1
|
Popovic M, Isermann L, Geißen S, Senft K, Georgomanolis T, Baldus S, Frezza C, Trifunovic A. Tissue-specific adaptations to cytochrome c oxidase deficiency shape physiological outcomes. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167567. [PMID: 39613003 DOI: 10.1016/j.bbadis.2024.167567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 12/01/2024]
Abstract
It becomes increasingly clear that the tissue specificity of mitochondrial diseases might in part rely on their ability to compensate for mitochondrial defects, contributing to the heterogeneous nature of mitochondrial diseases. Here, we investigated tissue-specific responses to cytochrome c oxidase (CIV or COX) deficiency using a mouse model with heart and skeletal muscle-specific depletion of the COX assembly factor COX10. At three weeks of age, both tissues exhibit pronounced CIV depletion but respond differently to oxidative phosphorylation (OXPHOS) impairment. Heart-specific COX10 depletion caused severe dilated cardiomyopathy, while skeletal muscle experiences less damage. Cardiac CIV deficiency triggered extensive metabolic remodelling and stress response activation, potentially worsening cardiomyopathy, whereas skeletal muscle showed no stress response or significant metabolic changes. Our findings highlight distinct tissue capacities for managing CIV deficiency, explaining how identical primary defects can lead to different phenotypic outcomes and contribute to the heterogeneous progression of mitochondrial diseases.
Collapse
Affiliation(s)
- Milica Popovic
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Institute for Mitochondrial Diseases and Aging, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50931 Cologne, Germany
| | - Lea Isermann
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Institute for Mitochondrial Diseases and Aging, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50931 Cologne, Germany
| | - Simon Geißen
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, 50937, Germany; Clinic III for Internal Medicine, University Hospital Cologne, 50937, Germany; Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Katharina Senft
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Institute for Mitochondrial Diseases and Aging, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50931 Cologne, Germany
| | - Theodoros Georgomanolis
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Institute for Metabolomics in Ageing, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50931 Cologne, Germany
| | - Stephan Baldus
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, 50937, Germany; Clinic III for Internal Medicine, University Hospital Cologne, 50937, Germany; Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Christian Frezza
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Institute for Metabolomics in Ageing, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50931 Cologne, Germany; Institute of Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, D-50931 Cologne, Germany
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Institute for Mitochondrial Diseases and Aging, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50931 Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
2
|
Zulkifli M, Okonkwo AU, Gohil VM. FDX1 Is Required for the Biogenesis of Mitochondrial Cytochrome c Oxidase in Mammalian Cells. J Mol Biol 2023; 435:168317. [PMID: 37858707 PMCID: PMC11451897 DOI: 10.1016/j.jmb.2023.168317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Ferredoxins (FDXs) are evolutionarily conserved iron-sulfur (Fe-S) proteins that function as electron transfer proteins in diverse metabolic pathways. Mammalian mitochondria contain two ferredoxins, FDX1 and FDX2, which share a high degree of structural similarity but exhibit different functionalities. Previous studies have established the unique role of FDX2 in the biogenesis of Fe-S clusters; however, FDX1 seems to have multiple targets in vivo, some of which are only recently emerging. Using CRISPR-Cas9-based loss-of-function studies in rat cardiomyocyte cell line, we demonstrate an essential requirement of FDX1 in mitochondrial respiration and energy production. We attribute reduced mitochondrial respiration to a specific decrease in the abundance and assembly of cytochrome c oxidase (CcO), a mitochondrial heme-copper oxidase and the terminal enzyme of the mitochondrial respiratory chain. FDX1 knockout cells have reduced levels of copper and heme a/a3, factors that are essential for the maturation of the CcO enzyme complex. Copper supplementation failed to rescue CcO biogenesis, but overexpression of heme a synthase, COX15, partially rescued COX1 abundance in FDX1 knockout cells. This finding links FDX1 function to heme a biosynthesis, and places it upstream of COX15 in CcO biogenesis like its ancestral yeast homolog. Taken together, our work has identified FDX1 as a critical CcO biogenesis factor in mammalian cells.
Collapse
Affiliation(s)
- Mohammad Zulkifli
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA.
| | - Adriana U Okonkwo
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
3
|
Rivett ED, Addis HG, Dietz JV, Carroll-Deaton JA, Gupta S, Foreman KL, Dang MA, Fox JL, Khalimonchuk O, Hegg EL. Evidence that the catalytic mechanism of heme a synthase involves the formation of a carbocation stabilized by a conserved glutamate. Arch Biochem Biophys 2023; 744:109665. [PMID: 37348627 PMCID: PMC10529832 DOI: 10.1016/j.abb.2023.109665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023]
Abstract
In eukaryotes and many aerobic prokaryotes, the final step of aerobic respiration is catalyzed by an aa3-type cytochrome c oxidase, which requires a modified heme cofactor, heme a. The conversion of heme b, the prototypical cellular heme, to heme o and ultimately to heme a requires two modifications, the latter of which is conversion of a methyl group to an aldehyde, catalyzed by heme a synthase (HAS). The N- and C-terminal halves of HAS share homology, and each half contains a heme-binding site. Previous reports indicate that the C-terminal site is occupied by a heme b cofactor. The N-terminal site may function as the substrate (heme o) binding site, although this has not been confirmed experimentally. Here, we assess the role of conserved residues from the N- and C-terminal heme-binding sites in HAS from prokaryotic (Shewanella oneidensis) and eukaryotic (Saccharomyces cerevisiae) species - SoHAS/CtaA and ScHAS/Cox15, respectively. A glutamate within the N-terminal site is found to be critical for activity in both types of HAS, consistent with the hypothesis that a carbocation forms transiently during catalysis. In contrast, the residue occupying the analogous C-terminal position is dispensable for enzyme activity. In SoHAS, the C-terminal heme ligands are critical for stability, while in ScHAS, substitutions in either heme-binding site have little effect on global structure. In both species, in vivo accumulation of heme o requires the presence of an inactive HAS variant, highlighting a potential regulatory role for HAS in heme o biosynthesis.
Collapse
Affiliation(s)
- Elise D Rivett
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Hannah G Addis
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC, 29424, USA
| | - Jonathan V Dietz
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA
| | - Jayda A Carroll-Deaton
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC, 29424, USA
| | - Shipra Gupta
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Koji L Foreman
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Minh Anh Dang
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jennifer L Fox
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC, 29424, USA.
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA; Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE, 68588, USA; Fred & Pamela Buffett Cancer Center, Omaha, NE, 68198, USA.
| | - Eric L Hegg
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
4
|
Overexpression of MRX9 impairs processing of RNAs encoding mitochondrial oxidative phosphorylation factors COB and COX1 in yeast. J Biol Chem 2022; 298:102214. [PMID: 35779633 PMCID: PMC9307953 DOI: 10.1016/j.jbc.2022.102214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondrial translation is a highly regulated process, and newly synthesized mitochondrial products must first associate with several nuclear-encoded auxiliary factors to form oxidative phosphorylation complexes. The output of mitochondrial products should therefore be in stoichiometric equilibrium with the nuclear-encoded products to prevent unnecessary energy expense or the accumulation of pro-oxidant assembly modules. In the mitochondrial DNA of Saccharomyces cerevisiae, COX1 encodes subunit 1 of the cytochrome c oxidase and COB the central core of the cytochrome bc1 electron transfer complex; however, factors regulating the expression of these mitochondrial products are not completely described. Here, we identified Mrx9p as a new factor that controls COX1 and COB expression. We isolated MRX9 in a screen for mitochondrial factors that cause poor accumulation of newly synthesized Cox1p and compromised transition to the respiratory metabolism. Northern analyses indicated lower levels of COX1 and COB mature mRNAs accompanied by an accumulation of unprocessed transcripts in the presence of excess Mrx9p. In a strain devoid of mitochondrial introns, MRX9 overexpression did not affect COX1 and COB translation or respiratory adaptation, implying Mrx9p regulates processing of COX1 and COB RNAs. In addition, we found Mrx9p was localized in the mitochondrial inner membrane, facing the matrix, as a portion of it cosedimented with mitoribosome subunits and its removal or overexpression altered Mss51p sedimentation. Finally, we showed accumulation of newly synthesized Cox1p in the absence of Mrx9p was diminished in cox14 null mutants. Taken together, these data indicate a regulatory role of Mrx9p in COX1 RNA processing.
Collapse
|
5
|
Nývltová E, Dietz JV, Seravalli J, Khalimonchuk O, Barrientos A. Coordination of metal center biogenesis in human cytochrome c oxidase. Nat Commun 2022; 13:3615. [PMID: 35750769 PMCID: PMC9232578 DOI: 10.1038/s41467-022-31413-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/16/2022] [Indexed: 01/12/2023] Open
Abstract
Mitochondrial cytochrome c oxidase (CcO) or respiratory chain complex IV is a heme aa3-copper oxygen reductase containing metal centers essential for holo-complex biogenesis and enzymatic function that are assembled by subunit-specific metallochaperones. The enzyme has two copper sites located in the catalytic core subunits. The COX1 subunit harbors the CuB site that tightly associates with heme a3 while the COX2 subunit contains the binuclear CuA site. Here, we report that in human cells the CcO copper chaperones form macromolecular assemblies and cooperate with several twin CX9C proteins to control heme a biosynthesis and coordinate copper transfer sequentially to the CuA and CuB sites. These data on CcO illustrate a mechanism that regulates the biogenesis of macromolecular enzymatic assemblies with several catalytic metal redox centers and prevents the accumulation of cytotoxic reactive assembly intermediates.
Collapse
Affiliation(s)
- Eva Nývltová
- Department of Neurology, University of Miami Miller School of Medicine, 1420NW 9th Ave, Miami, FL, 33136, USA
| | - Jonathan V Dietz
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St. Beadle Center, Lincoln, NE, 68588, USA
| | - Javier Seravalli
- Nebraska Redox Biology Center, University of Nebraska-Lincoln, 1901 Vine St. Beadle Center, Lincoln, NE, 68588, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St. Beadle Center, Lincoln, NE, 68588, USA
- Nebraska Redox Biology Center, University of Nebraska-Lincoln, 1901 Vine St. Beadle Center, Lincoln, NE, 68588, USA
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, 1420NW 9th Ave, Miami, FL, 33136, USA.
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1420NW 9th Ave, Miami, FL, 33136, USA.
| |
Collapse
|
6
|
Rivett ED, Heo L, Feig M, Hegg EL. Biosynthesis and trafficking of heme o and heme a: new structural insights and their implications for reaction mechanisms and prenylated heme transfer. Crit Rev Biochem Mol Biol 2021; 56:640-668. [PMID: 34428995 DOI: 10.1080/10409238.2021.1957668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Aerobic respiration is a key energy-producing pathway in many prokaryotes and virtually all eukaryotes. The final step of aerobic respiration is most commonly catalyzed by heme-copper oxidases embedded in the cytoplasmic or mitochondrial membrane. The majority of these terminal oxidases contain a prenylated heme (typically heme a or occasionally heme o) in the active site. In addition, many heme-copper oxidases, including mitochondrial cytochrome c oxidases, possess a second heme a cofactor. Despite the critical role of heme a in the electron transport chain, the details of the mechanism by which heme b, the prototypical cellular heme, is converted to heme o and then to heme a remain poorly understood. Recent structural investigations, however, have helped clarify some elements of heme a biosynthesis. In this review, we discuss the insight gained from these advances. In particular, we present a new structural model of heme o synthase (HOS) based on distance restraints from inferred coevolutionary relationships and refined by molecular dynamics simulations that are in good agreement with the experimentally determined structures of HOS homologs. We also analyze the two structures of heme a synthase (HAS) that have recently been solved by other groups. For both HOS and HAS, we discuss the proposed catalytic mechanisms and highlight how new insights into the heme-binding site locations shed light on previously obtained biochemical data. Finally, we explore the implications of the new structural data in the broader context of heme trafficking in the heme a biosynthetic pathway and heme-copper oxidase assembly.
Collapse
Affiliation(s)
- Elise D Rivett
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Lim Heo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Eric L Hegg
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
7
|
Franco LVR, Su CH, Tzagoloff A. Modular assembly of yeast mitochondrial ATP synthase and cytochrome oxidase. Biol Chem 2021; 401:835-853. [PMID: 32142477 DOI: 10.1515/hsz-2020-0112] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/24/2020] [Indexed: 12/27/2022]
Abstract
The respiratory pathway of mitochondria is composed of four electron transfer complexes and the ATP synthase. In this article, we review evidence from studies of Saccharomyces cerevisiae that both ATP synthase and cytochrome oxidase (COX) are assembled from independent modules that correspond to structurally and functionally identifiable components of each complex. Biogenesis of the respiratory chain requires a coordinate and balanced expression of gene products that become partner subunits of the same complex, but are encoded in the two physically separated genomes. Current evidence indicates that synthesis of two key mitochondrial encoded subunits of ATP synthase is regulated by the F1 module. Expression of COX1 that codes for a subunit of the COX catalytic core is also regulated by a mechanism that restricts synthesis of this subunit to the availability of a nuclear-encoded translational activator. The respiratory chain must maintain a fixed stoichiometry of the component enzyme complexes during cell growth. We propose that high-molecular-weight complexes composed of Cox6, a subunit of COX, and of the Atp9 subunit of ATP synthase play a key role in establishing the ratio of the two complexes during their assembly.
Collapse
Affiliation(s)
- Leticia Veloso Ribeiro Franco
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA.,Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 05508-000, Brasil
| | - Chen Hsien Su
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Alexander Tzagoloff
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| |
Collapse
|
8
|
Galvão de Oliveira M, Tengan C, Micheletti C, Ramos de Macedo P, Soares Pinho Cernach MC, Cavole TR, de França Basto M, Filho JS, Virmond LA, Milanezi F, Nakano V, Falconi A, Perrone E. A novel variant in the COX15 gene causing a fatal infantile cardioencephalomyopathy: A case report with clinical and molecular review. Eur J Med Genet 2021; 64:104195. [PMID: 33746038 DOI: 10.1016/j.ejmg.2021.104195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 03/04/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
The cytochrome c-oxidase (COX) enzyme, also known as mitochondrial complex IV (MT-C4D), is a transmembrane protein complex found in mitochondria. COX deficiency is one of the most frequent causes of electron transport chain defects in humans. Therefore, high energy demand organs and tissues are affected in patients with mutations in the COX15 gene, with variable phenotypic expressiveness. We describe the case of a male newborn with hypertrophic cardiomyopathy and serum and cerebrospinal fluid hyperlacticaemia, whose exome sequencing revealed two variants in a compound heterozygous state: c.232G > A; p.(Gly78Arg), classified as likely pathogenic, and c.452C > G; p.(Ser151Ter), as pathogenic; the former never previously described in the literature.
Collapse
Affiliation(s)
| | - Célia Tengan
- Universidade Federal de São Paulo, Unifesp, Departamento de Neurologia, São Paulo, SP, CEP 04039-000, Brazil.
| | - Cecília Micheletti
- Universidade Federal de São Paulo, Unifesp, Departamento de Pediatria, São Paulo, SP, CEP 04023-060, Brazil.
| | - Paloma Ramos de Macedo
- Universidade Federal de São Paulo, Unifesp, Departamento de Neurologia, São Paulo, SP, CEP 04039-000, Brazil.
| | | | - Thiago Rodrigues Cavole
- Universidade Federal de São Paulo, Unifesp, Departamento de Genética, São Paulo, SP, CEP 04023-061, Brazil.
| | - Marina de França Basto
- Universidade Federal de São Paulo, Unifesp, Departamento de Genética, São Paulo, SP, CEP 04023-061, Brazil.
| | - Joselito Sobreira Filho
- Universidade Federal de São Paulo, Unifesp, Departamento de Genética, São Paulo, SP, CEP 04023-061, Brazil.
| | - Luiza Amaral Virmond
- Universidade Federal de São Paulo, Unifesp, Departamento de Genética, São Paulo, SP, CEP 04023-061, Brazil.
| | | | | | | | - Eduardo Perrone
- Universidade Federal de São Paulo, Unifesp, Departamento de Genética, São Paulo, SP, CEP 04023-061, Brazil.
| |
Collapse
|
9
|
Cytochrome c oxidase deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148335. [PMID: 33171185 DOI: 10.1016/j.bbabio.2020.148335] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022]
Abstract
Cytochrome c oxidase (COX) deficiency is characterized by a high degree of genetic and phenotypic heterogeneity, partly reflecting the extreme structural complexity, multiple post-translational modification, variable, tissue-specific composition, and the high number of and intricate connections among the assembly factors of this enzyme. In fact, decreased COX specific activity can manifest with different degrees of severity, affect the whole organism or specific tissues, and develop a wide spectrum of disease natural history, including disease onsets ranging from birth to late adulthood. More than 30 genes have been linked to COX deficiency, but the list is still incomplete and in fact constantly updated. We here discuss the current knowledge about COX in health and disease, focusing on genetic aetiology and link to clinical manifestations. In addition, information concerning either fundamental biological features of the enzymes or biochemical signatures of its defects have been provided by experimental in vivo models, including yeast, fly, mouse and fish, which expanded our knowledge on the functional features and the phenotypical consequences of different forms of COX deficiency.
Collapse
|
10
|
Swenson SA, Moore CM, Marcero JR, Medlock AE, Reddi AR, Khalimonchuk O. From Synthesis to Utilization: The Ins and Outs of Mitochondrial Heme. Cells 2020; 9:E579. [PMID: 32121449 PMCID: PMC7140478 DOI: 10.3390/cells9030579] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 12/14/2022] Open
Abstract
Heme is a ubiquitous and essential iron containing metallo-organic cofactor required for virtually all aerobic life. Heme synthesis is initiated and completed in mitochondria, followed by certain covalent modifications and/or its delivery to apo-hemoproteins residing throughout the cell. While the biochemical aspects of heme biosynthetic reactions are well understood, the trafficking of newly synthesized heme-a highly reactive and inherently toxic compound-and its subsequent delivery to target proteins remain far from clear. In this review, we summarize current knowledge about heme biosynthesis and trafficking within and outside of the mitochondria.
Collapse
Affiliation(s)
| | - Courtney M. Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Jason R. Marcero
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
| | - Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
- Augusta University/University of Georgia Medical Partnership, Athens, GA 30602, USA
| | - Amit R. Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA;
- Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
- Fred and Pamela Buffett Cancer Center, Omaha, NE 68105, USA
| |
Collapse
|
11
|
Mansilla N, Racca S, Gras DE, Gonzalez DH, Welchen E. The Complexity of Mitochondrial Complex IV: An Update of Cytochrome c Oxidase Biogenesis in Plants. Int J Mol Sci 2018; 19:ijms19030662. [PMID: 29495437 PMCID: PMC5877523 DOI: 10.3390/ijms19030662] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial respiration is an energy producing process that involves the coordinated action of several protein complexes embedded in the inner membrane to finally produce ATP. Complex IV or Cytochrome c Oxidase (COX) is the last electron acceptor of the respiratory chain, involved in the reduction of O2 to H2O. COX is a multimeric complex formed by multiple structural subunits encoded in two different genomes, prosthetic groups (heme a and heme a3), and metallic centers (CuA and CuB). Tens of accessory proteins are required for mitochondrial RNA processing, synthesis and delivery of prosthetic groups and metallic centers, and for the final assembly of subunits to build a functional complex. In this review, we perform a comparative analysis of COX composition and biogenesis factors in yeast, mammals and plants. We also describe possible external and internal factors controlling the expression of structural proteins and assembly factors at the transcriptional and post-translational levels, and the effect of deficiencies in different steps of COX biogenesis to infer the role of COX in different aspects of plant development. We conclude that COX assembly in plants has conserved and specific features, probably due to the incorporation of a different set of subunits during evolution.
Collapse
Affiliation(s)
- Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| | - Sofia Racca
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| | - Diana E Gras
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| |
Collapse
|
12
|
García-Guerrero AE, Camacho-Villasana Y, Zamudio-Ochoa A, Winge DR, Pérez-Martínez X. Cbp3 and Cbp6 are dispensable for synthesis regulation of cytochrome b in yeast mitochondria. J Biol Chem 2018; 293:5585-5599. [PMID: 29475949 DOI: 10.1074/jbc.ra117.000547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/08/2018] [Indexed: 11/06/2022] Open
Abstract
Cytochrome b (Cytb) is the only mitochondrial encoded subunit from the bc1 complex. Cbp3 and Cbp6 are chaperones necessary for translation of the COB mRNA and Cytb hemylation. Here we demonstrate that their role in translation is dispensable in some laboratory strains, whereas their role in Cytb hemylation seems to be universally conserved. BY4742 yeast requires Cbp3 and Cbp6 for efficient COB mRNA translation, whereas the D273-10b strain synthesizes Cytb at wildtype levels in the absence of Cbp3 and Cbp6. Steady-state levels of Cytb are close to wildtype in mutant D273-10b cells, and Cytb forms non-functional, supercomplex-like species with cytochrome c oxidase, in which at least core 1, cytochrome c1, and Rieske iron-sulfur subunits are present. We demonstrated that Cbp3 interacts with the mitochondrial ribosome and with the COB mRNA in both BY4742 and D273-10b strains. The polymorphism(s) causing the differential function of Cbp3, Cbp6, and the assembly feedback regulation of Cytb synthesis is of nuclear origin rather than mitochondrial, and Smt1, a COB mRNA-binding protein, does not seem to be involved in the observed differential phenotype. Our results indicate that the essential role of Cbp3 and Cbp6 is to assist Cytb hemylation and demonstrate that in the absence of heme b, Cytb can form non-functional supercomplexes with cytochrome c oxidase. Our observations support that an additional protein or proteins are involved in Cytb synthesis in some yeast strains.
Collapse
Affiliation(s)
- Aldo E García-Guerrero
- From the Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n Ciudad Universitaria, Coyoacán, 04510 Mexico City, Mexico and
| | - Yolanda Camacho-Villasana
- From the Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n Ciudad Universitaria, Coyoacán, 04510 Mexico City, Mexico and
| | - Angélica Zamudio-Ochoa
- From the Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n Ciudad Universitaria, Coyoacán, 04510 Mexico City, Mexico and
| | - Dennis R Winge
- the Department of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake, Utah 84132
| | - Xochitl Pérez-Martínez
- From the Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n Ciudad Universitaria, Coyoacán, 04510 Mexico City, Mexico and
| |
Collapse
|
13
|
From B to A: making an essential cofactor in a human parasite. Biochem J 2017; 474:3089-3092. [PMID: 28860337 DOI: 10.1042/bcj20170446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 11/17/2022]
Abstract
Trypanosomatids are parasitic eukaryotic organisms that cause human disease. These organisms have complex lifestyles; cycling between vertebrate and insect hosts and alternating between two morphologies; a replicating form and an infective, nonreplicating one. Because trypanosomatids are one of the few organisms that do not synthesize the essential cofactor, heme, these parasites sequester the most common form, heme B, from their hosts. Once acquired, the parasites derivatize heme B to heme A by two sequential enzyme reactions. Although heme C is found in many cytochrome c and c1 proteins, heme A is the cofactor of only one known protein, cytochrome c oxidase (CcO). In a recent issue of the Biochemical Journal, Merli et al. [Biochem. J. (2017) 474, 2315-2332] demonstrate that the final step in the synthesis of heme A by heme A synthase (TcCox15) and the subsequent activity of CcO are essential for infectivity and replication of Trypanosoma cruzi.
Collapse
|
14
|
Heme A synthesis and CcO activity are essential for Trypanosoma cruzi infectivity and replication. Biochem J 2017; 474:2315-2332. [DOI: 10.1042/bcj20170084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 11/17/2022]
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, presents a complex life cycle and adapts its metabolism to nutrients’ availability. Although T. cruzi is an aerobic organism, it does not produce heme. This cofactor is acquired from the host and is distributed and inserted into different heme-proteins such as respiratory complexes in the parasite's mitochondrion. It has been proposed that T. cruzi's energy metabolism relies on a branched respiratory chain with a cytochrome c oxidase-type aa3 (CcO) as the main terminal oxidase. Heme A, the cofactor for all eukaryotic CcO, is synthesized via two sequential enzymatic reactions catalyzed by heme O synthase (HOS) and heme A synthase (HAS). Previously, TcCox10 and TcCox15 (Trypanosoma cruzi Cox10 and Cox15 proteins) were identified in T. cruzi. They presented HOS and HAS activity, respectively, when they were expressed in yeast. Here, we present the first characterization of TcCox15 in T. cruzi, confirming its role as HAS. It was differentially detected in the different T. cruzi stages, being more abundant in the replicative forms. This regulation could reflect the necessity of more heme A synthesis, and therefore more CcO activity at the replicative stages. Overexpression of a non-functional mutant caused a reduction in heme A content. Moreover, our results clearly showed that this hindrance in the heme A synthesis provoked a reduction on CcO activity and, in consequence, an impairment on T. cruzi survival, proliferation and infectivity. This evidence supports that T. cruzi depends on the respiratory chain activity along its life cycle, being CcO an essential terminal oxidase.
Collapse
|
15
|
Tissue- and Condition-Specific Isoforms of Mammalian Cytochrome c Oxidase Subunits: From Function to Human Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1534056. [PMID: 28593021 PMCID: PMC5448071 DOI: 10.1155/2017/1534056] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/29/2017] [Indexed: 01/05/2023]
Abstract
Cytochrome c oxidase (COX) is the terminal enzyme of the electron transport chain and catalyzes the transfer of electrons from cytochrome c to oxygen. COX consists of 14 subunits, three and eleven encoded, respectively, by the mitochondrial and nuclear DNA. Tissue- and condition-specific isoforms have only been reported for COX but not for the other oxidative phosphorylation complexes, suggesting a fundamental requirement to fine-tune and regulate the essentially irreversible reaction catalyzed by COX. This article briefly discusses the assembly of COX in mammals and then reviews the functions of the six nuclear-encoded COX subunits that are expressed as isoforms in specialized tissues including those of the liver, heart and skeletal muscle, lung, and testes: COX IV-1, COX IV-2, NDUFA4, NDUFA4L2, COX VIaL, COX VIaH, COX VIb-1, COX VIb-2, COX VIIaH, COX VIIaL, COX VIIaR, COX VIIIH/L, and COX VIII-3. We propose a model in which the isoforms mediate the interconnected regulation of COX by (1) adjusting basal enzyme activity to mitochondrial capacity of a given tissue; (2) allosteric regulation to adjust energy production to need; (3) altering proton pumping efficiency under certain conditions, contributing to thermogenesis; (4) providing a platform for tissue-specific signaling; (5) stabilizing the COX dimer; and (6) modulating supercomplex formation.
Collapse
|
16
|
Bourens M, Barrientos A. A CMC1-knockout reveals translation-independent control of human mitochondrial complex IV biogenesis. EMBO Rep 2017; 18:477-494. [PMID: 28082314 DOI: 10.15252/embr.201643103] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/25/2016] [Accepted: 12/02/2016] [Indexed: 11/09/2022] Open
Abstract
Defects in mitochondrial respiratory chain complex IV (CIV) frequently cause encephalocardiomyopathies. Human CIV assembly involves 14 subunits of dual genetic origin and multiple nucleus-encoded ancillary factors. Biogenesis of the mitochondrion-encoded copper/heme-containing COX1 subunit initiates the CIV assembly process. Here, we show that the intermembrane space twin CX9C protein CMC1 forms an early CIV assembly intermediate with COX1 and two assembly factors, the cardiomyopathy proteins COA3 and COX14. A TALEN-mediated CMC1 knockout HEK293T cell line displayed normal COX1 synthesis but decreased CIV activity owing to the instability of newly synthetized COX1. We demonstrate that CMC1 stabilizes a COX1-COA3-COX14 complex before the incorporation of COX4 and COX5a subunits. Additionally, we show that CMC1 acts independently of CIV assembly factors relevant to COX1 metallation (COX10, COX11, and SURF1) or late stability (MITRAC7). Furthermore, whereas human COX14 and COA3 have been proposed to affect COX1 mRNA translation, our data indicate that CMC1 regulates turnover of newly synthesized COX1 prior to and during COX1 maturation, without affecting the rate of COX1 synthesis.
Collapse
Affiliation(s)
- Myriam Bourens
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA .,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
17
|
Screening and Characterization of a Non-cyp51A Mutation in an Aspergillus fumigatus cox10 Strain Conferring Azole Resistance. Antimicrob Agents Chemother 2016; 61:AAC.02101-16. [PMID: 27799210 DOI: 10.1128/aac.02101-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/18/2016] [Indexed: 12/14/2022] Open
Abstract
The rapid and global emergence of azole resistance in the human pathogen Aspergillus fumigatus has drawn attention. Thus, a thorough understanding of its mechanisms of drug resistance requires extensive exploration. In this study, we found that the loss of the putative calcium-dependent protein-encoding gene algA causes an increased frequency of azole-resistant A. fumigatus isolates. In contrast to previously identified azole-resistant isolates related to cyp51A mutations, only one isolate carries a point mutation in cyp51A (F219L mutation) among 105 independent stable azole-resistant isolates. Through next-generation sequencing (NGS), we successfully identified a new mutation (R243Q substitution) conferring azole resistance in the putative A. fumigatus farnesyltransferase Cox10 (AfCox10) (AFUB_065450). High-performance liquid chromatography (HPLC) analysis verified that the decreased absorption of itraconazole in related Afcox10 mutants is the primary reason for itraconazole resistance. Moreover, a complementation experiment by reengineering the mutation in a parental wild-type background strain demonstrated that both the F219L and R243Q mutations contribute to itraconazole resistance in an algA-independent manner. These data collectively suggest that the loss of algA results in an increased frequency of azole-resistant isolates with a non-cyp51A mutation. Our findings indicate that there are many unexplored non-cyp51A mutations conferring azole resistance in A. fumigatus and that algA defects make it possible to isolate drug-resistant alleles. In addition, our study suggests that genome-wide sequencing combined with alignment comparison analysis is an efficient approach to identify the contribution of single nucleotide polymorphism (SNP) diversity to drug resistance.
Collapse
|
18
|
Taylor NG, Swenson S, Harris NJ, Germany EM, Fox JL, Khalimonchuk O. The Assembly Factor Pet117 Couples Heme a Synthase Activity to Cytochrome Oxidase Assembly. J Biol Chem 2016; 292:1815-1825. [PMID: 27998984 DOI: 10.1074/jbc.m116.766980] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/13/2016] [Indexed: 11/06/2022] Open
Abstract
Heme a is an essential metalloporphyrin cofactor of the mitochondrial respiratory enzyme cytochrome c oxidase (CcO). Its synthesis from heme b requires several enzymes, including the evolutionarily conserved heme a synthase (Cox15). Oligomerization of Cox15 appears to be important for the process of heme a biosynthesis and transfer to maturing CcO. However, the details of this process remain elusive, and the roles of any additional CcO assembly factors that may be involved remain unclear. Here we report the systematic analysis of one such uncharacterized assembly factor, Pet117, and demonstrate in Saccharomyces cerevisiae that this evolutionarily conserved protein is necessary for Cox15 oligomerization and function. Pet117 is shown to reside in the mitochondrial matrix, where it is associated with the inner membrane. Pet117 functions at the later maturation stages of the core CcO subunit Cox1 that precede Cox1 hemylation. Pet117 also physically interacts with Cox15 and specifically mediates the stability of Cox15 oligomeric complexes. This Cox15-Pet117 interaction observed by co-immunoprecipitation persists in the absence of heme a synthase activity, is dependent upon Cox1 synthesis and early maturation steps, and is further dependent upon the presence of the matrix-exposed, unstructured linker region of Cox15 needed for Cox15 oligomerization, suggesting that this region mediates the interaction or that the interaction is lost when Cox15 is unable to oligomerize. Based on these findings, it was concluded that Pet117 mediates coupling of heme a synthesis to the CcO assembly process in eukaryotes.
Collapse
Affiliation(s)
- Nicholas G Taylor
- From the Department of Chemistry and Biochemistry, College of Charleston, Charleston, South Carolina 29424
| | - Samantha Swenson
- the Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | - Nicholas J Harris
- From the Department of Chemistry and Biochemistry, College of Charleston, Charleston, South Carolina 29424
| | - Edward M Germany
- the Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | - Jennifer L Fox
- From the Department of Chemistry and Biochemistry, College of Charleston, Charleston, South Carolina 29424.
| | - Oleh Khalimonchuk
- the Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588.
| |
Collapse
|
19
|
Swenson S, Cannon A, Harris NJ, Taylor NG, Fox JL, Khalimonchuk O. Analysis of Oligomerization Properties of Heme a Synthase Provides Insights into Its Function in Eukaryotes. J Biol Chem 2016; 291:10411-25. [PMID: 26940873 DOI: 10.1074/jbc.m115.707539] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Indexed: 11/06/2022] Open
Abstract
Heme a is an essential cofactor for function of cytochrome c oxidase in the mitochondrial electron transport chain. Several evolutionarily conserved enzymes have been implicated in the biosynthesis of heme a, including the heme a synthase Cox15. However, the structure of Cox15 is unknown, its enzymatic mechanism and the role of active site residues remain debated, and recent discoveries suggest additional chaperone-like roles for this enzyme. Here, we investigated Cox15 in the model eukaryote Saccharomyces cerevisiae via several approaches to examine its oligomeric states and determine the effects of active site and human pathogenic mutations. Our results indicate that Cox15 exhibits homotypic interactions, forming highly stable complexes dependent upon hydrophobic interactions. This multimerization is evolutionarily conserved and independent of heme levels and heme a synthase catalytic activity. Four conserved histidine residues are demonstrated to be critical for eukaryotic heme a synthase activity and cannot be substituted with other heme-ligating amino acids. The 20-residue linker region connecting the two conserved domains of Cox15 is also important; removal of this linker impairs both Cox15 multimerization and enzymatic activity. Mutations of COX15 causing single amino acid conversions associated with fatal infantile hypertrophic cardiomyopathy and the neurological disorder Leigh syndrome result in impaired stability (S344P) or catalytic function (R217W), and the latter mutation affects oligomeric properties of the enzyme. Structural modeling of Cox15 suggests these two mutations affect protein folding and heme binding, respectively. We conclude that Cox15 multimerization is important for heme a biosynthesis and/or transfer to maturing cytochrome c oxidase.
Collapse
Affiliation(s)
- Samantha Swenson
- From the Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 and
| | - Andrew Cannon
- From the Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 and
| | - Nicholas J Harris
- the Department of Chemistry and Biochemistry, College of Charleston, Charleston, South Carolina 29424
| | - Nicholas G Taylor
- the Department of Chemistry and Biochemistry, College of Charleston, Charleston, South Carolina 29424
| | - Jennifer L Fox
- the Department of Chemistry and Biochemistry, College of Charleston, Charleston, South Carolina 29424
| | - Oleh Khalimonchuk
- From the Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 and
| |
Collapse
|
20
|
Mansilla N, Garcia L, Gonzalez DH, Welchen E. AtCOX10, a protein involved in haem o synthesis during cytochrome c oxidase biogenesis, is essential for plant embryogenesis and modulates the progression of senescence. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6761-75. [PMID: 26246612 DOI: 10.1093/jxb/erv381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cytochrome c oxidase (CcO) biogenesis requires several accessory proteins implicated, among other processes, in copper and haem a insertion. In yeast, the farnesyltransferase Cox10p that catalyses the conversion of haem b to haem o is the limiting factor in haem a biosynthesis and is essential for haem a insertion in CcO. In this work, we characterized AtCOX10, a putative Cox10p homologue from Arabidopsis thaliana. AtCOX10 was localized in mitochondria and was able to restore growth of a yeast Δcox10 null mutant on non-fermentable carbon sources, suggesting that it also participates in haem o synthesis. Plants with T-DNA insertions in the coding region of both copies of AtCOX10 could not be recovered, and heterozygous mutant plants showed seeds with embryos arrested at early developmental stages that lacked CcO activity. Heterozygous mutant plants exhibited lower levels of CcO activity and cyanide-sensitive respiration but normal levels of total respiration at the expense of an increase in alternative respiration. AtCOX10 seems to be implicated in the onset and progression of senescence, since heterozygous mutant plants showed a faster decrease in chlorophyll content and photosynthetic performance than wild-type plants after natural and dark-induced senescence. Furthermore, complementation of mutants by expressing AtCOX10 under its own promoter allowed us to obtain plants with T-DNA insertions in both AtCOX10 copies, which showed phenotypic characteristics comparable to those of wild type. Our results highlight the relevance of haem o synthesis in plants and suggest that this process is a limiting factor that influences CcO activity levels, mitochondrial respiration, and plant senescence.
Collapse
Affiliation(s)
- Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Centro Científico Tecnológico Santa Fe - Colectora Ruta Nacional Nº 168 Km 0, Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Lucila Garcia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Centro Científico Tecnológico Santa Fe - Colectora Ruta Nacional Nº 168 Km 0, Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Centro Científico Tecnológico Santa Fe - Colectora Ruta Nacional Nº 168 Km 0, Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Centro Científico Tecnológico Santa Fe - Colectora Ruta Nacional Nº 168 Km 0, Paraje El Pozo, 3000 Santa Fe, Argentina
| |
Collapse
|
21
|
He D, Fu CJ, Baldauf SL. Multiple Origins of Eukaryotic cox15 Suggest Horizontal Gene Transfer from Bacteria to Jakobid Mitochondrial DNA. Mol Biol Evol 2015; 33:122-33. [PMID: 26412445 DOI: 10.1093/molbev/msv201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The most gene-rich and bacterial-like mitochondrial genomes known are those of Jakobida (Excavata). Of these, the most extreme example to date is the Andalucia godoyi mitochondrial DNA (mtDNA), including a cox15 gene encoding the respiratory enzyme heme A synthase (HAS), which is nuclear-encoded in nearly all other mitochondriate eukaryotes. Thus cox15 in eukaryotes appears to be a classic example of mitochondrion-to-nucleus (endosymbiotic) gene transfer, with A. godoyi uniquely retaining the ancestral state. However, our analyses reveal two highly distinct HAS types (encoded by cox15-1 and cox15-2 genes) and identify A. godoyi mitochondrial cox15-encoded HAS as type-1 and all other eukaryotic cox15-encoded HAS as type-2. Molecular phylogeny places the two HAS types in widely separated clades with eukaryotic type-2 HAS clustering with the bulk of α-proteobacteria (>670 sequences), whereas A. godoyi type-1 HAS clusters with an eclectic set of bacteria and archaea including two α-proteobacteria missing from the type-2 clade. This wide phylogenetic separation of the two HAS types is reinforced by unique features of their predicted protein structures. Meanwhile, RNA-sequencing and genomic analyses fail to detect either cox15 type in the nuclear genome of any jakobid including A. godoyi. This suggests that not only is cox15-1 a relatively recent acquisition unique to the Andalucia lineage but also the jakobid last common ancestor probably lacked both cox15 types. These results indicate that uptake of foreign genes by mtDNA is more taxonomically widespread than previously thought. They also caution against the assumption that all α-proteobacterial-like features of eukaryotes are ancient remnants of endosymbiosis.
Collapse
Affiliation(s)
- Ding He
- Program in Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Cheng-Jie Fu
- Program in Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Sandra L Baldauf
- Program in Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Palleja A, Jensen LJ. HOODS: finding context-specific neighborhoods of proteins, chemicals and diseases. PeerJ 2015; 3:e1057. [PMID: 26157625 PMCID: PMC4493695 DOI: 10.7717/peerj.1057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 06/05/2015] [Indexed: 11/20/2022] Open
Abstract
Clustering algorithms are often used to find groups relevant in a specific context; however, they are not informed about this context. We present a simple algorithm, HOODS, which identifies context-specific neighborhoods of entities from a similarity matrix and a list of entities specifying the context. We illustrate its applicability by finding disease-specific neighborhoods of functionally associated proteins, kinase-specific neighborhoods of structurally similar inhibitors, and physiological-system-specific neighborhoods of interconnected diseases. HOODS can be used via a simple interface at http://hoods.jensenlab.org, from where the source code can also be downloaded.
Collapse
Affiliation(s)
- Albert Palleja
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen N , Denmark ; The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen Ø , Denmark
| | - Lars J Jensen
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen N , Denmark
| |
Collapse
|
23
|
Opa1 overexpression ameliorates the phenotype of two mitochondrial disease mouse models. Cell Metab 2015; 21:845-54. [PMID: 26039449 PMCID: PMC4457891 DOI: 10.1016/j.cmet.2015.04.016] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/13/2015] [Accepted: 04/12/2015] [Indexed: 02/07/2023]
Abstract
Increased levels of the mitochondria-shaping protein Opa1 improve respiratory chain efficiency and protect from tissue damage, suggesting that it could be an attractive target to counteract mitochondrial dysfunction. Here we show that Opa1 overexpression ameliorates two mouse models of defective mitochondrial bioenergetics. The offspring from crosses of a constitutive knockout for the structural complex I component Ndufs4 (Ndufs4(-/-)), and of a muscle-specific conditional knockout for the complex IV assembly factor Cox15 (Cox15(sm/sm)), with Opa1 transgenic (Opa1(tg)) mice showed improved motor skills and respiratory chain activities compared to the naive, non-Opa1-overexpressing, models. While the amelioration was modest in Ndufs4(-/-)::Opa1(tg) mice, correction of cristae ultrastructure and mitochondrial respiration, improvement of motor performance and prolongation of lifespan were remarkable in Cox15(sm/sm)::Opa1(tg) mice. Mechanistically, respiratory chain supercomplexes were increased in Cox15(sm/sm)::Opa1(tg) mice, and residual monomeric complex IV was stabilized. In conclusion, cristae shape amelioration by controlled Opa1 overexpression improves two mouse models of mitochondrial disease.
Collapse
|
24
|
Verner Z, Basu S, Benz C, Dixit S, Dobáková E, Faktorová D, Hashimi H, Horáková E, Huang Z, Paris Z, Peña-Diaz P, Ridlon L, Týč J, Wildridge D, Zíková A, Lukeš J. Malleable mitochondrion of Trypanosoma brucei. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:73-151. [PMID: 25708462 DOI: 10.1016/bs.ircmb.2014.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The importance of mitochondria for a typical aerobic eukaryotic cell is undeniable, as the list of necessary mitochondrial processes is steadily growing. Here, we summarize the current knowledge of mitochondrial biology of an early-branching parasitic protist, Trypanosoma brucei, a causative agent of serious human and cattle diseases. We present a comprehensive survey of its mitochondrial pathways including kinetoplast DNA replication and maintenance, gene expression, protein and metabolite import, major metabolic pathways, Fe-S cluster synthesis, ion homeostasis, organellar dynamics, and other processes. As we describe in this chapter, the single mitochondrion of T. brucei is everything but simple and as such rivals mitochondria of multicellular organisms.
Collapse
Affiliation(s)
- Zdeněk Verner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Present address: Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; Present address: Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Somsuvro Basu
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Present address: Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Germany
| | - Corinna Benz
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Sameer Dixit
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Dobáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Present address: Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Hassan Hashimi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Horáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Zhenqiu Huang
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Lucie Ridlon
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Present address: Salk Institute, La Jolla, San Diego, USA
| | - Jiří Týč
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - David Wildridge
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
25
|
Su CH, McStay GP, Tzagoloff A. Assembly of the rotor component of yeast mitochondrial ATP synthase is enhanced when Atp9p is supplied by Atp9p-Cox6p complexes. J Biol Chem 2014; 289:31605-16. [PMID: 25253699 DOI: 10.1074/jbc.m114.602706] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Atp9p ring is one of several assembly modules of yeast mitochondrial ATP synthase. The ring, composed of 10 copies of Atp9p, is part of the rotor that couples proton translocation to synthesis or hydrolysis of ATP. We present evidence that before its assembly with other ATP synthase modules, most of Atp9p is present in at least three complexes with masses of 200-400 kDa that co-immunopurify with Cox6p. Pulse-labeling analysis disclosed a time-dependent reduction of radiolabeled Atp9p in the complexes and an increase of Atp9p in the ring form of wild type yeast and of mss51, pet111, and pet494 mutants lacking Cox1p, Cox2p, and Cox3p, respectively. Ring formation was not significantly different from wild type in an mss51 or atp10 mutant. The atp10 mutation blocks the interaction of the Atp9p ring with other modules of the ATP synthase. In contrast, ring formation was reduced in a cox6 mutant, consistent with a role of Cox6p in oligomerization of Atp9p. Cox6p involvement in ATP synthase assembly is also supported by studies showing that ring formation in cells adapting from fermentative to aerobic growth was less efficient in mitochondria of the cox6 mutant than the parental respiratory-competent strain or a cox4 mutant. We speculate that the constitutive and Cox6p-independent rate of Atp9p oligomerization may be sufficient to produce the level of ATP synthase needed for maintaining a membrane potential but limiting for optimal oxidative phosphorylation.
Collapse
Affiliation(s)
- Chen-Hsien Su
- From the Department of Biological Sciences, Columbia University, New York, New York 10128 and
| | - Gavin P McStay
- Department of Life Sciences, New York Institute of Technology, Old Westbury, New York 11568
| | - Alexander Tzagoloff
- From the Department of Biological Sciences, Columbia University, New York, New York 10128 and
| |
Collapse
|
26
|
Bourens M, Fontanesi F, Soto IC, Liu J, Barrientos A. Redox and reactive oxygen species regulation of mitochondrial cytochrome C oxidase biogenesis. Antioxid Redox Signal 2013; 19:1940-52. [PMID: 22937827 PMCID: PMC3852343 DOI: 10.1089/ars.2012.4847] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Cytochrome c oxidase (COX), the last enzyme of the mitochondrial respiratory chain, is the major oxygen consumer enzyme in the cell. COX biogenesis involves several redox-regulated steps. The process is highly regulated to prevent the formation of pro-oxidant intermediates. RECENT ADVANCES Regulation of COX assembly involves several reactive oxygen species and redox-regulated steps. These include: (i) Intricate redox-controlled machineries coordinate the expression of COX isoenzymes depending on the environmental oxygen concentration. (ii) COX is a heme A-copper metalloenzyme. COX copper metallation involves the copper chaperone Cox17 and several other recently described cysteine-rich proteins, which are oxidatively folded in the mitochondrial intermembrane space. Copper transfer to COX subunits 1 and 2 requires concomitant transfer of redox power. (iii) To avoid the accumulation of reactive assembly intermediates, COX is regulated at the translational level to minimize synthesis of the heme A-containing Cox1 subunit when assembly is impaired. CRITICAL ISSUES An increasing number of regulatory pathways converge to facilitate efficient COX assembly, thus preventing oxidative stress. FUTURE DIRECTIONS Here we will review on the redox-regulated COX biogenesis steps and will discuss their physiological relevance. Forthcoming insights into the precise regulation of mitochondrial COX biogenesis in normal and stress conditions will likely open future perspectives for understanding mitochondrial redox regulation and prevention of oxidative stress.
Collapse
Affiliation(s)
- Myriam Bourens
- 1 Department of Neurology, University of Miami Miller School of Medicine , Miami, Florida
| | | | | | | | | |
Collapse
|
27
|
Kursu VAS, Pietikäinen LP, Fontanesi F, Aaltonen MJ, Suomi F, Raghavan Nair R, Schonauer MS, Dieckmann CL, Barrientos A, Hiltunen JK, Kastaniotis AJ. Defects in mitochondrial fatty acid synthesis result in failure of multiple aspects of mitochondrial biogenesis in Saccharomyces cerevisiae. Mol Microbiol 2013; 90:824-40. [PMID: 24102902 DOI: 10.1111/mmi.12402] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2013] [Indexed: 01/05/2023]
Abstract
Mitochondrial fatty acid synthesis (mtFAS) shares acetyl-CoA with the Krebs cycle as a common substrate and is required for the production of octanoic acid (C8) precursors of lipoic acid (LA) in mitochondria. MtFAS is a conserved pathway essential for respiration. In a genetic screen in Saccharomyces cerevisiae designed to further elucidate the physiological role of mtFAS, we isolated mutants with defects in mitochondrial post-translational gene expression processes, indicating a novel link to mitochondrial gene expression and respiratory chain biogenesis. In our ensuing analysis, we show that mtFAS, but not lipoylation per se, is required for respiratory competence. We demonstrate that mtFAS is required for mRNA splicing, mitochondrial translation and respiratory complex assembly, and provide evidence that not LA per se, but fatty acids longer than C8 play a role in these processes. We also show that mtFAS- and LA-deficient strains suffer from a mild haem deficiency that may contribute to the respiratory complex assembly defect. Based on our data and previously published information, we propose a model implicating mtFAS as a sensor for mitochondrial acetyl-CoA availability and a co-ordinator of nuclear and mitochondrial gene expression by adapting the mitochondrial compartment to changes in the metabolic status of the cell.
Collapse
Affiliation(s)
- V A Samuli Kursu
- Department of Biochemistry and Biocenter Oulu, University of Oulu, FI-90014, Oulu, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fontanesi F. Mechanisms of mitochondrial translational regulation. IUBMB Life 2013; 65:397-408. [PMID: 23554047 DOI: 10.1002/iub.1156] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/31/2013] [Indexed: 11/11/2022]
Abstract
The mitochondrial oxidative phosphorylation system is formed by multimeric enzymes. In the yeast Saccharomyces cerevisiae, the bc1 complex, cytochrome c oxidase and the F1 FO ATP synthase contain subunits of dual genetic origin. It has been recently established that key subunits of these enzymes, translated on mitochondrial ribosomes, are the subjects of assembly-dependent translational regulation. This type of control of gene expression plays a pivotal role in optimizing the biogenesis of mitochondrial respiratory membranes by coordinating protein synthesis and complex assembly and by limiting the accumulation of potentially harmful assembly intermediates. Here, the author will discuss the mechanisms governing translational regulation in yeast mitochondria in the light of the most recent discoveries in the field.
Collapse
Affiliation(s)
- Flavia Fontanesi
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
29
|
Soto IC, Fontanesi F, Myers RS, Hamel P, Barrientos A. A heme-sensing mechanism in the translational regulation of mitochondrial cytochrome c oxidase biogenesis. Cell Metab 2012; 16:801-13. [PMID: 23217259 PMCID: PMC3523284 DOI: 10.1016/j.cmet.2012.10.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/19/2012] [Accepted: 10/25/2012] [Indexed: 12/01/2022]
Abstract
Heme plays fundamental roles as cofactor and signaling molecule in multiple pathways devoted to oxygen sensing and utilization in aerobic organisms. For cellular respiration, heme serves as a prosthetic group in electron transfer proteins and redox enzymes. Here we report that in the yeast Saccharomyces cerevisiae, a heme-sensing mechanism translationally controls the biogenesis of cytochrome c oxidase (COX), the terminal mitochondrial respiratory chain enzyme. We show that Mss51, a COX1 mRNA-specific translational activator and Cox1 chaperone, which coordinates Cox1 synthesis in mitoribosomes with its assembly in COX, is a heme-binding protein. Mss51 contains two heme regulatory motifs or Cys-Pro-X domains located in its N terminus. Using a combination of in vitro and in vivo approaches, we have demonstrated that these motifs are important for heme binding and efficient performance of Mss51 functions. We conclude that heme sensing by Mss51 regulates COX biogenesis and aerobic energy production.
Collapse
Affiliation(s)
- Iliana C Soto
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
30
|
Soto IC, Fontanesi F, Liu J, Barrientos A. Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1817:883-97. [PMID: 21958598 PMCID: PMC3262112 DOI: 10.1016/j.bbabio.2011.09.005] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/07/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
Abstract
Eukaryotic cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial respiratory chain. COX is a multimeric enzyme formed by subunits of dual genetic origin which assembly is intricate and highly regulated. The COX catalytic core is formed by three mitochondrial DNA encoded subunits, Cox1, Cox2 and Cox3, conserved in the bacterial enzyme. Their biogenesis requires the action of messenger-specific and subunit-specific factors which facilitate the synthesis, membrane insertion, maturation or assembly of the core subunits. The study of yeast strains and human cell lines from patients carrying mutations in structural subunits and COX assembly factors has been invaluable to identify these ancillary factors. Here we review the current state of knowledge of the biogenesis and assembly of the eukaryotic COX catalytic core and discuss the degree of conservation of the players and mechanisms operating from yeast to human. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Ileana C. Soto
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
| | - Flavia Fontanesi
- Department of Neurology. University of Miami Miller School of Medicine. Miami, FL
| | - Jingjing Liu
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
| | - Antoni Barrientos
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
- Department of Neurology. University of Miami Miller School of Medicine. Miami, FL
| |
Collapse
|
31
|
Kim HJ, Khalimonchuk O, Smith PM, Winge DR. Structure, function, and assembly of heme centers in mitochondrial respiratory complexes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1604-16. [PMID: 22554985 DOI: 10.1016/j.bbamcr.2012.04.008] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/11/2012] [Accepted: 04/13/2012] [Indexed: 10/28/2022]
Abstract
The sequential flow of electrons in the respiratory chain, from a low reduction potential substrate to O(2), is mediated by protein-bound redox cofactors. In mitochondria, hemes-together with flavin, iron-sulfur, and copper cofactors-mediate this multi-electron transfer. Hemes, in three different forms, are used as a protein-bound prosthetic group in succinate dehydrogenase (complex II), in bc(1) complex (complex III) and in cytochrome c oxidase (complex IV). The exact function of heme b in complex II is still unclear, and lags behind in operational detail that is available for the hemes of complex III and IV. The two b hemes of complex III participate in the unique bifurcation of electron flow from the oxidation of ubiquinol, while heme c of the cytochrome c subunit, Cyt1, transfers these electrons to the peripheral cytochrome c. The unique heme a(3), with Cu(B), form a catalytic site in complex IV that binds and reduces molecular oxygen. In addition to providing catalytic and electron transfer operations, hemes also serve a critical role in the assembly of these respiratory complexes, which is just beginning to be understood. In the absence of heme, the assembly of complex II is impaired, especially in mammalian cells. In complex III, a covalent attachment of the heme to apo-Cyt1 is a prerequisite for the complete assembly of bc(1), whereas in complex IV, heme a is required for the proper folding of the Cox 1 subunit and subsequent assembly. In this review, we provide further details of the aforementioned processes with respect to the hemes of the mitochondrial respiratory complexes. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Hyung J Kim
- University of Utah Health Sciences Center, Department of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
32
|
Hederstedt L. Heme A biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:920-7. [PMID: 22484221 DOI: 10.1016/j.bbabio.2012.03.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 03/07/2012] [Accepted: 03/22/2012] [Indexed: 02/06/2023]
Abstract
Respiration in plants, most animals and many aerobic microbes is dependent on heme A. This is a highly specialized type of heme found as prosthetic group in cytochrome a-containing respiratory oxidases. Heme A differs structurally from heme B (protoheme IX) by the presence of a hydroxyethylfarnesyl group instead of a vinyl side group at the C2 position and a formyl group instead of a methyl side group at position C8 of the porphyrin macrocycle. Heme A synthase catalyzes the formation of the formyl side group and is a poorly understood heme-containing membrane bound atypical monooxygenase. This review presents our current understanding of heme A synthesis at the molecular level in mitochondria and aerobic bacteria. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Lars Hederstedt
- Microbiology Group, Department of Biology, Lund University, Sweden.
| |
Collapse
|
33
|
Hannappel A, Bundschuh FA, Ludwig B. Role of Surf1 in heme recruitment for bacterial COX biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:928-37. [PMID: 21945856 DOI: 10.1016/j.bbabio.2011.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/04/2011] [Accepted: 09/12/2011] [Indexed: 12/12/2022]
Abstract
Biogenesis of the mitochondrial cytochrome c oxidase (COX) is a highly complex process involving subunits encoded both in the nuclear and the organellar genome; in addition, a large number of assembly factors participate in this process. The soil bacterium Paracoccus denitrificans is an interesting alternative model for the study of COX biogenesis events because the number of chaperones involved is restricted to an essential set acting in the metal centre formation of oxidase, and the high degree of sequence homology suggests the same basic mechanisms during early COX assembly. Over the last years, studies on the P. denitrificans Surf1 protein shed some light on this important assembly factor as a heme a binding protein associated with Leigh syndrome in humans. Here, we summarise our current knowledge about Surf1 and its role in heme a incorporation events during bacterial COX biogenesis. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Achim Hannappel
- Institute of Biochemistry, Molecular Genetics Group, Goethe-University, Frankfurt am Main, Germany
| | | | | |
Collapse
|
34
|
Tripodi KEJ, Menendez Bravo SM, Cricco JA. Role of heme and heme-proteins in trypanosomatid essential metabolic pathways. Enzyme Res 2011; 2011:873230. [PMID: 21603276 PMCID: PMC3092630 DOI: 10.4061/2011/873230] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/07/2011] [Indexed: 11/29/2022] Open
Abstract
Around the world, trypanosomatids are known for being etiological agents of several highly disabling and often fatal diseases like Chagas disease (Trypanosoma cruzi), leishmaniasis (Leishmania spp.), and African trypanosomiasis (Trypanosoma brucei). Throughout their life cycle, they must cope with diverse environmental conditions, and the mechanisms involved in these processes are crucial for their survival. In this review, we describe the role of heme in several essential metabolic pathways of these protozoans. Notwithstanding trypanosomatids lack of the complete heme biosynthetic pathway, we focus our discussion in the metabolic role played for important heme-proteins, like cytochromes. Although several genes for different types of cytochromes, involved in mitochondrial respiration, polyunsaturated fatty acid metabolism, and sterol biosynthesis, are annotated at the Tritryp Genome Project, the encoded proteins have not yet been deeply studied. We pointed our attention into relevant aspects of these protein functions that are amenable to be considered for rational design of trypanocidal agents.
Collapse
Affiliation(s)
- Karina E J Tripodi
- Departamento de Química Biológica and Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | | | | |
Collapse
|
35
|
Alfadhel M, Lillquist YP, Waters PJ, Sinclair G, Struys E, McFadden D, Hendson G, Hyams L, Shoffner J, Vallance HD. Infantile cardioencephalopathy due to a COX15 gene defect: Report and review. Am J Med Genet A 2011; 155A:840-4. [DOI: 10.1002/ajmg.a.33881] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 12/09/2010] [Indexed: 11/10/2022]
|
36
|
Buchensky C, Almirón P, Mantilla BS, Silber AM, Cricco JA. The Trypanosoma cruzi proteins TcCox10 and TcCox15 catalyze the formation of heme A in the yeast Saccharomyces cerevisiae. FEMS Microbiol Lett 2011; 312:133-41. [PMID: 20979346 DOI: 10.1111/j.1574-6968.2010.02109.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Trypanosoma cruzi, the etiologic agent for Chagas’ disease, has requirements for several cofactors, one of which is heme. Because this organism is unable to synthesize heme, which serves as a prosthetic group for several heme proteins (including the respiratory chain complexes), it therefore must be acquired from the environment. Considering this deficiency, it is an open question as to how heme A, the essential cofactor for eukaryotic CcO enzymes, is acquired by this parasite. In the present work, we provide evidence for the presence and functionality of genes coding for heme O and heme A synthases, which catalyze the synthesis of heme O and its conversion into heme A, respectively. The functions of these T. cruzi proteins were evaluated using yeast complementation assays, and the mRNA levels of their respective genes were analyzed at the different T. cruzi life stages. It was observed that the amount of mRNA coding for these proteins changes during the parasite life cycle, suggesting that this variation could reflect different respiratory requirements in the different parasite life stages.
Collapse
Affiliation(s)
- Celeste Buchensky
- Departamento de Química Biológica, Instituto de Biología Molecular y Celular de Rosario, Universidad Nacional de Rosario, Argentina
| | | | | | | | | |
Collapse
|
37
|
Fontanesi F, Clemente P, Barrientos A. Cox25 teams up with Mss51, Ssc1, and Cox14 to regulate mitochondrial cytochrome c oxidase subunit 1 expression and assembly in Saccharomyces cerevisiae. J Biol Chem 2010; 286:555-66. [PMID: 21068384 DOI: 10.1074/jbc.m110.188805] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, mitochondrial cytochrome c oxidase (COX) biogenesis is translationally regulated. Mss51, a specific COX1 mRNA translational activator and Cox1 chaperone, drives the regulatory mechanism. During translation and post-translationally, newly synthesized Cox1 physically interacts with a complex of proteins involving Ssc1, Mss51, and Cox14, which eventually hand over Cox1 to the assembly pathway. This step is probably catalyzed by assembly chaperones such as Shy1 in a process coupled to the release of Ssc1-Mss51 from the complex. Impaired COX assembly results in the trapping of Mss51 in the complex, thus limiting its availability for COX1 mRNA translation. An exception is a null mutation in COX14 that does not affect Cox1 synthesis because the Mss51 trapping complexes become unstable, and Mss51 is readily available for translation. Here we present evidence showing that Cox25 is a new essential COX assembly factor that plays some roles similar to Cox14. A null mutation in COX25 by itself or in combination with other COX mutations does not affect Cox1 synthesis. Cox25 is an inner mitochondrial membrane intrinsic protein with a hydrophilic C terminus protruding into the matrix. Cox25 is an essential component of the complexes containing newly synthesized Cox1, Ssc1, Mss51, and Cox14. In addition, Cox25 is also found to interact with Shy1 and Cox5 in a complex that does not contain Mss51. These results suggest that once Ssc1-Mss51 are released from the Cox1 stabilization complex, Cox25 continues to interact with Cox14 and Cox1 to facilitate the formation of multisubunit COX assembly intermediates.
Collapse
Affiliation(s)
- Flavia Fontanesi
- Departments of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
38
|
Sheftel A, Stehling O, Lill R. Iron-sulfur proteins in health and disease. Trends Endocrinol Metab 2010; 21:302-14. [PMID: 20060739 DOI: 10.1016/j.tem.2009.12.006] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 12/11/2009] [Accepted: 12/15/2009] [Indexed: 11/29/2022]
Abstract
Iron-sulfur (Fe/S) proteins are a class of ubiquitous components that assist in vital and diverse biochemical tasks in virtually every living cell. These tasks include respiration, iron homeostasis and gene expression. The past decade has led to the discovery of novel Fe/S proteins and insights into how their Fe/S cofactors are formed and incorporated into apoproteins. This review summarizes our current knowledge of mammalian Fe/S proteins, diseases related to deficiencies in these proteins and on disorders stemming from their defective biogenesis. Understanding both the physiological functions of Fe/S proteins and how Fe/S clusters are formed will undoubtedly enhance our ability to identify and treat known disorders of Fe/S cluster biogenesis and to recognize hitherto undescribed Fe/S cluster-related diseases.
Collapse
Affiliation(s)
- Alex Sheftel
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, D-35033 Marburg, Germany
| | | | | |
Collapse
|
39
|
The role of Coa2 in hemylation of yeast Cox1 revealed by its genetic interaction with Cox10. Mol Cell Biol 2010; 30:172-85. [PMID: 19841065 DOI: 10.1128/mcb.00869-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae cells lacking the cytochrome c oxidase (CcO) assembly factor Coa2 are impaired in Cox1 maturation and exhibit a rapid degradation of newly synthesized Cox1. The respiratory deficiency of coa2 Delta cells is suppressed either by the presence of a mutant allele of the Cox10 farnesyl transferase involved in heme a biosynthesis or through impaired proteolysis by the disruption of the mitochondrial Oma1 protease. Cox10 with an N196K substitution functions as a robust gain-of-function suppressor of the respiratory deficiency of coa2 Delta cells but lacks suppressor activity for two other CcO assembly mutant strains, the coa1 Delta and shy1 Delta mutants. The suppressor activity of N196K mutant Cox10 is dependent on its catalytic function and the presence of Cox15, the second enzyme involved in heme a biosynthesis. Varying the substitution at Asn196 reveals a correlation between the suppressor activity and the stabilization of the high-mass homo-oligomeric Cox10 complex. We postulate that the mutant Cox10 complex has enhanced efficiency in the addition of heme a to Cox1. Coa2 appears to impart stability to the oligomeric wild-type Cox10 complex involved in Cox1 hemylation.
Collapse
|
40
|
Formation of the redox cofactor centers during Cox1 maturation in yeast cytochrome oxidase. Mol Cell Biol 2009; 30:1004-17. [PMID: 19995914 DOI: 10.1128/mcb.00640-09] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The biogenesis of cytochrome c oxidase initiates with synthesis and maturation of the mitochondrion-encoded Cox1 subunit prior to the addition of other subunits. Cox1 contains redox cofactors, including the low-spin heme a center and the heterobimetallic heme a(3):Cu(B) center. We sought to identify the step in the maturation of Cox1 in which the redox cofactor centers are assembled. Newly synthesized Cox1 is incorporated within one early assembly intermediate containing Mss51 in Saccharomyces cerevisiae. Subsequent Cox1 maturation involves the progression to downstream assembly intermediates involving Coa1 and Shy1. We show that the two heme a cofactor sites in Cox1 form downstream of Mss51- and Coa1-containing Cox1 intermediates. These Cox1 intermediates form normally in cells defective in heme a biosynthesis or in cox1 mutant strains with heme a axial His mutations. In contrast, the Shy1-containing Cox1 assembly intermediate is perturbed in the absence of heme a. Heme a(3) center formation in Cox1 appears to be chaperoned by Shy1. Cu(B) site formation occurs near or at the Shy1-containing Cox1 assembly intermediate also. The Cu(B) metallochaperone Cox11 transiently interacts with Shy1 by coimmunoprecipitation. The Shy1-containing Cox1 complex is markedly attenuated in cells lacking Cox11 but is partially restored with a nonfunctional Cox11 mutant. Thus, formation of the heterobimetallic Cu(B):heme a(3) site likely occurs in the Shy1-containing Cox1 complex.
Collapse
|
41
|
Ugalde C, Morán M, Blázquez A, Arenas J, Martín MA. Mitochondrial Disorders Due to Nuclear OXPHOS Gene Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 652:85-116. [DOI: 10.1007/978-90-481-2813-6_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
42
|
Diaz F. Cytochrome c oxidase deficiency: patients and animal models. Biochim Biophys Acta Mol Basis Dis 2009; 1802:100-10. [PMID: 19682572 DOI: 10.1016/j.bbadis.2009.07.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 12/17/2022]
Abstract
Cytochrome c oxidase (COX) deficiencies are one of the most common defects of the respiratory chain found in mitochondrial diseases. COX is a multimeric inner mitochondrial membrane enzyme formed by subunits encoded by both the nuclear and the mitochondrial genome. COX biosynthesis requires numerous assembly factors that do not form part of the final complex but participate in prosthetic group synthesis and metal delivery in addition to membrane insertion and maturation of COX subunits. Human diseases associated with COX deficiency including encephalomyopathies, Leigh syndrome, hypertrophic cardiomyopathies, and fatal lactic acidosis are caused by mutations in COX subunits or assembly factors. In the last decade, numerous animal models have been created to understand the pathophysiology of COX deficiencies and the function of assembly factors. These animal models, ranging from invertebrates to mammals, in most cases mimic the pathological features of the human diseases.
Collapse
Affiliation(s)
- Francisca Diaz
- Department of Neurology, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, Florida 33136, USA.
| |
Collapse
|
43
|
Wenz T, Diaz F, Hernandez D, Moraes CT. Endurance exercise is protective for mice with mitochondrial myopathy. J Appl Physiol (1985) 2009; 106:1712-9. [PMID: 19286571 DOI: 10.1152/japplphysiol.91571.2008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Defects in the mitochondrial ATP-generating system are one of the most commonly inherited neurological disorders, but they remain without treatment. We have recently shown that modulation of the peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) level in skeletal muscle of a mitochondrial myopathy mouse model offers a therapeutic approach. Here we analyzed if endurance exercise, which is known to be associated with an increased PGC-1alpha level in muscle, offers the same beneficial effect. We subjected male and female mice that develop a severe mitochondrial myopathy due to a cytochrome-c oxidase deficiency at 3 mo of age to endurance exercise training and monitored phenotypical and metabolic changes. Sedentary myopathy and wild-type mice were used as controls. Exercise increased PGC-1alpha in muscle, resulting in increased mitochondrial biogenesis, and successfully stimulated residual respiratory capacity in muscle tissue. As a consequence, ATP levels were increased in exercised mice compared with sedentary myopathy animals, which resulted in a delayed onset of the myopathy and a prolonged lifespan of the exercised mice. As an added benefit, endurance exercise induced antioxidant enzymes. The overall protective effect of endurance exercise delayed the onset of the mitochondrial myopathy and increased life expectancy in the mouse model. Thus stimulating residual oxidative phosphorylation function in the affected muscle by inducing mitochondrial biogenesis through endurance exercise might offer a valuable therapeutic intervention for mitochondrial myopathy patients.
Collapse
Affiliation(s)
- Tina Wenz
- Dept. of Neurology, Miller School of Medicine, Univ. of Miami, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
44
|
Mogi T. Probing structure of heme A synthase from Bacillus subtilis by site-directed mutagenesis. J Biochem 2009; 145:625-33. [PMID: 19174544 DOI: 10.1093/jb/mvp017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biosynthesis of heme A from heme B is catalysed by two enzymes, heme O and heme A synthases, in the membrane. Heme A synthase in Bacillus subtilis (CtaA) has eight transmembrane helices and oxidizes a methyl group on pyrrole ring D of heme O to an aldehyde. In this study, to explore structure of heme binding site(s) in heme A synthase, we overproduced the B. subtilis His(6)-CtaA in Escherichia coli and characterized spectroscopic properties of the purified CtaA. On the contrary to a previous report (Svensson, B., Andersson, K.K., and Hederstedt, L. (1996) Low-spin heme A in the heme A biosynthetic protein CtaA from Bacillus subtilis. Eur. J. Biochem. 238, 287-295), we found that two molecules of heme B were bound to CtaA. Further, we demonstrated that substitutions of His60 and His126 did not affect heme binding while His216 and His278 in the carboxy-halves are essential in heme binding. And we found that Ala substitutions of Cys191 and Cys197 in loop 5/6 reduced heme content to a half of the wild-type level. On the basis of our findings, we proposed a helical-wheel-projection model of CtaA.
Collapse
Affiliation(s)
- Tatsushi Mogi
- Department of Biomedical Chemistry, Graduate School of Medicine, the University of Tokyo, Hongo, Tokyo, Japan.
| |
Collapse
|
45
|
Vempati UD, Han X, Moraes CT. Lack of cytochrome c in mouse fibroblasts disrupts assembly/stability of respiratory complexes I and IV. J Biol Chem 2008; 284:4383-91. [PMID: 19075019 DOI: 10.1074/jbc.m805972200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome c (cyt c) is a heme-containing protein that participates in electron transport in the respiratory chain and as a signaling molecule in the apoptotic cascade. Here we addressed the effect of removing mammalian cyt c on the integrity of the respiratory complexes in mammalian cells. Mitochondria from cyt c knockout mouse cells lacked fully assembled complexes I and IV and had reduced levels of complex III. A redox-deficient mutant of cyt c was unable to rescue the levels of complexes I and IV. We found that cyt c is associated with both complex IV and respiratory supercomplexes, providing a potential mechanism for the requirement for cyt c in the assembly/stability of complex IV.
Collapse
Affiliation(s)
- Uma D Vempati
- Department of Neurology and Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
46
|
Fontanesi F, Soto IC, Barrientos A. Cytochrome c oxidase biogenesis: new levels of regulation. IUBMB Life 2008; 60:557-68. [PMID: 18465791 DOI: 10.1002/iub.86] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Eukaryotic cytochrome c oxidase (COX), the last enzyme of the mitochondrial respiratory chain, is a multimeric enzyme of dual genetic origin, whose assembly is a complicated and highly regulated process. COX displays a concerted accumulation of its constitutive subunits. Data obtained from studies performed with yeast mutants indicate that most catalytic core unassembled subunits are posttranslationally degraded. Recent data obtained in the yeast Saccharomyces cerevisiae have revealed another contribution to the stoichiometric accumulation of subunits during COX biogenesis targeting subunit 1 or Cox1p. Cox1p is a mitochondrially encoded catalytic subunit of COX which acts as a seed around which the full complex is assembled. A regulatory mechanism exists by which Cox1p synthesis is controlled by the availability of its assembly partners. The unique properties of this regulatory mechanism offer a means to catalyze multiple-subunit assembly. New levels of COX biogenesis regulation have been recently proposed. For example, COX assembly and stability of the fully assembled enzyme depend on the presence in the mitochondrial compartments of two partners of the oxidative phosphorylation system, the mobile electron carrier cytochrome c and the mitochondrial ATPase. The different mechanisms of regulation of COX assembly are reviewed and discussed.
Collapse
Affiliation(s)
- Flavia Fontanesi
- Department of Neurology, The John T. MacDonald Foundation Center for Medical Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | |
Collapse
|
47
|
Wang Z, Wang Y, Hegg EL. Regulation of the heme A biosynthetic pathway: differential regulation of heme A synthase and heme O synthase in Saccharomyces cerevisiae. J Biol Chem 2008; 284:839-47. [PMID: 18953022 DOI: 10.1074/jbc.m804167200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The assembly and activity of cytochrome c oxidase is dependent on the availability of heme A, one of its essential cofactors. In eukaryotes, two inner mitochondrial membrane proteins, heme O synthase (Cox10) and heme A synthase (Cox15), are required for heme A biosynthesis. In this report, we demonstrate that in Saccharomyces cerevisiae the transcription of COX15 is regulated by Hap1, a transcription factor whose activity is positively controlled by intracellular heme concentration. Conversely, COX10, the physiological partner of COX15, does not share the same regulatory mechanism with COX15. Interestingly, protein quantification identified an 8:1 protein ratio between Cox15 and Cox10. Together, these results suggest that heme A synthase and/or heme O synthase might play a new, unidentified role in addition to heme A biosynthesis.
Collapse
Affiliation(s)
- Zhihong Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48823, USA
| | | | | |
Collapse
|
48
|
Activation of the PPAR/PGC-1alpha pathway prevents a bioenergetic deficit and effectively improves a mitochondrial myopathy phenotype. Cell Metab 2008; 8:249-56. [PMID: 18762025 PMCID: PMC2613643 DOI: 10.1016/j.cmet.2008.07.006] [Citation(s) in RCA: 262] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/24/2008] [Accepted: 07/23/2008] [Indexed: 02/06/2023]
Abstract
Neuromuscular disorders with defects in the mitochondrial ATP-generating system affect a large number of children and adults worldwide, but remain without treatment. We used a mouse model of mitochondrial myopathy, caused by a cytochrome c oxidase deficiency, to evaluate the effect of induced mitochondrial biogenesis on the course of the disease. Mitochondrial biogenesis was induced either by transgenic expression of peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator alpha (PGC-1alpha) in skeletal muscle or by administration of bezafibrate, a PPAR panagonist. Both strategies successfully stimulated residual respiratory capacity in muscle tissue. Mitochondrial proliferation resulted in an enhanced OXPHOS capacity per muscle mass. As a consequence, ATP levels were conserved resulting in a delayed onset of the myopathy and a markedly prolonged life span. Thus, induction of mitochondrial biogenesis through pharmacological or metabolic modulation of the PPAR/PGC-1alpha pathway promises to be an effective therapeutic approach for mitochondrial disorders.
Collapse
|
49
|
Assembly of the oxidative phosphorylation system in humans: what we have learned by studying its defects. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:200-11. [PMID: 18620006 DOI: 10.1016/j.bbamcr.2008.05.028] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 05/12/2008] [Accepted: 05/17/2008] [Indexed: 02/07/2023]
Abstract
Assembly of the oxidative phosphorylation (OXPHOS) system in the mitochondrial inner membrane is an intricate process in which many factors must interact. The OXPHOS system is composed of four respiratory chain complexes, which are responsible for electron transport and generation of the proton gradient in the mitochondrial intermembrane space, and of the ATP synthase that uses this proton gradient to produce ATP. Mitochondrial human disorders are caused by dysfunction of the OXPHOS system, and many of them are associated with altered assembly of one or more components of the OXPHOS system. The study of assembly defects in patients has been useful in unraveling and/or gaining a complete understanding of the processes by which these large multimeric complexes are formed. We review here current knowledge of the biogenesis of OXPHOS complexes based on investigation of the corresponding disorders.
Collapse
|
50
|
Barrientos A, Gouget K, Horn D, Soto IC, Fontanesi F. Suppression mechanisms of COX assembly defects in yeast and human: insights into the COX assembly process. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:97-107. [PMID: 18522805 DOI: 10.1016/j.bbamcr.2008.05.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 04/29/2008] [Accepted: 05/05/2008] [Indexed: 12/11/2022]
Abstract
Eukaryotic cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial respiratory chain. COX is a multimeric enzyme formed by subunits of dual genetic origin whose assembly is intricate and highly regulated. In addition to the structural subunits, a large number of accessory factors are required to build the holoenzyme. The function of these factors is required in all stages of the assembly process. They are relevant to human health because devastating human disorders have been associated with mutations in nuclear genes encoding conserved COX assembly factors. The study of yeast strains and human cell lines from patients carrying mutations in structural subunits and COX assembly factors has been invaluable to attain the current state of knowledge, even if still fragmentary, of the COX assembly process. After the identification of the genes involved, the isolation and characterization of genetic and metabolic suppressors of COX assembly defects, reviewed here, have become a profitable strategy to gain insight into their functions and the pathways in which they operate. Additionally, they have the potential to provide useful information for devising therapeutic approaches to combat human disorders associated with COX deficiency.
Collapse
Affiliation(s)
- Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | | | | | | | | |
Collapse
|