1
|
Kociucka B, Flisikowska T, Mróz D, Szczerbal I. Expression of genes involved in lipid droplet formation (BSCL2, SNAP23 and COPA) during porcine in vitro adipogenesis. J Appl Genet 2016; 57:505-510. [PMID: 27108337 PMCID: PMC5061828 DOI: 10.1007/s13353-016-0350-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/04/2016] [Accepted: 04/15/2016] [Indexed: 11/01/2022]
Abstract
Adipogenesis is a complex process of fat cells development driven by the expression of numerous genes. Differentiation of progenitor cells into mature adipocytes is accompanied by changes in cell shape, as a result of lipid accumulation. In the present study, expression of three genes involved in lipid droplet formation (SNAP23, BSCL2 and COPA) was evaluated during porcine adipogenesis. It was found that mRNA levels of BSCL2 and SNAP23, but not COPA, increased during differentiation. Redistribution of SNAP23 protein to different cellular compartments was observed when comparing undifferentiated mesenchymal stem cells and differentiated adipocytes. The BSCL2 protein was found to be highly specific to cells with accumulated lipids, while COPA protein coated the lipid droplets. Obtained results indicated that the studied genes may be considered as candidates for fatness traits in pigs. Moreover, this study has shown that the porcine in vitro adipogenesis system provides a useful tool for the characterisation of novel genes involved in adipose tissue accumulation.
Collapse
Affiliation(s)
- Beata Kociucka
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Tatiana Flisikowska
- Chair of Livestock Biotechnology, Technische Universität München, München, Germany
| | - Dariusz Mróz
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Izabela Szczerbal
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| |
Collapse
|
2
|
Reverter M, Rentero C, de Muga SV, Alvarez-Guaita A, Mulay V, Cairns R, Wood P, Monastyrskaya K, Pol A, Tebar F, Blasi J, Grewal T, Enrich C. Cholesterol transport from late endosomes to the Golgi regulates t-SNARE trafficking, assembly, and function. Mol Biol Cell 2012; 22:4108-23. [PMID: 22039070 PMCID: PMC3204072 DOI: 10.1091/mbc.e11-04-0332] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This study shows that impaired cholesterol egress from late endosomes in cells with high annexin A6 levels is associated with altered soluble N-ethylmaleimide–sensitive fusion protein 23 (SNAP23) and syntaxin-4 cellular distribution and assembly and accumulation in Golgi membranes. This correlates with reduced secretion of cargo along the constitutive and SNAP23/syntaxin-4–dependent secretory pathway. Cholesterol regulates plasma membrane (PM) association and functioning of syntaxin-4 and soluble N-ethylmaleimide-sensitive fusion protein 23 (SNAP23) in the secretory pathway. However, the molecular mechanism and cellular cholesterol pools that determine the localization and assembly of these target membrane SNAP receptors (t-SNAREs) are largely unknown. We recently demonstrated that high levels of annexin A6 (AnxA6) induce accumulation of cholesterol in late endosomes, thereby reducing cholesterol in the Golgi and PM. This leads to an impaired supply of cholesterol needed for cytosolic phospholipase A2 (cPLA2) to drive Golgi vesiculation and caveolin transport to the cell surface. Using AnxA6-overexpressing cells as a model for cellular cholesterol imbalance, we identify impaired cholesterol egress from late endosomes and diminution of Golgi cholesterol as correlating with the sequestration of SNAP23/syntaxin-4 in Golgi membranes. Pharmacological accumulation of late endosomal cholesterol and cPLA2 inhibition induces a similar phenotype in control cells with low AnxA6 levels. Ectopic expression of Niemann-Pick C1 (NPC1) or exogenous cholesterol restores the location of SNAP23 and syntaxin-4 within the PM. Importantly, AnxA6-mediated mislocalization of these t-SNAREs correlates with reduced secretion of cargo via the SNAP23/syntaxin-4–dependent constitutive exocytic pathway. We thus conclude that inhibition of late endosomal export and Golgi cholesterol depletion modulate t-SNARE localization and functioning along the exocytic pathway.
Collapse
Affiliation(s)
- Meritxell Reverter
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Reverter M, Rentero C, de Muga SV, Alvarez-Guaita A, Mulay V, Cairns R, Wood P, Monastyrskaya K, Pol A, Tebar F, Blasi J, Grewal T, Enrich C. Cholesterol transport from late endosomes to the Golgi regulates t-SNARE trafficking, assembly, and function. Mol Biol Cell 2011. [DOI: 10.1091/mbc.e11-04-0332r] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cholesterol regulates plasma membrane (PM) association and functioning of syntaxin-4 and soluble N-ethylmaleimide-sensitive fusion protein 23 (SNAP23) in the secretory pathway. However, the molecular mechanism and cellular cholesterol pools that determine the localization and assembly of these target membrane SNAP receptors (t-SNAREs) are largely unknown. We recently demonstrated that high levels of annexin A6 (AnxA6) induce accumulation of cholesterol in late endosomes, thereby reducing cholesterol in the Golgi and PM. This leads to an impaired supply of cholesterol needed for cytosolic phospholipase A2(cPLA2) to drive Golgi vesiculation and caveolin transport to the cell surface. Using AnxA6-overexpressing cells as a model for cellular cholesterol imbalance, we identify impaired cholesterol egress from late endosomes and diminution of Golgi cholesterol as correlating with the sequestration of SNAP23/syntaxin-4 in Golgi membranes. Pharmacological accumulation of late endosomal cholesterol and cPLA2inhibition induces a similar phenotype in control cells with low AnxA6 levels. Ectopic expression of Niemann-Pick C1 (NPC1) or exogenous cholesterol restores the location of SNAP23 and syntaxin-4 within the PM. Importantly, AnxA6-mediated mislocalization of these t-SNAREs correlates with reduced secretion of cargo via the SNAP23/syntaxin-4–dependent constitutive exocytic pathway. We thus conclude that inhibition of late endosomal export and Golgi cholesterol depletion modulate t-SNARE localization and functioning along the exocytic pathway.
Collapse
Affiliation(s)
- Meritxell Reverter
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Carles Rentero
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Sandra Vilà de Muga
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Anna Alvarez-Guaita
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Vishwaroop Mulay
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Rose Cairns
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Peta Wood
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Katia Monastyrskaya
- Urology Research Laboratory, Department of Clinical Research, University of Bern, 3000 Bern 9, Switzerland
| | - Albert Pol
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Francesc Tebar
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Joan Blasi
- Department of Pathology and Experimental Therapeutics, IDIBELL–University of Barcelona, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Carlos Enrich
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
4
|
Torrejón-Escribano B, Escoriza J, Montanya E, Blasi J. Glucose-dependent changes in SNARE protein levels in pancreatic β-cells. Endocrinology 2011; 152:1290-9. [PMID: 21285315 DOI: 10.1210/en.2010-0898] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prolonged exposure to high glucose concentration alters the expression of a set of proteins in pancreatic β-cells and impairs their capacity to secrete insulin. The cellular and molecular mechanisms that lie behind this effect are poorly understood. In this study, three either in vitro or in vivo models (cultured rat pancreatic islets incubated in high glucose media, partially pancreatectomized rats, and islets transplanted to streptozotozin-induced diabetic mice) were used to evaluate the dependence of the biological model and the treatment, together with the cell location (insulin granule or plasma membrane) of the affected proteins and the possible effect of sustained insulin secretion, on the glucose-induced changes in protein expression. In all three models, islets exposed to high glucose concentrations showed a reduced expression of secretory granule-associated vesicle-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins synaptobrevin/vesicle-associated membrane protein 2 and cellubrevin but minor or no significant changes in the expression of the membrane-associated target-SNARE proteins syntaxin1 and synaptosomal-associated protein-25 and a marked increase in the expression of synaptosomal-associated protein-23 protein. The inhibition of insulin secretion by the L-type voltage-dependent calcium channel nifedipine or the potassium channel activator diazoxide prevented the glucose-induced reduction in islet insulin content but not in vesicle-SNARE proteins, indicating that the granule depletion due to sustained exocytosis was not involved in the changes of protein expression induced by high glucose concentration. Altogether, the results suggest that high glucose has a direct toxic effect on the secretory pathway by decreasing the expression of insulin granule SNARE-associated proteins.
Collapse
Affiliation(s)
- Benjamín Torrejón-Escribano
- Departamento de Patologia i Terapèutica Experimental, Institut d'Investigació Biomèdica de Bellvitge-Universitat de Barcelona, Laboratori 4145, Campus de Bellvitge, Edifici del Pavelló de Govern, C/Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | |
Collapse
|
5
|
Paco S, Margelí MA, Olkkonen VM, Imai A, Blasi J, Fischer-Colbrie R, Aguado F. Regulation of exocytotic protein expression and Ca2+-dependent peptide secretion in astrocytes. J Neurochem 2009; 110:143-56. [PMID: 19594665 DOI: 10.1111/j.1471-4159.2009.06116.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vesicular transmitter release from astrocytes influences neuronal development, function and plasticity. However, secretory pathways and the involved molecular mechanisms in astroglial cells are poorly known. In this study, we show that a variety of SNARE and Munc18 isoforms are expressed by cultured astrocytes, with syntaxin-4, Munc18c, SNAP-23 and VAMP-3 being the most abundant variants. Exocytotic protein expression was differentially regulated by activating and differentiating agents. Specifically, proteins controlling Ca(2+)-dependent secretion in neuroendocrine cells were up-regulated after long-term 8Br-cAMP administration in astrocytes, but not by proinflammatory cytokines. Moreover, 8Br-cAMP treatment greatly increased the cellular content of the peptidic vesicle marker secretogranin-2. Release assays performed on cAMP-treated astrocytes showed that basal and stimulated secretogranin-2 secretion are dependent on [Ca(2+)](i). As shown release of the chimeric hormone ANP.emd from transfected cells, cAMP-induced differentiation in astrocytes enhances Ca(2+)-regulated peptide secretion. We conclude that astroglial cells display distinctive molecular components for exocytosis. Moreover, the regulation of both exocytotic protein expression and Ca(2+)-dependent peptide secretion in astrocytes by differentiating and activating agents suggest that glial secretory pathways are adjusted in different physiological states.
Collapse
Affiliation(s)
- Sonia Paco
- Department of Cell Biology, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|