1
|
Ren Z. Photoinduced isomerization sampling of retinal in bacteriorhodopsin. PNAS NEXUS 2022; 1:pgac103. [PMID: 35967979 PMCID: PMC9364214 DOI: 10.1093/pnasnexus/pgac103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023]
Abstract
Photoisomerization of retinoids inside a confined protein pocket represents a critical chemical event in many important biological processes from animal vision, nonvisual light effects, to bacterial light sensing and harvesting. Light-driven proton pumping in bacteriorhodopsin entails exquisite electronic and conformational reconfigurations during its photocycle. However, it has been a major challenge to delineate transient molecular events preceding and following the photoisomerization of the retinal from noisy electron density maps when varying populations of intermediates coexist and evolve as a function of time. Here, I report several distinct early photoproducts deconvoluted from the recently observed mixtures in time-resolved serial crystallography. This deconvolution substantially improves the quality of the electron density maps, hence demonstrates that the all-trans retinal undergoes extensive isomerization sampling before it proceeds to the productive 13-cis configuration. Upon light absorption, the chromophore attempts to perform trans-to-cis isomerization at every double bond together with the stalled anti-to-syn rotations at multiple single bonds along its polyene chain. Such isomerization sampling pushes all seven transmembrane helices to bend outward, resulting in a transient expansion of the retinal binding pocket, and later, a contraction due to recoiling. These ultrafast responses observed at the atomic resolution support that the productive photoreaction in bacteriorhodopsin is initiated by light-induced charge separation in the prosthetic chromophore yet governed by stereoselectivity of its protein pocket. The method of a numerical resolution of concurrent events from mixed observations is also generally applicable.
Collapse
Affiliation(s)
- Zhong Ren
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
- Renz Research, Inc., Westmont, IL 60559, USA
| |
Collapse
|
2
|
Vectorial Proton Transport Mechanism of RxR, a Phylogenetically Distinct and Thermally Stable Microbial Rhodopsin. Sci Rep 2020; 10:282. [PMID: 31937866 PMCID: PMC6959264 DOI: 10.1038/s41598-019-57122-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/30/2019] [Indexed: 11/08/2022] Open
Abstract
Rubrobacter xylanophilus rhodopsin (RxR) is a phylogenetically distinct and thermally stable seven-transmembrane protein that functions as a light-driven proton (H+) pump with the chromophore retinal. To characterize its vectorial proton transport mechanism, mutational and theoretical investigations were performed for carboxylates in the transmembrane region of RxR and the sequential proton transport steps were revealed as follows: (i) a proton of the retinylidene Schiff base (Lys209) is transferred to the counterion Asp74 upon formation of the blue-shifted M-intermediate in collaboration with Asp205, and simultaneously, a respective proton is released from the proton releasing group (Glu187/Glu197) to the extracellular side, (ii) a proton of Asp85 is transferred to the Schiff base during M-decay, (iii) a proton is taken up from the intracellular side to Asp85 during decay of the red-shifted O-intermediate. This ion transport mechanism of RxR provides valuable information to understand other ion transporters since carboxylates are generally essential for their functions.
Collapse
|
3
|
Coupling between inter-helical hydrogen bonding and water dynamics in a proton transporter. J Struct Biol 2014; 186:95-111. [DOI: 10.1016/j.jsb.2014.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 12/20/2022]
|
4
|
Simón-Vázquez R, Domínguez M, Lórenz-Fonfría VA, Alvarez S, Bourdelande JL, de Lera AR, Padrós E, Perálvarez-Marín A. Probing a polar cluster in the retinal binding pocket of bacteriorhodopsin by a chemical design approach. PLoS One 2012; 7:e42447. [PMID: 22879987 PMCID: PMC3411786 DOI: 10.1371/journal.pone.0042447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 07/06/2012] [Indexed: 11/24/2022] Open
Abstract
Bacteriorhodopsin has a polar cluster of amino acids surrounding the retinal molecule, which is responsible for light harvesting to fuel proton pumping. From our previous studies, we have shown that threonine 90 is the pivotal amino acid in this polar cluster, both functionally and structurally. In an attempt to perform a phenotype rescue, we have chemically designed a retinal analogue molecule to compensate the drastic effects of the T90A mutation in bacteriorhodopsin. This analogue substitutes the methyl group at position C13 of the retinal hydrocarbon chain by and ethyl group (20-methyl retinal). We have analyzed the effect of reconstituting the wild-type and the T90A mutant apoproteins with all-trans-retinal and its 20-methyl derivative (hereafter, 13-ethyl retinal). Biophysical characterization indicates that recovering the steric interaction between the residue 90 and retinal, eases the accommodation of the chromophore, however it is not enough for a complete phenotype rescue. The characterization of these chemically engineered chromoproteins provides further insight into the role of the hydrogen bond network and the steric interactions involving the retinal binding pocket in bacteriorhodopsin and other microbial sensory rhodopsins.
Collapse
Affiliation(s)
- Rosana Simón-Vázquez
- Departament de Bioquímica i de Biologia Molecular and Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Del Val C, White SH, Bondar AN. Ser/Thr motifs in transmembrane proteins: conservation patterns and effects on local protein structure and dynamics. J Membr Biol 2012; 245:717-30. [PMID: 22836667 DOI: 10.1007/s00232-012-9452-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 06/04/2012] [Indexed: 01/16/2023]
Abstract
We combined systematic bioinformatics analyses and molecular dynamics simulations to assess the conservation patterns of Ser and Thr motifs in membrane proteins, and the effect of such motifs on the structure and dynamics of α-helical transmembrane (TM) segments. We find that Ser/Thr motifs are often present in β-barrel TM proteins. At least one Ser/Thr motif is present in almost half of the sequences of α-helical proteins analyzed here. The extensive bioinformatics analyses and inspection of protein structures led to the identification of molecular transporters with noticeable numbers of Ser/Thr motifs within the TM region. Given the energetic penalty for burying multiple Ser/Thr groups in the membrane hydrophobic core, the observation of transporters with multiple membrane-embedded Ser/Thr is intriguing and raises the question of how the presence of multiple Ser/Thr affects protein local structure and dynamics. Molecular dynamics simulations of four different Ser-containing model TM peptides indicate that backbone hydrogen bonding of membrane-buried Ser/Thr hydroxyl groups can significantly change the local structure and dynamics of the helix. Ser groups located close to the membrane interface can hydrogen bond to solvent water instead of protein backbone, leading to an enhanced local solvation of the peptide.
Collapse
Affiliation(s)
- Coral Del Val
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain.
| | | | | |
Collapse
|
6
|
Hydroxylamine as a thermal destabiliser of bacteriorhodopsin. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 39:1605-11. [DOI: 10.1007/s00249-010-0618-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/26/2010] [Accepted: 06/29/2010] [Indexed: 11/26/2022]
|
7
|
Lazarova T, Querol E, Padrós E. Coupling between the retinal thermal isomerization and the Glu194 residue of bacteriorhodopsin. Photochem Photobiol 2009; 85:617-23. [PMID: 19267876 DOI: 10.1111/j.1751-1097.2008.00534.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glu194 is a residue located at the end of F helix on the extracellular side of the light-induced proton pump bacteriorhodopsin (BR). Currently, it is well recognized that Glu194 and Glu204 residues, along with water clusters, constitute the proton release group of BR. Here we report that the replacement of Glu194 for Gln affects not only the photocycle of the protein but also has tremendous effect on the all-trans to 13-cis thermal isomerization. We studied the pH dependence of the dark adaptation of the E194Q mutant and performed HPLC analysis of the isomer compositions of the light- and partially dark-adapted states of the mutant at several pH values. Our data confirmed that E194Q exhibits extremely slow dark adaptation over a wide range of pH. HPLC data showed that a significantly larger concentration of all-trans isomer was present in the samples of the E194Q mutant even after prolonged dark adaptation. After 14 days in the dark the 13-cis to all-trans ratio was 1:3 in the mutant, compared to 2:1 in the wild type. These data clearly indicate the involvement of Glu194 in control of the rate of all-trans to 13-cis thermal isomerization.
Collapse
Affiliation(s)
- Tzvetana Lazarova
- Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | | | | |
Collapse
|
8
|
Influence of proline on the thermostability of the active site and membrane arrangement of transmembrane proteins. Biophys J 2008; 95:4384-95. [PMID: 18658225 DOI: 10.1529/biophysj.108.136747] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proline residues play a fundamental and subtle role in the dynamics, structure, and function in many membrane proteins. Temperature derivative spectroscopy and differential scanning calorimetry have been used to determine the effect of proline substitution in the structural stability of the active site and transmembrane arrangement of bacteriorhodopsin. We have analyzed the Pro-to-Ala mutation for the helix-embedded prolines Pro50, Pro91, and Pro186 in the native membrane environment. This information has been complemented with the analysis of the respective crystallographic structures by the FoldX force field. Differential scanning calorimetry allowed us to determine distorted membrane arrangement for P50A and P186A. The protein stability was severely affected for P186A and P91A. In the case of Pro91, a single point mutation is capable of strongly slowing down the conformational diffusion along the denaturation coordinate, becoming a barrier-free downhill process above 371 K. Temperature derivative spectroscopy, applied for first time to study thermal stability of proteins, has been used to monitor the stability of the active site of bacteriorhodopsin. The mutation of Pro91 and Pro186 showed the most striking effects on the retinal binding pocket. These residues are the Pro in closer contact to the active site (activation energies for retinal release of 60.1 and 76.8 kcal/mol, respectively, compared to 115.8 kcal/mol for WT). FoldX analysis of the protein crystal structures indicates that the Pro-to-Ala mutations have both local and long-range effects on the structural stability of residues involved in the architecture of the protein and the active site and in the proton pumping function. Thus, this study provides a complete overview of the substitution effect of helix-embedded prolines in the thermodynamic and dynamic stability of a membrane protein, also related to its structure and function.
Collapse
|
9
|
Perálvarez-Marín A, Lórenz-Fonfría VA, Bourdelande JL, Querol E, Kandori H, Padrós E. Inter-helical Hydrogen Bonds Are Essential Elements for Intra-protein Signal Transduction: The Role of Asp115 in Bacteriorhodopsin Transport Function. J Mol Biol 2007; 368:666-76. [PMID: 17367807 DOI: 10.1016/j.jmb.2007.02.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 01/31/2007] [Accepted: 02/07/2007] [Indexed: 11/25/2022]
Abstract
The behavior of the D115A mutant was analyzed by time-resolved UV-Vis and Fourier transformed infrared (FTIR) spectroscopies, aiming to clarify the role of Asp115 in the intra-protein signal transductions occurring during the bacteriorhodopsin photocycle. UV-Vis data on the D115A mutant show severely desynchronized photocycle kinetics. FTIR data show a poor transmission of the retinal isomerization to the chromoprotein, evidenced by strongly attenuated helical changes (amide I), the remarkable absence of environment alterations and protonation/deprotonation events related to Asp96 and direct Schiff base (SB) protonation form the bulk. This argues for the interactions of Asp115 with Leu87 (via water molecule) and Thr90 as key elements for the effective and vectorial proton path between Asp96 and the SB, in the cytoplasmic half of bacteriorhodopsin. The results strongly suggest the presence of a regulation motif enclosed in helices C and D (Thr90-Pro91/Asp115) which drives properly the dynamics of helix C through a set of interactions. It also supports the idea that intra-helical hydrogen bonding clusters in the buried regions of transmembrane proteins can be potential elements in intra-protein signal transduction.
Collapse
Affiliation(s)
- Alex Perálvarez-Marín
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, and Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona 08193, Spain.
| | | | | | | | | | | |
Collapse
|
10
|
Perálvarez-Marín A, Bourdelande JL, Querol E, Padrós E. The role of proline residues in the dynamics of transmembrane helices: the case of bacteriorhodopsin. Mol Membr Biol 2006; 23:127-35. [PMID: 16754356 DOI: 10.1080/09687860500435019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Proline residues in transmembrane helices have been found to have important roles in the functioning of membrane proteins. Moreover, Pro residues occur with high frequency in transmembrane alpha-helices, as compared to alpha-helices for soluble proteins. Here, we report several properties of the bacteriorhodopsin mutants P50A (helix B), P91A (helix C) and P186A (helix F). Compared to wild type, strongly perturbed behaviour has been found for these mutants. In the resting state, increased hydroxylamine accessibility and altered Asp-85 pKa and light-dark adaptation were observed. On light activation, hydroxylamine accessibility was increased and proton transport activity, M formation kinetics and FTIR difference spectra of M and N intermediates showed clear distortions. On the basis of these alterations and the near identity of the crystalline structures of mutants with that of wild type, we conclude that the transmembrane proline residues of bacteriorhodopsin fulfil a dynamic role in both the resting and the light-activated states. Our results are consistent with the notion that mutation of Pro to Ala allows the helix to increase its flexibility towards the direction originally hindered by the steric clash between the ring Cgamma and the carbonyl O of the i-4 residue, at the same time decreasing the mobility towards the opposite direction. Due to their properties, transmembrane Pro residues may serve as transmission elements of conformational changes during the transport process. We propose that these concepts can be extended to other transmembrane proteins.
Collapse
Affiliation(s)
- Alex Perálvarez-Marín
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Barcelona, Spain
| | | | | | | |
Collapse
|
11
|
Deupi X, Olivella M, Govaerts C, Ballesteros JA, Campillo M, Pardo L. Ser and Thr residues modulate the conformation of pro-kinked transmembrane alpha-helices. Biophys J 2004; 86:105-15. [PMID: 14695254 PMCID: PMC1303774 DOI: 10.1016/s0006-3495(04)74088-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Functionally required conformational plasticity of transmembrane proteins implies that specific structural motifs have been integrated in transmembrane helices. Surveying a database of transmembrane helices and the large family of G-protein coupled receptors we identified a series of overrepresented motifs associating Pro with either Ser or Thr. Thus, we have studied the conformation of Pro-kinked transmembrane helices containing Ser or Thr residues, in both g+ and g- rotamers, by molecular dynamics simulations in a hydrophobic environment. Analysis of the simulations shows that Ser or Thr can significantly modulate the deformation of the Pro. A series of motifs, such as (S/T)P and (S/T)AP in the g+ rotamer and the TAP and PAA(S/T) motifs in the g- rotamer, induce an increase in bending angle of the helix compared to a standard Pro-kink, apparently due to the additional hydrogen bond formed between the side chain of Ser/Thr and the backbone carbonyl oxygen. In contrast, (S/T)AAP and PA(S/T) motifs, in both g+ and g-, and PAA(S/T) in g+ rotamers decrease the bending angle of the helix by either reducing the steric clash between the pyrrolidine ring of Pro and the helical backbone, or by adding a constrain in the form of a hydrogen bond in the curved-in face of the helix. Together with a number of available experimental data, our results strongly suggest that association of Ser and Thr with Pro is commonly used in transmembrane helices to accommodate the structural needs of specific functions.
Collapse
Affiliation(s)
- Xavier Deupi
- Laboratori de Medicina Computacional, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Perálvarez-Marín A, Márquez M, Bourdelande JL, Querol E, Padrós E. Thr-90 plays a vital role in the structure and function of bacteriorhodopsin. J Biol Chem 2004; 279:16403-9. [PMID: 14757760 DOI: 10.1074/jbc.m313988200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of Thr-90 in the bacteriorhodopsin structure and function was investigated by its replacement with Ala and Val. The mutant D115A was also studied because Asp-115 in helix D forms a hydrogen bond with Thr-90 in helix C. Differential scanning calorimetry showed a decreased thermal stability of all three mutants, with T90A being the least stable. Light-dark adaptation of T90A was found to be abnormal and salt-dependent. Proton transport monitored using pyranine signals was approximately 10% of wild type for T90A, 20% for T90V, and 50% for D115A. At neutral or alkaline pH, the M rise of these mutants was faster than that of wild type, whereas M decay was slower in T90A. Overall, Fourier transform infrared (FTIR) difference spectra of T90A were strongly pH-dependent. Spectra recorded on films adjusted at the same pH at 243 or 277 K, dry or wet, showed similar features. The D115A and T90V FTIR spectra were closer to WT, showing minor structural differences. The band at 1734 cm(-1) of the deconvoluted FTIR spectrum, corresponding to the carboxylate of Asp-115, was absent in all mutants. In conclusion, Thr-90 plays a critical role in maintaining the operative location and structure of helix C through three complementary interactions, namely an interhelical hydrogen bond with Asp-115, an intrahelical hydrogen bond with the peptide carbonyl oxygen of Trp-86, and a steric contact with the retinal. The interactions established by Thr-90 emerge as a general feature of archaeal rhodopsin proteins.
Collapse
Affiliation(s)
- Alex Perálvarez-Marín
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | | | | | | | | |
Collapse
|
13
|
Ramon E, del Valle LJ, Garriga P. Unusual thermal and conformational properties of the rhodopsin congenital night blindness mutant Thr-94 --> Ile. J Biol Chem 2003; 278:6427-32. [PMID: 12466267 DOI: 10.1074/jbc.m210929200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Naturally occurring point mutations in the opsin gene cause the retinal diseases retinitis pigmentosa and congenital night blindness. Although these diseases involve similar mutations in very close locations in rhodopsin, their progression is very different, with retinitis pigmentosa being severe and causing retinal degeneration. We report on the expression and characterization of the recently found T94I mutation associated with congenital night blindness, in the second transmembrane helix or rhodopsin, and mutations at the same site. T94I mutant rhodopsin folded properly and was able to bind 11-cis-retinal to form chromophore, but it showed a blue-shifted visible band at 478 nm and reduced molar extinction coefficient. Furthermore, T94I showed dramatically reduced thermal stability, extremely long lived metarhodopsin II intermediate, and highly increased reactivity toward hydroxylamine in the dark, when compared with wild type rhodopsin. The results are consistent with the location of Thr-94 in close proximity to Glu-113 counterion in the vicinity of the Schiff base linkage and suggest a role for this residue in maintaining the correct dark inactive conformation of the receptor. The reported results, together with previously published data on the other two known congenital night blindness mutants, suggest that the molecular mechanism underlying this disease may not be structural misfolding, as proposed for retinitis pigmentosa mutants, but abnormal functioning of the receptor by decreased thermal stability and/or constitutive activity.
Collapse
Affiliation(s)
- Eva Ramon
- Centre de Biotecnologia Molecular (CEBIM), Departament d'Enginyeria Quimica, Universitat Politècnica de Catalunya, Colom 1, 08222 Terrassa, Catalonia, Spain
| | | | | |
Collapse
|
14
|
Lazarova T, Sanz C, Sepulcre F, Querol E, Padrós E. Specific effects of chloride on the photocycle of E194Q and E204Q mutants of bacteriorhodopsin as measured by FTIR spectroscopy. Biochemistry 2002; 41:8176-83. [PMID: 12069610 DOI: 10.1021/bi025654u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Low-temperature Fourier transform infrared spectroscopy has been used to study mutants of Glu194 and Glu204, two amino acids that are involved in proton release to the extracellular side of bacteriorhodopsin. Difference spectra of films of E194Q, E204Q, E194Q/E204Q, E9Q/E194Q/E204Q, and E9Q/E74Q/E194Q/E204Q at 243, 277, and 293 K and several pH values were obtained by continuous illumination. A specific effect of Cl(-) ions was found for the mutants, promoting a N-like intermediate at alkaline pH and an O' intermediate at neutral or acid pH. The apparent pK(a) of Asp85 in the M intermediate was found to be decreased for E194Q in the presence of Cl(-) (pK(a) of 7.6), but it was unchanged for E204Q, as compared to wild-type. In the absence of Cl(-) (i.e., in the presence of SO(4)(2)(-)), mutation of Glu194 or of Glu204 produces M- (or M(N), M(G))-like intermediates under all of the conditions examined. The absence of N, O, and O' intermediates suggests a long-range effect of the mutation. Furthermore, it is suggested that Cl(-) acts by reaching the interior of the protein, rather than producing surface effects. The effect of low water content was also examined, in the presence of Cl(-). Similar spectra corresponding to the M(1) intermediate were found for dry samples of both mutants, indicating that the effects of the mutations or of Cl(-) ions are confined to the second part of the photocycle. The water O-H stretching data further confirms altered photocycles and the effect of Cl(-) on the accumulation of the N intermediate.
Collapse
Affiliation(s)
- Tzvetana Lazarova
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona 08193, Spain
| | | | | | | | | |
Collapse
|