripts and protein isoforms. hmi-er1 is a single copy gene located at 1p31.2 and spanning 63 kb. It contains 17 exons and includes one skipped exon, a facultative intron and three polyadenylation signals to produce 12 transcripts encoding six distinct proteins. hmi-er1 transcripts were expressed at very low levels in most human adult tissues and the mRNA isoform pattern varied with the tissue. The 12 transcripts encode proteins containing a common internal sequence with variable N- and C-termini. Three distinct N- and two distinct C-termini were identified, giving rise to six protein isoforms. The two C-termini differ significantly in size and sequence and arise from alternate use of a facultative intron to produce hMI-ER1alpha and hMI-ER1beta. In all tissues except testis, transcripts encoding the beta isoform were predominant. hMI-ER1alpha lacks the predicted nuclear localization signal and transfection assays revealed that, unlike hMI-ER1beta, it is not a nuclear protein, but remains in the cytoplasm. Our results demonstrate that alternate use of a facultative intron regulates the subcellular localization of hMI-ER1 proteins and this may have important implications for hMI-ER1 function.
Collapse
Affiliation(s)
- Gary D Paterno
- Terry Fox Cancer Research Laboratories, Division of Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Phillip Drive, St. John's, Newfoundland A1B 3V6, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Ding Z, Gillespie LL, Paterno GD. Human MI-ER1 alpha and beta function as transcriptional repressors by recruitment of histone deacetylase 1 to their conserved ELM2 domain. Mol Cell Biol 2003; 23:250-8. [PMID: 12482978 PMCID: PMC140656 DOI: 10.1128/mcb.23.1.250-258.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2002] [Revised: 06/27/2002] [Accepted: 10/02/2002] [Indexed: 11/20/2022] Open
Abstract
mi-er1 (previously called er1) was first isolated from Xenopus laevis embryonic cells as a novel fibroblast growth factor-regulated immediate-early gene. Xmi-er1 was shown to encode a nuclear protein with an N-terminal acidic transcription activation domain. The human orthologue of mi-er1 (hmi-er1) displays 91% similarity to the Xenopus sequence at the amino acid level and was shown to be upregulated in breast carcinoma cell lines and tumors. Alternative splicing at the 3' end of hmi-er1 produces two major isoforms, hMI-ER1alpha and hMI-ER1beta, which contain distinct C-terminal domains. In this study, we investigated the role of hMI-ER1alpha and hMI-ER1beta in the regulation of transcription. Using fusion proteins of hMI-ER1alpha or hMI-ER1beta tethered to the GAL4 DNA binding domain, we show that both isoforms, when recruited to the G5tkCAT minimal promoter, function to repress transcription. We demonstrate that this repressor activity is due to interaction and recruitment of a trichostatin A-sensitive histone deacetylase 1 (HDAC1). Furthermore, deletion analysis revealed that recruitment of HDAC1 to hMI-ER1alpha and hMI-ER1beta occurs through their common ELM2 domain. The ELM2 domain was first described in the Caenorhabditis elegans Egl-27 protein and is present in a number of SANT domain-containing transcription factors. This is the first report of a function for the ELM2 domain, highlighting its role in the regulation of transcription.
Collapse
Affiliation(s)
- Zhihu Ding
- Terry Fox Cancer Research Laboratories, Division of Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada A1B 3V6
| | | | | |
Collapse
|