1
|
Ning Y, Basu S, Hsu FF, Feng M, Wang MZ, Zhang K. Molecular Characterization of Sterol C4-Methyl Oxidase in Leishmania major. Int J Mol Sci 2024; 25:10908. [PMID: 39456689 PMCID: PMC11507432 DOI: 10.3390/ijms252010908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Sterol biosynthesis requires the oxidative removal of two methyl groups from the C-4 position by sterol C-4-demethylase and one methyl group from the C-14 position by sterol C-14-demethylase. In Leishmania donovani, a CYP5122A1 (Cytochrome P450 family 5122A1) protein was recently identified as the bona fide sterol C-4 methyl oxidase catalyzing the initial steps of C-4-demethylation. Besides CYP5122A1, Leishmania parasites possess orthologs to ERG25 (ergosterol pathway gene 25), the canonical sterol C-4 methyl oxidase in Saccharomyces cerevisiae. To determine the contribution of CYP5122A1 and ERG25 in sterol biosynthesis, we assessed the essentiality of these genes in Leishmania major, which causes cutaneous leishmaniasis. Like in L. donovani, CYP5122A1 in L. major could only be deleted in the presence of a complementing episome. Even with strong negative selection, L. major chromosomal CYP5122A1-null mutants retained the complementing episome in both promastigote and amastigote stages, demonstrating its essentiality. In contrast, the L. major ERG25-null mutants were fully viable and replicative in culture and virulent in mice. Deletion and overexpression of ERG25 did not affect the sterol composition, indicating that ERG25 is not required for C-4-demethylation. These findings suggest that CYP5122A1 is the dominant and possibly only sterol C-4 methyl oxidase in Leishmania, and inhibitors of CYP5122A1 may have strong therapeutic potential against multiple Leishmania species.
Collapse
Affiliation(s)
- Yu Ning
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (Y.N.); (S.B.)
| | - Somrita Basu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (Y.N.); (S.B.)
| | - Fong-fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Mei Feng
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA; (M.F.); (M.Z.W.)
| | - Michael Zhuo Wang
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA; (M.F.); (M.Z.W.)
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (Y.N.); (S.B.)
| |
Collapse
|
2
|
Lu Z, Hou X, Ke Z, Zhang Y, Yang Z, Zhou W. A newly identified glycosyltransferase AsRCOM provides resistance to purple curl leaf disease in agave. BMC Genomics 2023; 24:669. [PMID: 37936069 PMCID: PMC10629022 DOI: 10.1186/s12864-023-09700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/26/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Purple curl leaf disease brings a significant threat to the development of agave industry, the underlying mechanism of disease-resistant Agave sisalana. hybrid 11648 (A. H11648R) is still unknown. RESULTS To excavate the crucial disease-resistant genes against purple curl leaf disease, we performed an RNA-seq analysis for A.H11648R and A.H11648 during different stages of purple curl leaf disease. The DEGs (differentially expressed genes) were mainly enriched in linolenic acid metabolism, starch and sucrose mechanism, phenylpropanoid biosynthesis, hypersensitive response (HR) and systemic acquired resistance. Further analysis suggested that eight candidate genes (4'OMT2, ACLY, NCS1, GTE10, SMO2, FLS2, SQE1 and RCOM) identified by WGCNA (weighted gene co-expression network analysis) may mediate the resistance to agave purple curl disease by participating the biosynthesis of benzylisoquinoline alkaloids, steroid, sterols and flavonoids, and the regulation of plant innate immunity and systemic acquired resistance. After qPCR verification, we found that AsRCOM, coding a glycosyltransferase and relevant to the regulation of plant innate immunity and systemic acquired resistance, may be the most critical disease-resistant gene. Finally, the overexpression of AsRCOM gene in agave could significantly enhance the resistance to purple curl disease with abundant reactive oxygen species (ROS) accumulations. CONCLUSIONS Integrative RNA-seq analysis found that HR may be an important pathway affecting the resistance to purple curl leaf disease in agave, and identified glycosyltransferase AsRCOM as the crucial gene that could significantly enhance the resistance to purple curl leaf disease in agave, with obvious ROS accumulations.
Collapse
Affiliation(s)
- Zhiwei Lu
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, South Subtropical Crops Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524091, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Institute of Crop Science, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Ministry of Agriculture, Beijing, 100081, China
| | - Xiaowan Hou
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524091, China
| | - Zhi Ke
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, South Subtropical Crops Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524091, China
| | - Yanmei Zhang
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, South Subtropical Crops Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524091, China
| | - ZiPing Yang
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, South Subtropical Crops Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524091, China
| | - Wenzhao Zhou
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, South Subtropical Crops Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524091, China.
| |
Collapse
|
3
|
Chen Y, Wu J, Yu D, Du X. Advances in steroidal saponins biosynthesis. PLANTA 2021; 254:91. [PMID: 34617240 DOI: 10.1007/s00425-021-03732-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
This work reviews recent advances in the pathways and key enzymes of steroidal saponins biosynthesis and sets the foundation for the biotechnological production of these useful compounds through transformation of microorganisms. Steroidal saponins, due to their specific chemical structures and active effects, have long been important natural products and that are irreplaceable in hormone production and other pharmaceutical industries. This article comprehensively reviewed the previous and current research progress and summarized the biosynthesis pathways and key biosynthetic enzymes of steroidal saponins that have been discovered in plants and microoganisms. On the basis of the general biosynthetic pathway in plants, it was found that the starting components, intermediates and catalysing enzymes were diverse between plants and microorganisms; however, the functions of their related enzymes tended to be similar. The biosynthesis pathways of steroidal saponins in microorganisms and marine organisms have not been revealed as clearly as those in plants and need further investigation. The elucidation of biosynthetic pathways and key enzymes is essential for understanding the synthetic mechanisms of these compounds and provides researchers with important information to further develop and implement the massive production of steroidal saponins by biotechnological approaches and methodologies.
Collapse
Affiliation(s)
- Yiyang Chen
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China
| | - Junkai Wu
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China
| | - Dan Yu
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China
| | - Xiaowei Du
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China.
| |
Collapse
|
4
|
De Vriese K, Pollier J, Goossens A, Beeckman T, Vanneste S. Dissecting cholesterol and phytosterol biosynthesis via mutants and inhibitors. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:241-253. [PMID: 32929492 DOI: 10.1093/jxb/eraa429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Plants stand out among eukaryotes due to the large variety of sterols and sterol derivatives that they can produce. These metabolites not only serve as critical determinants of membrane structures, but also act as signaling molecules, as growth-regulating hormones, or as modulators of enzyme activities. Therefore, it is critical to understand the wiring of the biosynthetic pathways by which plants generate these distinct sterols, to allow their manipulation and to dissect their precise physiological roles. Here, we review the complexity and variation of the biosynthetic routes of the most abundant phytosterols and cholesterol in the green lineage and how different enzymes in these pathways are conserved and diverged from humans, yeast, and even bacteria. Many enzymatic steps show a deep evolutionary conservation, while others are executed by completely different enzymes. This has important implications for the use and specificity of available human and yeast sterol biosynthesis inhibitors in plants, and argues for the development of plant-tailored inhibitors of sterol biosynthesis.
Collapse
Affiliation(s)
- Kjell De Vriese
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| | - Jacob Pollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
- VIB Metabolomics Core, Technologiepark, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Songdomunhwa-Ro, Yeonsu-gu, Incheon, Republic of Korea
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Wei Z, Li J. Regulation of Brassinosteroid Homeostasis in Higher Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:583622. [PMID: 33133120 PMCID: PMC7550685 DOI: 10.3389/fpls.2020.583622] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/09/2020] [Indexed: 05/03/2023]
Abstract
Brassinosteroids (BRs) are known as one of the major classes of phytohormones essential for various processes during normal plant growth, development, and adaptations to biotic and abiotic stresses. Significant progress has been achieved on revealing mechanisms regulating BR biosynthesis, catabolism, and signaling in many crops and in model plant Arabidopsis. It is known that BRs control plant growth and development in a dosage-dependent manner. Maintenance of BR homeostasis is therefore critical for optimal functions of BRs. In this review, updated discoveries on mechanisms controlling BR homeostasis in higher plants in response to internal and external cues are discussed.
Collapse
|
6
|
Metabolism and Biological Activities of 4-Methyl-Sterols. Molecules 2019; 24:molecules24030451. [PMID: 30691248 PMCID: PMC6385002 DOI: 10.3390/molecules24030451] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022] Open
Abstract
4,4-Dimethylsterols and 4-methylsterols are sterol biosynthetic intermediates (C4-SBIs) acting as precursors of cholesterol, ergosterol, and phytosterols. Their accumulation caused by genetic lesions or biochemical inhibition causes severe cellular and developmental phenotypes in all organisms. Functional evidence supports their role as meiosis activators or as signaling molecules in mammals or plants. Oxygenated C4-SBIs like 4-carboxysterols act in major biological processes like auxin signaling in plants and immune system development in mammals. It is the purpose of this article to point out important milestones and significant advances in the understanding of the biogenesis and biological activities of C4-SBIs.
Collapse
|
7
|
Berim A, Park JJ, Gang DR. Unexpected roles for ancient proteins: flavone 8-hydroxylase in sweet basil trichomes is a Rieske-type, PAO-family oxygenase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:385-395. [PMID: 25139498 DOI: 10.1111/tpj.12642] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/27/2014] [Accepted: 08/12/2014] [Indexed: 06/03/2023]
Abstract
Most elucidated hydroxylations in plant secondary metabolism are catalyzed by oxoglutarate- or cytochrome P450-dependent oxygenases. Numerous hydroxylations still evade clarification, suggesting that they might be performed by alternative enzyme types. Here, we report the identification of the flavone 8-hydroxylase (F8H) in sweet basil (Ocimum basilicum L.) trichomes as a Rieske-type oxygenase. Several features of the F8H activity in trichome protein extracts helped to differentiate it from a cytochrome P450-catalyzed reaction and identify candidate genes in the basil trichome EST database. The encoded ObF8H proteins share approximately 50% identity with Rieske-type protochlorophyllide a oxygenases (PTC52) from higher plants. Homology cloning and DNA blotting revealed the presence of several PTC52-like genes in the basil genome. The transcripts of the candidate gene designated ObF8H-1 are strongly enriched in trichomes compared to whole young leaves, indicating trichome-specific expression. The full-length ObF8H-1 protein possesses a predicted N-terminal transit peptide, which directs green fluorescent protein at least in part to chloroplasts. The F8H activity in crude trichome protein extracts correlates well with the abundance of ObF8H peptides. The purified recombinant ObF8H-1 displays high affinity for salvigenin and is inactive with other tested flavones except cirsimaritin, which is 8-hydroxylated with less than 0.2% relative activity. The efficiency of in vivo 8-hydroxylation by engineered yeast was improved by manipulation of protein subcellular targeting. blast searches showed that occurrence of several PTC52-like genes is rather common in sequenced plant genomes. The discovery of ObF8H suggests that Rieske-type oxygenases may represent overlooked candidate catalysts for oxygenations in specialized plant metabolism.
Collapse
Affiliation(s)
- Anna Berim
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | | | | |
Collapse
|
8
|
Blosser SJ, Merriman B, Grahl N, Chung D, Cramer RA. Two C4-sterol methyl oxidases (Erg25) catalyse ergosterol intermediate demethylation and impact environmental stress adaptation in Aspergillus fumigatus. MICROBIOLOGY-SGM 2014; 160:2492-2506. [PMID: 25107308 DOI: 10.1099/mic.0.080440-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The human pathogen Aspergillus fumigatus adapts to stress encountered in the mammalian host as part of its ability to cause disease. The transcription factor SrbA plays a significant role in this process by regulating genes involved in hypoxia and low-iron adaptation, antifungal drug responses and virulence. SrbA is a direct transcriptional regulator of genes encoding key enzymes in the ergosterol biosynthesis pathway, including erg25A and erg25B, and ΔsrbA accumulates C4-methyl sterols, suggesting a loss of Erg25 activity [C4-sterol methyl oxidase (SMO)]. Characterization of the two genes encoding SMOs in Aspergillus fumigatus revealed that both serve as functional C4-demethylases, with Erg25A serving in a primary role, as Δerg25A accumulates more C4-methyl sterol intermediates than Δerg25B. Single deletion of these SMOs revealed alterations in canonical ergosterol biosynthesis, indicating that ergosterol may be produced in an alternative fashion in the absence of SMO activity. A Δerg25A strain displayed moderate susceptibility to hypoxia and the endoplasmic reticulum stress-inducing agent DTT, but was not required for virulence in murine or insect models of invasive aspergillosis. Inducing expression of erg25A partially restored the hypoxia growth defect of ΔsrbA. These findings implicated Aspergillus fumigatus SMOs in the maintenance of canonical ergosterol biosynthesis and indicated an overall involvement in the fungal stress response.
Collapse
Affiliation(s)
- Sara J Blosser
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| | - Brittney Merriman
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| | - Nora Grahl
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| | - Dawoon Chung
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| | - Robert A Cramer
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
9
|
Rahier A. Dissecting the sterol C-4 demethylation process in higher plants. From structures and genes to catalytic mechanism. Steroids 2011; 76:340-52. [PMID: 21147141 DOI: 10.1016/j.steroids.2010.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/26/2010] [Accepted: 11/30/2010] [Indexed: 02/01/2023]
Abstract
Sterols become functional only after removal of the two methyl groups at C-4. This review focuses on the sterol C-4 demethylation process in higher plants. An intriguing aspect in the removal of the two C-4 methyl groups of sterol precursors in plants is that it does not occur consecutively as it does in yeast and animals, but is interrupted by several enzymatic steps. Each C-4 demethylation step involves the sequential participation of three individual enzymatic reactions including a sterol methyl oxidase (SMO), a 3β-hydroxysteroid-dehydrogenase/C4-decarboxylase (3βHSD/D) and a 3-ketosteroid reductase (SR). The distant location of the two C-4 demethylations in the sterol pathway requires distinct SMOs with respective substrate specificity. Combination of genetic and molecular enzymological approaches allowed a thorough identification and functional characterization of two distinct families of SMOs genes and two 3βHSD/D genes. For the latter, these studies provided the first molecularly and functionally characterized HSDs from a short chain dehydrogenase/reductase family in plants, and the first data on 3-D molecular interactions of an enzyme of the postoxidosqualene cyclase sterol biosynthetic pathway with its substrate in animals, yeast and higher plants. Characterization of these three new components involved in C-4 demethylation participates to the completion of the molecular inventory of sterol synthesis in higher plants.
Collapse
Affiliation(s)
- Alain Rahier
- Institut de Biologie Moléculaire des Plantes, UPR-CNRS 2357, 28 rue Goethe, 67083 Strasbourg, France.
| |
Collapse
|
10
|
Brumfield KM, Moroney JV, Moore TS, Simms TA, Donze D. Functional characterization of the Chlamydomonas reinhardtii ERG3 ortholog, a gene involved in the biosynthesis of ergosterol. PLoS One 2010; 5:e8659. [PMID: 20084111 PMCID: PMC2799552 DOI: 10.1371/journal.pone.0008659] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 12/14/2009] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The predominant sterol in the membranes of the alga Chlamydomonas reinhardtii is ergosterol, which is commonly found in the membranes of fungi, but is rarely found in higher plants. Higher plants and fungi synthesize sterols by different pathways, with plants producing cycloartenol as a precursor to end-product sterols, while non-photosynthesizing organisms like yeast and humans produce lanosterol as a precursor. Analysis of the C. reinhardtii genome sequence reveals that this algae is also likely to synthesize sterols using a pathway resembling the higher plant pathway, indicating that its sterols are synthesized somewhat differently than in fungi. The work presented here seeks to establish experimental evidence to support the annotated molecular function of one of the sterol biosynthetic genes in the Chlamydomonas genome. METHODOLOGY/PRINCIPAL FINDINGS A gene with homology to the yeast sterol C-5 desaturase, ERG3, is present in the Chlamydomonas genome. To test whether the ERG3 ortholog of C. reinhardtii encodes a sterol C-5 desaturase, Saccharomyces cerevisiae ERG3 knockout strains were created and complemented with a plasmid expressing the Chlamydomonas ERG3. Expression of C. reinhardtii ERG3 cDNA in erg3 null yeast was able to restore ergosterol biosynthesis and reverse phenotypes associated with lack of ERG3 function. CONCLUSIONS/SIGNIFICANCE Complementation of the yeast erg3 null phenotypes strongly suggests that the gene annotated as ERG3 in C. reinhardtii functions as a sterol C-5 desaturase.
Collapse
Affiliation(s)
- Kristy M. Brumfield
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - James V. Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Thomas S. Moore
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Tiffany A. Simms
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - David Donze
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
11
|
Abstract
Isoprenoids represent the oldest class of known low molecular-mass natural products synthesized by plants. Their biogenesis in plastids, mitochondria and the endoplasmic reticulum-cytosol proceed invariably from the C5 building blocks, isopentenyl diphosphate and/or dimethylallyl diphosphate according to complex and reiterated mechanisms. Compounds derived from the pathway exhibit a diverse spectrum of biological functions. This review centers on advances obtained in the field based on combined use of biochemical, molecular biology and genetic approaches. The function and evolutionary implications of this metabolism are discussed in relation with seminal informations gathered from distantly but related organisms.
Collapse
Affiliation(s)
- Florence Bouvier
- Institut de Biologie Moléculaire des Plantes du CNRS (UPR2357) et Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | | | | |
Collapse
|
12
|
Shibuya M, Adachi S, Ebizuka Y. Cucurbitadienol synthase, the first committed enzyme for cucurbitacin biosynthesis, is a distinct enzyme from cycloartenol synthase for phytosterol biosynthesis. Tetrahedron 2004. [DOI: 10.1016/j.tet.2004.04.088] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Schaller H. New aspects of sterol biosynthesis in growth and development of higher plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:465-76. [PMID: 15246059 DOI: 10.1016/j.plaphy.2004.05.012] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 05/06/2004] [Indexed: 05/08/2023]
Abstract
The characterization of the enzymatic components of plant sterol biosynthesis, the phenotypic description of a set of Arabidopsis thaliana sterol mutants, and consequently, the identification of aspects of growth and development influenced by sterols have been in recent years a very fruitful area of research. The overall data obtained in the field have shown an essential role of sterols at the cellular level in hormone signaling, organized divisions and embryo patterning. Indeed, current research efforts strongly suggest that membrane bound proteins implicated in polarized auxin transport or ethylene signaling have altered activity or functionality in a modified sterolic environment.
Collapse
Affiliation(s)
- Hubert Schaller
- Département Isoprénoïdes, Institut de Biologie Moléculaire des Plantes (IBMP/CNRS), Institut de Botanique, 28, rue Goethe, 67083 Strasbourg, France.
| |
Collapse
|
14
|
Darnet S, Rahier A. Plant sterol biosynthesis: identification of two distinct families of sterol 4alpha-methyl oxidases. Biochem J 2004; 378:889-98. [PMID: 14653780 PMCID: PMC1224014 DOI: 10.1042/bj20031572] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 11/17/2003] [Accepted: 12/04/2003] [Indexed: 11/17/2022]
Abstract
In plants, the conversion of cycloartenol into functional phytosterols requires the removal of the two methyl groups at C-4 by an enzymic complex including a sterol 4alpha-methyl oxidase (SMO). We report the cloning of candidate genes for SMOs in Arabidopsis thaliana, belonging to two distinct families termed SMO1 and SMO2 and containing three and two isoforms respectively. SMO1 and SMO2 shared low sequence identity with each other and were orthologous to the ERG25 gene from Saccharomyces cerevisiae which encodes the SMO. The plant SMO amino acid sequences possess all the three histidine-rich motifs (HX3H, HX2HH and HX2HH), characteristic of the small family of membrane-bound non-haem iron oxygenases that are involved in lipid oxidation. To elucidate the precise functions of SMO1 and SMO2 gene families, we have reduced their expression by using a VIGS (virus-induced gene silencing) approach in Nicotiana benthamiana. SMO1 and SMO2 cDNA fragments were inserted into a viral vector and N. benthamiana inoculated with the viral transcripts. After silencing with SMO1, a substantial accumulation of 4,4-dimethyl-9beta,19-cyclopropylsterols (i.e. 24-methylenecycloartanol) was obtained, whereas qualitative and quantitative levels of 4alpha-methylsterols were not affected. In the case of silencing with SMO2, a large accumulation of 4alpha-methyl-Delta7-sterols (i.e. 24-ethylidenelophenol and 24-ethyllophenol) was found, with no change in the levels of 4,4-dimethylsterols. These clear and distinct biochemical phenotypes demonstrate that, in contrast with animals and fungi, in photosynthetic eukaryotes, these two novel families of cDNAs are coding two distinct types of C-4-methylsterol oxidases controlling the level of 4,4-dimethylsterol and 4alpha-methylsterol precursors respectively.
Collapse
Affiliation(s)
- Sylvain Darnet
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, UPR (Unité Propre de Recherche)-2357, 28 rue Goethe, Strasbourg Cedex 67083, France
| | | |
Collapse
|
15
|
Abstract
In recent years, the impressive development of molecular genetics tools, the sequencing of the Arabidopsis thaliana genome, the availability of DNA or transposon tagged mutants, and the multiple possibilities offered by stable transformation with DNA in sense and antisense orientation have enabled the application of a strategy of gain or loss of function to study the sterol biosynthesis pathway. Here we describe the results obtained with these techniques. The results essentially confirm data obtained previously with sterol biosynthesis inhibitors (SBIs) and enable the precise dissection of biosynthetic pathways. We discuss the advantages and disadvantages of molecular genetics techniques as applied to sterol metabolism. The greater selectivity of these techniques constitutes an invaluable advantage and has led to the discovery of a role for sterols in plant development.
Collapse
Affiliation(s)
- Pierre Benveniste
- Institut de Biologie Moleculaire des Plantes, Departement Biogenese et Fonctions des Isoprenoides, UPR-CNRS 2357, 28 rue Goethe, 67083 Strasbourg, France.
| |
Collapse
|
16
|
Abstract
Sterols found in all eukaryotic organisms are membrane components which regulate the fluidity and the permeability of phospholipid bilayers. Certain sterols in minute amounts, such as campesterol in Arabidopsis thaliana, are precursors of oxidized steroids acting as growth hormones collectively named brassinosteroids. The crucial importance of brassinosteroids upon growth and development has been established through the study of a set of dwarf mutants affected in brassinosteroid synthesis or perception. Some of these dwarfs are, in fact, deficient in the final steps of sterol biosynthesis and their developmental phenotypes are primarily caused by a depletion in the sterol precursor for brassinosteroids. Recently, the characterization of genes encoding sterol biosynthetic enzymes and the isolation of novel plant lines affected in the expression of those genes, either by insertional or classical mutagenesis, overexpression or cosuppression, have shed new light on the involvement of sterols in biological processes such as embryonic development, cell and plant growth, and fertility, which will be presented and discussed in this review article.
Collapse
Affiliation(s)
- Hubert Schaller
- Institut de Biologie Moléculaire des Plantes du CNRS, Département Isoprénoïdes, Institut de Botanique, 28 rue Goethe, F-67083, Strasbourg, France.
| |
Collapse
|
17
|
Bibliography. Current awareness on yeast. Yeast 2002; 19:467-74. [PMID: 11921095 DOI: 10.1002/yea.822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
18
|
Affiliation(s)
- Pierre Benveniste
- Institut de Biologie Moleculaire des Plantes, Departement Biogénèse et Fonctions des Isoprénoides, UPR-CNRS 2357, 28 rue Goethe, 67083-Strasbourg, France
| |
Collapse
|