1
|
Lu B, Qiu X, Yang W, Yao Z, Ma X, Deng S, Zhang Q, Fu J, Qi Y. Genetic Basis and Evolutionary Forces of Sexually Dimorphic Color Variation in a Toad-Headed Agamid Lizard. Mol Biol Evol 2024; 41:msae054. [PMID: 38466135 PMCID: PMC10963123 DOI: 10.1093/molbev/msae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/17/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024] Open
Abstract
In the animal kingdom, sexually dimorphic color variation is a widespread phenomenon that significantly influences survival and reproductive success. However, the genetic underpinnings of this variation remain inadequately understood. Our investigation into sexually dimorphic color variation in the desert-dwelling Guinan population of the toad-headed agamid lizard (Phrynocephalus putjatai) utilized a multidisciplinary approach, encompassing phenotypic, ultrastructural, biochemical, genomic analyses, and behavioral experiments. Our findings unveil the association between distinct skin colorations and varying levels of carotenoid and pteridine pigments. The red coloration in males is determined by a genomic region on chromosome 14, housing four pigmentation genes: BCO2 and three 6-pyruvoyltetrahydropterin synthases. A Guinan population-specific nonsynonymous single nucleotide polymorphism in BCO2 is predicted to alter the electrostatic potential within the binding domain of the BCO2-β-carotene complex, influencing their interaction. Additionally, the gene MAP7 on chromosome 2 emerges as a potential contributor to the blue coloration in subadults and adult females. Sex-specific expression patterns point to steroid hormone-associated genes (SULT2B1 and SRD5A2) as potential upstream regulators influencing sexually dimorphic coloration. Visual modeling and field experiments support the potential selective advantages of vibrant coloration in desert environments. This implies that natural selection, potentially coupled with assortative mating, might have played a role in fixing color alleles, contributing to prevalence in the local desert habitat. This study provides novel insights into the genetic basis of carotenoid and pteridine-based color variation, shedding light on the evolution of sexually dimorphic coloration in animals. Moreover, it advances our understanding of the driving forces behind such intricate coloration patterns.
Collapse
Affiliation(s)
- Bin Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| | - Xia Qiu
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Weizhao Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| | - Zhongyi Yao
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| | - Xiaofeng Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| | - Shunyan Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| | - Qi Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| | - Jinzhong Fu
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Yin Qi
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| |
Collapse
|
2
|
McLean CA, Lutz A, Rankin KJ, Elliott A, Moussalli A, Stuart-Fox D. Red carotenoids and associated gene expression explain colour variation in frillneck lizards. Proc Biol Sci 2019; 286:20191172. [PMID: 31311479 DOI: 10.1098/rspb.2019.1172] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A long-standing hypothesis in evolutionary ecology is that red-orange ornamental colours reliably signal individual quality owing to limited dietary availability of carotenoids and metabolic costs associated with their production, such as the bioconversion of dietary yellow carotenoids to red ketocarotenoids. However, in ectothermic vertebrates, these colours can also be produced by self-synthesized pteridine pigments. As a consequence, the relative ratio of pigment types and their biochemical and genetic basis have implications for the costs and information content of colour signals; yet they remain poorly known in most taxonomic groups. We tested whether red- and yellow-frilled populations of the frillneck lizard, Chlamydosaurus kingii, differ in the ratio of different biochemical classes of carotenoid and pteridine pigments, and examined associated differences in gene expression. We found that, unlike other squamate reptiles, red hues derive from a higher proportion of ketocarotenoids relative to both dietary yellow carotenoids and to pteridines. Whereas red frill skin showed higher expression of several genes associated with carotenoid metabolism, yellow frill skin showed higher expression of genes associated with steroid hormones. Based on the different mechanisms underlying red and yellow signals, we hypothesize that frill colour conveys different information in the two populations. More generally, the data expand our knowledge of the genetic and biochemical basis of colour signals in vertebrates.
Collapse
Affiliation(s)
- Claire A McLean
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia.,Sciences Department, Museums Victoria, Carlton Gardens, Victoria 3053, Australia
| | - Adrian Lutz
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia.,Metabolomics Australia, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Katrina J Rankin
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Adam Elliott
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Adnan Moussalli
- Sciences Department, Museums Victoria, Carlton Gardens, Victoria 3053, Australia
| | - Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
3
|
Zhang Y, Liu J, Fu W, Xu W, Zhang H, Chen S, Liu W, Peng L, Xiao Y. Comparative Transcriptome and DNA methylation analyses of the molecular mechanisms underlying skin color variations in Crucian carp (Carassius carassius L.). BMC Genet 2017; 18:95. [PMID: 29121864 PMCID: PMC5680753 DOI: 10.1186/s12863-017-0564-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 10/31/2017] [Indexed: 11/25/2022] Open
Abstract
Background Crucian carp is a popular ornamental strain in Asia with variants in body color. To further explore the genetic mechanisms underlying gray and red body color formation in crucian carp, the skin transcriptomes and partial DNA methylation sites were obtained from red crucian carp (RCC) and white crucian carp (WCC). Here, we show significant differences in mRNA expression and DNA methylation sites between skin tissues of RCC and WCC. Results Totals of 3434 and 3683 unigenes had significantly lower and higher expression in WCC, respectively, compared with unigenes expressed in RCC. Some potential genes for body color development were further identified by quantitative polymerase chain reaction, such as mitfa, tyr, tyrp1, and dct, which were down-regulated, and foxd3, hpda, ptps, and gch1, which were up-regulated. A KEGG pathway analysis indicated that the differentially expressed genes were mainly related to mitogen activated protein kinase (MAPK), Wnt, cell cycle, and endocytosis signaling pathways, as well as variations in melanogenesis in crucian carp. In addition, some differentially expressed DNA methylation site genes were related to pigmentation, including mitfa, tyr, dct, foxd3, and hpda. The differentially expressed DNA methylation sites were mainly involved in signaling pathways, including MAPK, cAMP, endocytosis, melanogenesis, and Hippo. Conclusions Our study provides the results of comparative transcriptome and DNA methylation analyses between RCC and WCC skin tissues and reveals that the molecular mechanism of body color variation in crucian carp is strongly related to disruptions in gene expression and DNA methylation during pigmentation. Electronic supplementary material The online version of this article (10.1186/s12863-017-0564-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongqin Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, China.,School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Jinhui Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, China.,School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Wen Fu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, China.,School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Wenting Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, China.,School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Huiqin Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, China.,School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Shujuan Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, China.,School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Wenbin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, China.,School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Liangyue Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, China.,School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, China. .,School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| |
Collapse
|
4
|
Seo KH, Zhuang N, Park YS, Park KH, Lee KH. Structural basis of a novel activity of bacterial 6-pyruvoyltetrahydropterin synthase homologues distinct from mammalian 6-pyruvoyltetrahydropterin synthase activity. ACTA ACUST UNITED AC 2014; 70:1212-23. [PMID: 24816091 DOI: 10.1107/s1399004714002016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/28/2014] [Indexed: 11/11/2022]
Abstract
Escherichia coli 6-carboxytetrahydropterin synthase (eCTPS), a homologue of 6-pyruvoyltetrahydropterin synthase (PTPS), possesses a much stronger catalytic activity to cleave the side chain of sepiapterin in vitro compared with genuine PTPS activity and catalyzes the conversion of dihydroneopterin triphosphate to 6-carboxy-5,6,7,8-tetrahydropterin in vivo. Crystal structures of wild-type apo eCTPS and of a Cys27Ala mutant eCTPS complexed with sepiapterin have been determined to 2.3 and 2.5 Å resolution, respectively. The structures are highly conserved at the active site and the Zn(2+) binding site. However, comparison of the eCTPS structures with those of mammalian PTPS homologues revealed that two specific residues, Trp51 and Phe55, that are not found in mammalian PTPS keep the substrate bound by stacking it with their side chains. Replacement of these two residues by site-directed mutagenesis to the residues Met and Leu, which are only found in mammalian PTPS, converted eCTPS to the mammalian PTPS activity. These studies confirm that these two aromatic residues in eCTPS play an essential role in stabilizing the substrate and in the specific enzyme activity that differs from the original PTPS activity. These aromatic residues Trp51 and Phe55 are a key signature of bacterial PTPS enzymes that distinguish them from mammalian PTPS homologues.
Collapse
Affiliation(s)
- Kyung Hye Seo
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Ningning Zhuang
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Young Shik Park
- School of Biological Sciences, Inje University, Kimhae 621-749, Republic of Korea
| | - Ki Hun Park
- Division of Applied Life Science (BK21 Plus), IALS, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Kon Ho Lee
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 660-701, Republic of Korea
| |
Collapse
|
5
|
Phillips G, Grochowski LL, Bonnett S, Xu H, Bailly M, Haas-Blaby C, El Yacoubi B, Iwata-Reuyl D, White RH, de Crécy-Lagard V. Functional promiscuity of the COG0720 family. ACS Chem Biol 2012; 7:197-209. [PMID: 21999246 PMCID: PMC3262898 DOI: 10.1021/cb200329f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biosynthesis of GTP derived metabolites such as tetrahydrofolate (THF), biopterin (BH(4)), and the modified tRNA nucleosides queuosine (Q) and archaeosine (G(+)) relies on several enzymes of the Tunnel-fold superfamily. A subset of these proteins includes the 6-pyruvoyltetrahydropterin (PTPS-II), PTPS-III, and PTPS-I homologues, all members of the COG0720 family that have been previously shown to transform 7,8-dihydroneopterin triphosphate (H(2)NTP) into different products. PTPS-II catalyzes the formation of 6-pyruvoyltetrahydropterin in the BH(4) pathway, PTPS-III catalyzes the formation of 6-hydroxylmethyl-7,8-dihydropterin in the THF pathway, and PTPS-I catalyzes the formation of 6-carboxy-5,6,7,8-tetrahydropterin in the Q pathway. Genes of these three enzyme families are often misannotated as they are difficult to differentiate by sequence similarity alone. Using a combination of physical clustering, signature motif, phylogenetic codistribution analyses, in vivo complementation studies, and in vitro enzymatic assays, a complete reannotation of the COG0720 family was performed in prokaryotes. Notably, this work identified and experimentally validated dual function PTPS-I/III enzymes involved in both THF and Q biosynthesis. Both in vivo and in vitro analyses showed that the PTPS-I family could tolerate a translation of the active site cysteine and was inherently promiscuous, catalyzing different reactions on the same substrate or the same reaction on different substrates. Finally, the analysis and experimental validation of several archaeal COG0720 members confirmed the role of PTPS-I in archaeosine biosynthesis and resulted in the identification of PTPS-III enzymes with variant signature sequences in Sulfolobus species. This study reveals an expanded versatility of the COG0720 family members and illustrates that for certain protein families extensive comparative genomic analysis beyond homology is required to correctly predict function.
Collapse
Affiliation(s)
- Gabriela Phillips
- Department of Microbiology and Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611
| | - Laura L. Grochowski
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Shilah Bonnett
- Department of Chemistry, Portland State University, Portland, OR 97207
| | - Huimin Xu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Marc Bailly
- Department of Microbiology and Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611
| | - Crysten Haas-Blaby
- Department of Microbiology and Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611
| | - Basma El Yacoubi
- Department of Microbiology and Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611
| | - Dirk Iwata-Reuyl
- Department of Chemistry, Portland State University, Portland, OR 97207
| | - Robert H. White
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611
| |
Collapse
|
6
|
Wang H, Yang B, Hao G, Feng Y, Chen H, Feng L, Zhao J, Zhang H, Chen YQ, Wang L, Chen W. Biochemical characterization of the tetrahydrobiopterin synthesis pathway in the oleaginous fungus Mortierella alpina. MICROBIOLOGY (READING, ENGLAND) 2011; 157:3059-3070. [PMID: 21852350 PMCID: PMC4811656 DOI: 10.1099/mic.0.051847-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/10/2011] [Accepted: 08/17/2011] [Indexed: 11/18/2022]
Abstract
We characterized the de novo biosynthetic pathway of tetrahydrobiopterin (BH₄) in the lipid-producing fungus Mortierella alpina. The BH₄ cofactor is essential for various cell processes, and is probably present in every cell or tissue of higher organisms. Genes encoding two copies of GTP cyclohydrolase I (GTPCH-1 and GTPCH-2) for the conversion of GTP to dihydroneopterin triphosphate (H₂-NTP), 6-pyruvoyltetrahydropterin synthase (PTPS) for the conversion of H₂-NTP to 6-pyruvoyltetrahydropterin (PPH₄), and sepiapterin reductase (SR) for the conversion of PPH₄ to BH₄, were expressed heterologously in Escherichia coli. The recombinant enzymes were produced as His-tagged fusion proteins and were purified to homogeneity to investigate their enzymic activities. Enzyme products were analysed by HPLC and electrospray ionization-MS. Kinetic parameters and other properties of GTPCH, PTPS and SR were investigated. Physiological roles of BH₄ in M. alpina are discussed, and comparative analyses between GTPCH, PTPS and SR proteins and other homologous proteins were performed. The presence of two functional GTPCH enzymes has, as far as we are aware, not been reported previously, reflecting the unique ability of this fungus to synthesize both BH₄ and folate, using the GTPCH product as a common substrate. To our knowledge, this study is the first to report the comprehensive characterization of a BH₄ biosynthesis pathway in a fungus.
Collapse
Affiliation(s)
- Hongchao Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Guangfei Hao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Yun Feng
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin 300457, PR China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Lu Feng
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin 300457, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Yong Q. Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin 300457, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
7
|
The evolution of metabolic networks of E. coli. BMC SYSTEMS BIOLOGY 2011; 5:182. [PMID: 22044664 PMCID: PMC3229490 DOI: 10.1186/1752-0509-5-182] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 11/01/2011] [Indexed: 11/19/2022]
Abstract
Background Despite the availability of numerous complete genome sequences from E. coli strains, published genome-scale metabolic models exist only for two commensal E. coli strains. These models have proven useful for many applications, such as engineering strains for desired product formation, and we sought to explore how constructing and evaluating additional metabolic models for E. coli strains could enhance these efforts. Results We used the genomic information from 16 E. coli strains to generate an E. coli pangenome metabolic network by evaluating their collective 76,990 ORFs. Each of these ORFs was assigned to one of 17,647 ortholog groups including ORFs associated with reactions in the most recent metabolic model for E. coli K-12. For orthologous groups that contain an ORF already represented in the MG1655 model, the gene to protein to reaction associations represented in this model could then be easily propagated to other E. coli strain models. All remaining orthologous groups were evaluated to see if new metabolic reactions could be added to generate a pangenome-scale metabolic model (iEco1712_pan). The pangenome model included reactions from a metabolic model update for E. coli K-12 MG1655 (iEco1339_MG1655) and enabled development of five additional strain-specific genome-scale metabolic models. These additional models include a second K-12 strain (iEco1335_W3110) and four pathogenic strains (two enterohemorrhagic E. coli O157:H7 and two uropathogens). When compared to the E. coli K-12 models, the metabolic models for the enterohemorrhagic (iEco1344_EDL933 and iEco1345_Sakai) and uropathogenic strains (iEco1288_CFT073 and iEco1301_UTI89) contained numerous lineage-specific gene and reaction differences. All six E. coli models were evaluated by comparing model predictions to carbon source utilization measurements under aerobic and anaerobic conditions, and to batch growth profiles in minimal media with 0.2% (w/v) glucose. An ancestral genome-scale metabolic model based on conserved ortholog groups in all 16 E. coli genomes was also constructed, reflecting the conserved ancestral core of E. coli metabolism (iEco1053_core). Comparative analysis of all six strain-specific E. coli models revealed that some of the pathogenic E. coli strains possess reactions in their metabolic networks enabling higher biomass yields on glucose. Finally the lineage-specific metabolic traits were compared to the ancestral core model predictions to derive new insight into the evolution of metabolism within this species. Conclusion Our findings demonstrate that a pangenome-scale metabolic model can be used to rapidly construct additional E. coli strain-specific models, and that quantitative models of different strains of E. coli can accurately predict strain-specific phenotypes. Such pangenome and strain-specific models can be further used to engineer metabolic phenotypes of interest, such as designing new industrial E. coli strains.
Collapse
|
8
|
Auweter SD, Bhavsar AP, de Hoog CL, Li Y, Chan YA, van der Heijden J, Lowden MJ, Coombes BK, Rogers LD, Stoynov N, Foster LJ, Finlay BB. Quantitative mass spectrometry catalogues Salmonella pathogenicity island-2 effectors and identifies their cognate host binding partners. J Biol Chem 2011; 286:24023-35. [PMID: 21566117 DOI: 10.1074/jbc.m111.224600] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gram-negative bacterial pathogens have developed specialized secretion systems to transfer bacterial proteins directly into host cells. These bacterial effectors are central to virulence and reprogram host cell processes to favor bacterial survival, colonization, and proliferation. Knowing the complete set of effectors encoded by a particular pathogen is the key to understanding bacterial disease. In addition, the identification of the molecular assemblies that these effectors engage once inside the host cell is critical to determining the mechanism of action of each effector. In this work we used stable isotope labeling of amino acids in cell culture (SILAC), a powerful quantitative proteomics technique, to identify the proteins secreted by the Salmonella pathogenicity island-2 type three secretion system (SPI-2 T3SS) and to characterize the host interaction partners of SPI-2 effectors. We confirmed many of the known SPI-2 effectors and were able to identify several novel substrate candidates of this secretion system. We verified previously published host protein-effector binding pairs and obtained 11 novel interactions, three of which were investigated further and confirmed by reciprocal co-immunoprecipitation. The host cell interaction partners identified here suggest that Salmonella SPI-2 effectors target, in a concerted fashion, cellular processes such as cell attachment and cell cycle control that are underappreciated in the context of infection. The technology outlined in this study is specific and sensitive and serves as a robust tool for the identification of effectors and their host targets that is readily amenable to the study of other bacterial pathogens.
Collapse
Affiliation(s)
- Sigrid D Auweter
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mashhadi Z, Xu H, White RH. An Fe2+-dependent cyclic phosphodiesterase catalyzes the hydrolysis of 7,8-dihydro-D-neopterin 2',3'-cyclic phosphate in methanopterin biosynthesis. Biochemistry 2009; 48:9384-92. [PMID: 19746965 DOI: 10.1021/bi9010336] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
7,8-Dihydro-D-neopterin 2',3'-cyclic phosphate (H(2)N-cP) is the first intermediate in biosynthesis of the pterin portion of tetrahydromethanopterin (H(4)MPT), a C(1) carrier coenzyme first identified in the methanogenic archaea. This intermediate is produced from GTP by MptA (MJ0775 gene product), a new class of GTP cyclohydrolase I [Grochowski, L. L., Xu, H., Leung, K., and White, R. H. (2007) Biochemistry 46, 6658-6667]. Here we report the identification of a cyclic phosphodiesterase that hydrolyzes the cyclic phosphate of H(2)N-cP and converts it to a mixture of 7,8-dihydro-D-neopterin 2'-monophosphate and 7,8-dihydro-d-neopterin 3'-monophosphate. The enzyme from Methanocaldococcus jannachii is designated MptB (MJ0837 gene product) to indicate that it catalyzes the second step of the biosynthesis of methanopterin. MptB is a member of the HD domain superfamily of enzymes, which require divalent metals for activity. Direct metal analysis of the recombinant enzyme demonstrated that MptB contained 1.0 mol of zinc and 0.8 mol of iron per protomer. MptB requires Fe(2+) for activity, the same as observed for MptA. Thus the first two enzymes involved in H(4)MPT biosynthesis in the archaea are Fe(2+) dependent.
Collapse
Affiliation(s)
- Zahra Mashhadi
- Department of Biochemistry (0308), Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|
10
|
Pribat A, Jeanguenin L, Lara-Núñez A, Ziemak MJ, Hyde JE, de Crécy-Lagard V, Hanson AD. 6-pyruvoyltetrahydropterin synthase paralogs replace the folate synthesis enzyme dihydroneopterin aldolase in diverse bacteria. J Bacteriol 2009; 191:4158-65. [PMID: 19395485 PMCID: PMC2698474 DOI: 10.1128/jb.00416-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 04/19/2009] [Indexed: 01/15/2023] Open
Abstract
Dihydroneopterin aldolase (FolB) catalyzes conversion of dihydroneopterin to 6-hydroxymethyldihydropterin (HMDHP) in the classical folate biosynthesis pathway. However, folB genes are missing from the genomes of certain bacteria from the phyla Chloroflexi, Acidobacteria, Firmicutes, Planctomycetes, and Spirochaetes. Almost all of these folB-deficient genomes contain an unusual paralog of the tetrahydrobiopterin synthesis enzyme 6-pyruvoyltetrahydropterin synthase (PTPS) in which a glutamate residue replaces or accompanies the catalytic cysteine. A similar PTPS paralog from the malaria parasite Plasmodium falciparum is known to form HMDHP from dihydroneopterin triphosphate in vitro and has been proposed to provide a bypass to the FolB step in vivo. Bacterial genes encoding PTPS-like proteins with active-site glutamate, cysteine, or both residues were accordingly tested together with the P. falciparum gene for complementation of the Escherichia coli folB mutation. The P. falciparum sequence and bacterial sequences with glutamate or glutamate plus cysteine were active; those with cysteine alone were not. These results demonstrate that PTPS paralogs with an active-site glutamate (designated PTPS-III proteins) can functionally replace FolB in vivo. Recombinant bacterial PTPS-III proteins, like the P. falciparum enzyme, mediated conversion of dihydroneopterin triphosphate to HMDHP, but other PTPS proteins did not. Neither PTPS-III nor other PTPS proteins exhibited significant dihydroneopterin aldolase activity. Phylogenetic analysis indicated that PTPS-III proteins may have arisen independently in various PTPS lineages. Consistent with this possibility, merely introducing a glutamate residue into the active site of a PTPS protein conferred incipient activity in the growth complementation assay, and replacing glutamate with alanine in a PTPS-III protein abolished complementation.
Collapse
Affiliation(s)
- Anne Pribat
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
McCarty RM, Somogyi Á, Bandarian V. Escherichia coli QueD is a 6-carboxy-5,6,7,8-tetrahydropterin synthase. Biochemistry 2009; 48:2301-3. [PMID: 19231875 PMCID: PMC3227869 DOI: 10.1021/bi9001437] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To elucidate the early steps required during biosynthesis of a broad class of 7-deazapurine-containing natural products, we have studied the reaction catalyzed by Escherichia coli QueD, a 6-pyruvoyl-5,6,7,8-tetrahydropterin synthase (PTPS) homologue possibly involved in queuosine biosynthesis. While mammalian PTPS homologues convert 7,8-dihydroneopterin triphosphate (H(2)NTP) to 6-pyruvoyltetrahydropterin (PPH(4)) in biopterin biosynthesis, E. coli QueD catalyzes the conversion of H(2)NTP to 6-carboxy-5,6,7,8-tetrahydropterin (CPH(4)). E. coli QueD can also convert PPH(4) and sepiapterin to CPH(4), allowing a mechanism to be proposed.
Collapse
Affiliation(s)
- Reid M. McCarty
- Department of Biochemistry and Molecular Biophysics, 1041 E. Lowell St., University of Arizona, Tucson, AZ 85721, USA
| | - Árpád Somogyi
- Department of Chemistry, 1041 E. Lowell St., University of Arizona, Tucson, AZ 85721, USA
| | - Vahe Bandarian
- Department of Biochemistry and Molecular Biophysics, 1041 E. Lowell St., University of Arizona, Tucson, AZ 85721, USA
- Department of Chemistry, 1041 E. Lowell St., University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
12
|
Dittrich S, Mitchell SL, Blagborough AM, Wang Q, Wang P, Sims PFG, Hyde JE. An atypical orthologue of 6-pyruvoyltetrahydropterin synthase can provide the missing link in the folate biosynthesis pathway of malaria parasites. Mol Microbiol 2007; 67:609-18. [PMID: 18093090 PMCID: PMC2229834 DOI: 10.1111/j.1365-2958.2007.06073.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Folate metabolism in malaria parasites is a long-standing, clinical target for chemotherapy and prophylaxis. However, despite determination of the complete genome sequence of the lethal species Plasmodium falciparum, the pathway of de novo folate biosynthesis remains incomplete, as no candidate gene for dihydroneopterin aldolase (DHNA) could be identified. This enzyme catalyses the third step in the well-characterized pathway of plants, bacteria, and those eukaryotic microorganisms capable of synthesizing their own folate. Utilizing bioinformatics searches based on both primary and higher protein structures, together with biochemical assays, we demonstrate that P. falciparum cell extracts lack detectable DHNA activity, but that the parasite possesses an unusual orthologue of 6-pyruvoyltetrahydropterin synthase (PTPS), which simultaneously gives rise to two products in comparable amounts, the predominant of which is 6-hydroxymethyl-7,8-dihydropterin, the substrate for the fourth step in folate biosynthesis (catalysed by 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase; PPPK). This can provide a bypass for the missing DHNA activity and thus a means of completing the biosynthetic pathway from GTP to dihydrofolate. Supported by site-directed mutagenesis experiments, we ascribe the novel catalytic activity of the malarial PTPS to a Cys to Glu change at its active site relative to all previously characterized PTPS molecules, including that of the human host.
Collapse
Affiliation(s)
- Sabine Dittrich
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | | | | | | | | | | |
Collapse
|
13
|
Spoonamore JE, Dahlgran AL, Jacobsen NE, Bandarian V. Evolution of new function in the GTP cyclohydrolase II proteins of Streptomyces coelicolor. Biochemistry 2006; 45:12144-55. [PMID: 17002314 PMCID: PMC3227873 DOI: 10.1021/bi061005x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The genome sequence of Streptomyces coelicolor contains three open reading frames (sco1441, sco2687, and sco6655) that encode proteins with significant (>40%) amino acid identity to GTP cyclohydrolase II (GCH II), which catalyzes the committed step in the biosynthesis of riboflavin. The physiological significance of the redundancy of these proteins in S. coelicolor is not known. However, the gene contexts of the three proteins are different, suggesting that they may serve alternate biological niches. Each of the three proteins was overexpressed in Escherichia coli and characterized to determine if their functions are biologically overlapping. As purified, each protein contains 1 molar equiv of zinc/mol of protein and utilizes guanosine 5'-triphosphate (GTP) as substrate. Two of these proteins (SCO 1441 and SCO 2687) produce the canonical product of GCH II, 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate (APy). Remarkably, however, one of the three proteins (SCO 6655) converts GTP to 2-amino-5-formylamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate (FAPy), as shown by UV-visible spectrophotometry, mass spectrometry, and NMR. This activity has been reported for a GTP cyclohydrolase III protein from Methanocaldococcus jannaschii [Graham, D. E., Xu, H., and White, R. H. (2002) Biochemistry 41, 15074-15084], which has no amino acid sequence homology to SCO 6655. Comparison of the sequences of these proteins and mapping onto the structure of the E. coli GCH II protein [Ren, J., Kotaka, M., Lockyer, M., Lamb, H. K., Hawkins, A. R., and Stammers, D. K. (2005) J. Biol. Chem. 280, 36912-36919] allowed identification of a switch residue, Met120, which appears to be responsible for the altered fate of GTP observed with SCO 6655; a Tyr is found in the analogous position of all proteins that have been shown to catalyze the conversion of GTP to APy. The Met120Tyr variant of SCO 6655 acquires the ability to catalyze the conversion of GTP to APy, suggesting a role for Tyr120 in the late phase of the reaction. Our data are consistent with duplication of GCH II in S. coelicolor promoting evolution of a new function. The physiological role(s) of the gene clusters that house GCH II homologues will be discussed.
Collapse
Affiliation(s)
- James E. Spoonamore
- Department of Biochemistry and Molecular Biophysics, University of Arizona, 1041 East Lowell Street, Arizona 85721
| | - Annie L. Dahlgran
- Department of Biochemistry and Molecular Biophysics, University of Arizona, 1041 East Lowell Street, Arizona 85721
| | - Neil E. Jacobsen
- Department of Chemistry, University of Arizona, 1306 East University Avenue, Tucson, Arizona 85721
| | - Vahe Bandarian
- Department of Biochemistry and Molecular Biophysics, University of Arizona, 1041 East Lowell Street, Arizona 85721
- Department of Chemistry, University of Arizona, 1306 East University Avenue, Tucson, Arizona 85721
- Corresponding author. Telephone: (520) 626-0389. Fax: (520) 621-1697. E-mail:
| |
Collapse
|
14
|
Kong JS, Kang JY, Kim HL, Kwon OS, Lee KH, Park YS. 6-Pyruvoyltetrahydropterin synthase orthologs of either a single or dual domain structure are responsible for tetrahydrobiopterin synthesis in bacteria. FEBS Lett 2006; 580:4900-4. [PMID: 16920111 DOI: 10.1016/j.febslet.2006.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 08/02/2006] [Indexed: 11/29/2022]
Abstract
6-Pyruvoyltetrahydropterin synthase (PTPS) catalyzes the second step of tetrahydrobiopterin (BH4) synthesis. We previously identified PTPS orthologs (bPTPS-Is) in bacteria which do not produce BH4. In this study we disrupted the gene encoding bPTPS-I in Synechococcus sp. PCC 7942, which produces BH4-glucoside. The mutant was normal in BH4-glucoside production, demonstrating that bPTPS-I does not participate in BH4 synthesis in vivo and bringing us a new PTPS ortholog (bPTPS-II) of a bimodular polypeptide. The recombinant Synechococcus bPTPS-II was assayed in vitro to show PTPS activity higher than human enzyme. Further computational analysis revealed the presence of mono and bimodular bPTPS-II orthologs mostly in green sulfur bacteria and cyanobacteria, respectively, which are well known for BH4-glycoside production. In summary we found new bacterial PTPS orthologs, having either a single or dual domain structure and being responsible for BH4 synthesis in vivo, thereby disclosing all the bacterial PTPS homologs.
Collapse
Affiliation(s)
- Jin Sun Kong
- Mitochondrial Research Group, School of Biotechnology and Biomedical Science, Inje University, Kimhae 621-749, Republic of Korea
| | | | | | | | | | | |
Collapse
|
15
|
Choi YK, Jun SR, Cha EY, Park JS, Park YS. Sepiapterin reductases from Chlorobium tepidum and Chlorobium limicola catalyze the synthesis of L-threo-tetrahydrobiopterin from 6-pyruvoyltetrahydropterin. FEMS Microbiol Lett 2005; 242:95-9. [PMID: 15621425 DOI: 10.1016/j.femsle.2004.10.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 10/20/2004] [Accepted: 10/25/2004] [Indexed: 11/21/2022] Open
Abstract
The ORF sequences of the gene encoding sepiapterin reductase were cloned from the genomic DNAs of Chlorobium tepidum and Chlorobium limicola, which are known to produce L-threo- and L-erythro-tetrahydrobiopterin (BH4)-N-acetylglucosamine, respectively. The deduced amino acid sequence of C. limicola consists of 241 residues, while C. tepidum SR has three residues more at the C-terminal. The overall protein sequence identity was 87.7%. Both recombinant proteins generated from Escherichia coli were identified to catalyze reduction of diketo compound 6-pyruvoyltetrahydropterin to L-threo-BH4. This result suggests that C. limicola needs an additional enzyme for L-erythro-BH4 synthesis to yield its glycoside. The catalytic activity of Chlorobium SRs also supports the previously proposed mechanism of two consecutive reductions of C1' carbonyl group of 6-pyruvoyltetrahydropterin via isomerization reaction.
Collapse
Affiliation(s)
- Yong Kee Choi
- School of Biotechnology and Biomedical Science, Inje University, Kimhae 621-749, Republic of Korea
| | | | | | | | | |
Collapse
|
16
|
Reader JS, Metzgar D, Schimmel P, de Crécy-Lagard V. Identification of four genes necessary for biosynthesis of the modified nucleoside queuosine. J Biol Chem 2003; 279:6280-5. [PMID: 14660578 DOI: 10.1074/jbc.m310858200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Queuosine (Q) is a hypermodified 7-deazaguanosine nucleoside located in the anticodon wobble position of four amino acid-specific tRNAs. In bacteria, Q is produced de novo from GTP via the 7-deazaguanosine precursor preQ1 (7-aminoethyl 7-deazaguanine) by an uncharacterized pathway. PreQ1 is subsequently transferred to its specific tRNA by a tRNA-guanine transglycosylase (TGT) and then further modified in situ to produce Q. Here we use comparative genomics to implicate four gene families (best exemplified by the B. subtilis operon ykvJKLM) as candidates in the preQ1 biosynthetic pathway. Deletions were constructed in genes for each of the four orthologs in Acinetobacter. High pressure liquid chromatography analysis showed the Q nucleoside was absent from the tRNAs of each of four deletion strains. Electrospray ionization mass spectrometry confirmed the absence of Q in each mutant strain. Finally, introduction of the Bacillus subtilis ykvJKLM operon in trans complemented the Q deficiency of the two deletion mutants that were tested. Thus, the products of these four genes (named queC, -D, -E, and -F) are essential for the Q biosynthetic pathway.
Collapse
Affiliation(s)
- John S Reader
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
17
|
Ziegler I. The pteridine pathway in zebrafish: regulation and specification during the determination of neural crest cell-fate. PIGMENT CELL RESEARCH 2003; 16:172-82. [PMID: 12753383 DOI: 10.1034/j.1600-0749.2003.00044.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This review describes pteridine biosynthesis and its relation to the differentiation of neural crest derivatives in zebrafish. During the embryonic development of these fish, neural crest precursor cells segregate into neural elements, ectomesenchymal cells and pigment cells; the latter then diversifying into melanophores, iridophores and xanthophores. The differentiation of neural cells, melanophores, and xanthophores is coupled closely with the onset of pteridine synthesis which starts from GTP and is regulated through the control of GTP cyclohydrolase I activity. De novo pteridine synthesis in embryos of this species increases during the first 72-h postfertilization, producing H4biopterin, which serves as a cofactor for neurotransmitter synthesis in neural cells and for tyrosine production in melanophores. Thereafter, sepiapterin (6-lactoyl-7,8-dihydropterin) accumulates as yellow pigment in xanthophores, together with 7-oxobiopterin, isoxanthopterin and 2,4,7-trioxopteridine. Sepiapterin is the key intermediate in the formation of 7-oxopteridines, which depends on the availability of enzymes belonging to the xanthine oxidoreductase family. Expression of the GTP cyclohydrolase I gene (gch) is found in neural cells, in melanoblasts and in early xanthophores (xanthoblasts) of early zebrafish embryos but steeply declines in xanthophores by 42-h postfertilization. The mechanism(s) whereby sepiapterin branches off from the GTP-H4biopterin pathway is currently unknown and will require further study. The surge of interest in zebrafish as a model for vertebrate development and its amenability to genetic manipulation provide powerful tools for analysing the functional commitment of neural crest-derived cells and the regulation of pteridine synthesis in mammals.
Collapse
Affiliation(s)
- Irmgard Ziegler
- GSF-Institut für Klinische Molekularbiologie und Tumorgenetik, München, Germany.
| |
Collapse
|