1
|
Tatsuta T. [Basic Research on Bullfrog Egg-derived Sialic Acid-binding Lectin for Cancer Treatment]. YAKUGAKU ZASSHI 2022; 142:1045-1053. [PMID: 36184438 DOI: 10.1248/yakushi.22-00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sialic acid-binding lectin from Rana catesbeiana (cSBL) is a multifunctional protein with both lectin and ribonuclease activity and is, therefore, called a leczyme. It exerts cancer cell-selective antitumor effects on a variety of cancer cells in vitro and in vivo under conditions where no undesired side effects are observed. cSBL elicits antitumor effects by degrading cellular RNA and subsequently inducing apoptosis via a pathway mediated by mitochondria and endoplasmic reticulum stress. Further, it exerts synergistic antitumor effects with other molecules such as tumor necrosis factor-related apoptosis-inducing ligand and pemetrexed. Recent studies have revealed that long-term treatment of cancer cells with cSBL causes significant pleiotropic changes in the expression profiles of several genes, including multiple genes involved in metabolic pathways. Furthermore, cSBL reduces the expression of some cancer-related molecules such as human epidermal growth factor receptors, aldo-keto reductase 1B10, and ATP-binding cassette transporter C2. The information described above is expected to lead to useful applications, such as effective regimens comprising cSBL and other drugs. These findings reveal favorable properties of cSBL as an anticancer drug, which may contribute to the development of new therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Takeo Tatsuta
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
2
|
Discovery of antitumor effects of leczymes. Glycoconj J 2022; 39:157-165. [DOI: 10.1007/s10719-021-10033-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022]
|
3
|
Antitumor Potential of Marine and Freshwater Lectins. Mar Drugs 2019; 18:md18010011. [PMID: 31877692 PMCID: PMC7024344 DOI: 10.3390/md18010011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
Often, even the most effective antineoplastic drugs currently used in clinic do not efficiently allow complete healing due to the related toxicity. The reason for the toxicity lies in the lack of selectivity for cancer cells of the vast majority of anticancer agents. Thus, the need for new potent anticancer compounds characterized by a better toxicological profile is compelling. Lectins belong to a particular class of non-immunogenic glycoproteins and have the characteristics to selectively bind specific sugar sequences on the surface of cells. This property is exploited to exclusively bind cancer cells and exert antitumor activity through the induction of different forms of regulated cell death and the inhibition of cancer cell proliferation. Thanks to the extraordinary biodiversity, marine environments represent a unique source of active natural compounds with anticancer potential. Several marine and freshwater organisms, ranging from the simplest alga to the most complex vertebrate, are amazingly enriched in these proteins. Remarkably, all studies gathered in this review show the impressive anticancer effect of each studied marine lectin combined with irrelevant toxicity in vitro and in vivo and pave the way to design clinical trials to assess the real antineoplastic potential of these promising proteins. It provides a concise and precise description of the experimental results, their interpretation as well as the experimental conclusions that can be drawn.
Collapse
|
4
|
Sialic Acid-Binding Lectin from Bullfrog Eggs Exhibits an Anti-Tumor Effect Against Breast Cancer Cells Including Triple-Negative Phenotype Cells. Molecules 2018; 23:molecules23102714. [PMID: 30347895 PMCID: PMC6222625 DOI: 10.3390/molecules23102714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 01/22/2023] Open
Abstract
Sialic acid-binding lectin from Rana catesbeiana eggs (cSBL) is a multifunctional protein that has lectin and ribonuclease activity. In this study, the anti-tumor activities of cSBL were assessed using a panel of breast cancer cell lines. cSBL suppressed the cell growth of all cancer cell lines tested here at a concentration that is less toxic, or not toxic at all, to normal cells. The growth suppressive effect was attributed to the cancer-selective induction of apoptosis. We assessed the expressions of several key molecules associated with the breast cancer phenotype after cSBL treatment by western blotting. cSBL decreased the expression level of estrogen receptor (ER) α, while it increased the phosphorylation level of p38 mitogen-activated protein kinase (MAPK). cSBL also suppressed the expression of the progesterone receptor (PgR) and human epidermal growth factor receptor type 2 (HER2). Furthermore, it was revealed that cSBL decreases the expression of the epidermal growth factor receptor (EGFR/HER1) in triple-negative breast cancer cells. These results indicate that cSBL induces apoptosis with decreasing ErbB family proteins and may have great potential for breast cancer chemotherapy, particularly in triple-negative phenotype cells.
Collapse
|
5
|
Kulandaivelu K, Mandal AKA. Positive regulation of biochemical parameters by tea polyphenol encapsulated solid lipid nanoparticles at in vitro and in vivo conditions. IET Nanobiotechnol 2016; 10:419-424. [PMID: 27906144 PMCID: PMC8676672 DOI: 10.1049/iet-nbt.2015.0113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 11/20/2022] Open
Abstract
Tea polyphenols (TPPs) comprise preventive and therapeutic potentials against cancer, cardiovascular and neurological disorders. Chemical instability of TPP which leads to low bioavailability is the major constrain to its use as therapeutic agent. The authors prepared TPP encapsulated solid lipid nanoparticles (TPP-SLNs) to increase its stability and bioefficacy. Comparison of Fourier transformed infrared spectra of unloaded SLN, free TPP and TPP-SLN indicated encapsulation of TPP. Sustained release of TPP from TP-SLN was observed. TPP-SLN showed prolonged free radical scavenging activity compared with free TPP indicating protection of TPP. TPP-SLN showed activation of Caspases-9 and -3 cascades in breast cancer cell line (Michigan cancer foundation (MCF)-7) at in vitro conditions. Biochemical parameters were altered in Ehrlich ascetic carcinoma (EAC) cell bearing mice compared with normal (uninduced) mice which were ameliorated significantly by oral feeding of TPP-SLN. Oral administration (pre- and post-treated) of TPP-SLN in EAC bearing mice resulted in significant increase of plasma haemoglobin, glucose, superoxide dismutase and catalase when compared with EAC bearing control mice. Other biochemical parameters (cholesterol, bilirubin, triglyceride, urea, total protein, alanine aminotransferase, alkaline phosphatase and aspertate transaminase were significantly decreased on oral administration (pre- and post-treated) of TPP-SLN in EAC bearing mice.
Collapse
Affiliation(s)
- Karikalan Kulandaivelu
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Abul Kalam Azad Mandal
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
6
|
Yiang GT, Chen JN, Wu TK, Wang HF, Hung YT, Chang WJ, Chen C, Wei CW, Yu YL. Ascorbic acid inhibits TPA-induced HL-60 cell differentiation by decreasing cellular H₂O₂ and ERK phosphorylation. Mol Med Rep 2015; 12:5501-7. [PMID: 26238149 DOI: 10.3892/mmr.2015.4091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 05/27/2015] [Indexed: 11/06/2022] Open
Abstract
Retinoic acid (RA), vitamin D and 12-O‑tetradecanoyl phorbol-13-acetate (TPA) can induce HL-60 cells to differentiate into granulocytes, monocytes and macrophages, respectively. Similar to RA and vitamin D, ascorbic acid also belongs to the vitamin family. High‑dose ascorbic acid (>100 µM) induces HL‑60 cell apoptosis and induces a small fraction of HL‑60 cells to express the granulocyte marker, CD66b. In addition, ascorbic acid exerts an anti‑oxidative stress function. Oxidative stress is required for HL‑60 cell differentiation following treatment with TPA, however, the effect of ascorbic acid on HL‑60 cell differentiation in combination with TPA treatment remains to be fully elucidated. The aim of the present study was to investigate the cellular effects of ascorbic acid treatment on TPA-differentiated HL-60 cells. TPA-differentiated HL-60 cells were used for this investigation, this study and the levels of cellular hydrogen peroxide (H2O2), caspase activity and ERK phosphorylation were determined following combined treatment with TPA and ascorbic acid. The results demonstrated that low‑dose ascorbic acid (5 µM) reduced the cellular levels of H2O2 and inhibited the differentiation of HL‑60 cells into macrophages following treatment with TPA. In addition, the results of the present study further demonstrated that low‑dose ascorbic acid inactivates the ERK phosphorylation pathway, which inhibited HL‑60 cell differentiation following treatment with TPA.
Collapse
Affiliation(s)
- Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan, R.O.C
| | - Jen-Ni Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Tsai-Kun Wu
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 404, Taiwan, R.O.C
| | - Hsueh-Fang Wang
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Yu-Ting Hung
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Wei-Jung Chang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Chinshuh Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Chyou-Wei Wei
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Yung-Luen Yu
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 404, Taiwan, R.O.C
| |
Collapse
|
7
|
Yiang GT, Yu YL, Lin KT, Chen JN, Chang WJ, Wei CW. Acetaminophen induces JNK/p38 signaling and activates the caspase-9-3-dependent cell death pathway in human mesenchymal stem cells. Int J Mol Med 2015; 36:485-92. [PMID: 26096646 PMCID: PMC4501662 DOI: 10.3892/ijmm.2015.2254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 06/05/2015] [Indexed: 02/05/2023] Open
Abstract
Acetaminophen (APAP) is a widely used analgesic and antipyretic drug. Generally, the therapeutic dose of APAP is clinically safe, however, high doses of APAP can cause acute liver and kidney injury. Therefore, the majority of previous studies have focussed on elucidating the mechanisms of APAP-induced hepatotoxicity and nephrotoxicity, in addition to examining ways to treat these conditions in clinical cases. However, few studies have reported APAP-induced intoxication in human stem cells. Stem cells are important in cell proliferation, differentiation and repair during human development, particularly during fetal and child development. At present, whether APAP causes cytotoxic effects in human stem cells remains to be elucidated, therefore, the present study aimed to investigate the cellular effects of APAP treatment in human stem cells. The results of the present study revealed that high-dose APAP induced more marked cytotoxic effects in human mesenchymal stem cells (hMSCs) than in renal tubular cells. In addition, increased levels of hydrogen peroxide (H2O2), phosphorylation of c-Jun N-terminal kinase and p38, and activation of caspase-9/-3 cascade were observed in the APAP-treated hMSCs. By contrast, antioxidants, including vitamin C reduced APAP-induced augmentations in H2O2 levels, but did not inhibit the APAP-induced cytotoxic effects in the hMSCs. These results suggested that high doses of APAP may cause serious damage towards hMSCs.
Collapse
Affiliation(s)
- Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan, R.O.C
| | - Yung-Lung Yu
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Ko-Ting Lin
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Shalu, Taichung 433, Taiwan, R.O.C
| | - Jen-Ni Chen
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Shalu, Taichung 433, Taiwan, R.O.C
| | - Wei-Jung Chang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Chyou-Wei Wei
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Shalu, Taichung 433, Taiwan, R.O.C
| |
Collapse
|
8
|
Yip AK, Chiam KH, Matsudaira P. Traction stress analysis and modeling reveal that amoeboid migration in confined spaces is accompanied by expansive forces and requires the structural integrity of the membrane-cortex interactions. Integr Biol (Camb) 2015; 7:1196-211. [PMID: 26050549 DOI: 10.1039/c4ib00245h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Leukocytes and tumor cells migrate via rapid shape changes in an amoeboid-like manner, distinct from mesenchymal cells such as fibroblasts. However, the mechanisms of how rapid shape changes are caused and how they lead to migration in the amoeboid mode are still unclear. In this study, we confined differentiated human promyelocytic leukemia cells between opposing surfaces of two pieces of polyacrylamide gels and characterized the mechanics of fibronectin-dependent mesenchymal versus fibronectin-independent amoeboid migration. On fibronectin-coated gels, the cells form lamellipodia and migrate mesenchymally. Whereas in the absence of cell-substrate adhesions through fibronectin, the same cells migrate by producing blebs and "chimneying" between the gel sheets. To identify the orientation and to quantify the magnitude of the traction forces, we found by traction force microscopy that expanding blebs push into the gels and generate anchoring stresses whose magnitude increases with decreasing gap size while the resulting migration speed is highest at an intermediate gap size. To understand why there exists such an optimal gap size for migration, we developed a computational model and showed that the chimneying speed depends on both the magnitude of intracellular pressure as well as the distribution of blebs around the cell periphery. The model also predicts that the optimal gap size increases with weakening cell membrane to actin cortex adhesion strength. We verified this prediction experimentally, by weakening the membrane-cortex adhesion strength using the ezrin inhibitor, baicalein. Thus, the chimneying mode of amoeboid migration requires a balance between intracellular pressure and membrane-cortex adhesion strength.
Collapse
Affiliation(s)
- Ai Kia Yip
- A*STAR Bioinformatics Institute, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore.
| | | | | |
Collapse
|
9
|
Chen JN, Yiang GT, Lin YF, Chou PL, Wu TK, Chang WJ, Chen C, Yu YL. Rana catesbeiana ribonuclease induces cell apoptosis via the caspase-9/-3 signaling pathway in human glioblastoma DBTRG, GBM8901 and GBM8401 cell lines. Oncol Lett 2015; 9:2471-2476. [PMID: 26137092 DOI: 10.3892/ol.2015.3117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 02/17/2015] [Indexed: 01/02/2023] Open
Abstract
Human glioblastoma multiforme is one of the most aggressive malignant brain tumor types, and the mean survival time of patients with a brain tumor is <2 years when traditional therapies are administered. Thus, numerous studies have focused on the development of novel treatments for brain tumors. Frog ribonucleases, such as Onconase and Rana catesbeiana ribonuclease (RC-RNase), exert antitumor effects on various tumor cells, including cervical cancer, breast cancer, hepatoma, leukemia, pancreatic cancer and prostate cancer cells. In addition, frog Onconase has been applied as a treatment in clinical trials. However, the antitumor effects of frog ribonucleases on brain tumors are unclear. Previous studies have indicated that RC-RNase demonstrates a decreased cytotoxic effect in normal cells compared with Onconase. Therefore, the present study investigated the ability of RC-RNase to exert antitumor activities on human glioblastoma. It was found that RC-RNase inhibits the growth of the human glioblastoma DBTRG, GBM8901 and GBM8401 cells. In addition, the present study revealed that RC-RNase induces caspase-9/-3 activity and triggers the apoptotic cell death pathway in human glioblastoma cells. Notably, it was also demonstrated that RC-RNase effectively inhibits the growth of human glioblastoma tumors in a nude mouse model. Overall, the present study indicates that RC-RNase may be a potential agent for the treatment of human glioblastoma.
Collapse
Affiliation(s)
- Jen-Ni Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, R.O.C. ; Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan, R.O.C. ; Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan, R.O.C
| | - Yi-Fan Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan, R.O.C
| | - Pei-Lun Chou
- Division of Allergy-Immunology-Rheumatology, Department of Internal Medicine, Saint Mary's Hospital Luodong, Luodong, Yilan 265, Taiwan, R.O.C. ; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Tsai-Kun Wu
- The PhD Program for Cancer Biology and Drug Discovery, China Medical University, Taichung 404, Taiwan, R.O.C. ; Division of Renal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung 435, Taiwan, R.O.C
| | - Wei-Jung Chang
- Graduate Institute of Cancer Biology, Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Chinshuh Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Yung-Luen Yu
- The PhD Program for Cancer Biology and Drug Discovery, China Medical University, Taichung 404, Taiwan, R.O.C. ; Graduate Institute of Cancer Biology, Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan, R.O.C. ; Department of Biotechnology, Asia University, Taichung 413, Taiwan, R.O.C
| |
Collapse
|
10
|
Yiang GT, Chou PL, Hung YT, Chen JN, Chang WJ, Yu YL, Wei CW. Vitamin C enhances anticancer activity in methotrexate‑treated Hep3B hepatocellular carcinoma cells. Oncol Rep 2014; 32:1057-63. [PMID: 24969544 PMCID: PMC4121419 DOI: 10.3892/or.2014.3289] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/25/2014] [Indexed: 02/06/2023] Open
Abstract
Methotrexate (MTX) has been widely used for rheumatoid arthritis therapy for a long time. MTX is also used as an anticancer drug for various tumors. However, many studies have shown that high-dose MTX treatment for cancer therapy may cause liver and renal damage. Alhough the mechanisms involved in MTX-induced liver and renal damage require further research, many studies have indicated that MTX-induced cytotoxicity is associated with increases in oxidative stress and caspase activation. In order to reduce MTX-induced side-effects and increase anticancer efficiency, currently, combination treatments of low-dose MTX and other anticancer drugs are considered and applied for various tumor treatments. The present study showed that MTX induces increases in H2O2 levels and caspase-9/-3 activation leading to cell death in hepatocellular carcinoma Hep3B cells. Importantly, this study is the first to demonstrate that vitamin C can efficiently aid low-dose MTX in inducing cell death in Hep3B cells. Therefore, the present study provides a possible powerful therapeutic method for tumors using a combined treatment of vitamin C and low-dose MTX.
Collapse
Affiliation(s)
- Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan, R.O.C
| | - Pei-Lun Chou
- Division of Allergy-Immunology-Rheumatology, Department of Internal Medicine, Saint Mary's Hospital Luodong, Yilan 265, Taiwan, R.O.C
| | - Yu-Ting Hung
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Shalu, Taichung 433, Taiwan, R.O.C
| | - Jen-Ni Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Wei-Jung Chang
- Graduate Institute of Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Yung-Luen Yu
- Graduate Institute of Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Chyou-Wei Wei
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Shalu, Taichung 433, Taiwan, R.O.C
| |
Collapse
|
11
|
Tatsuta T, Sugawara S, Takahashi K, Ogawa Y, Hosono M, Nitta K. Cancer-selective induction of apoptosis by leczyme. Front Oncol 2014; 4:139. [PMID: 24926439 PMCID: PMC4044787 DOI: 10.3389/fonc.2014.00139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/21/2014] [Indexed: 11/24/2022] Open
Abstract
Sialic acid-binding lectin (SBL) is a multi-functional protein that is isolated from oocytes of Rana catesbeiana. It has both lectin and ribonuclease (enzyme) properties, and therefore is called leczyme. We examined the anti-tumor effects of SBL and discovered that SBL has potential as a new type of anti-cancer drug. SBL causes a cancer-selective induction of apoptosis by multiple signaling pathways whereby RNA is its target. It is suggested that the mitochondrial pathway and endoplasmic reticulum stress-mediated pathway participate in SBL-induced signaling. The synergistic anti-tumor effects with other molecules, such as tumor necrosis factor-related apoptosis ligand and interferon γ, have been reported. In this study, we summarize the effects of SBL and focus on its cancer-selective apoptotic properties. In addition, we present a possible explanation for its cancer specificity.
Collapse
Affiliation(s)
- Takeo Tatsuta
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University , Sendai , Japan
| | - Shigeki Sugawara
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University , Sendai , Japan
| | - Kohta Takahashi
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University , Sendai , Japan
| | - Yukiko Ogawa
- Divisions of Functional Morphology and Microbiology, Department of Pharmacy, Faculty of Pharmaceutical Science, Nagasaki International University , Sasebo , Japan
| | - Masahiro Hosono
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University , Sendai , Japan
| | - Kazuo Nitta
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University , Sendai , Japan
| |
Collapse
|
12
|
Yiang GT, Tsai HF, Chen JR, Chou PL, Wu TK, Liu HC, Chang WJ, Liu LC, Tseng HH, Yu YL. RC-6 ribonuclease induces caspase activation, cellular senescence and neuron-like morphology in NT2 embryonal carcinoma cells. Oncol Rep 2014; 31:1738-44. [PMID: 24535104 DOI: 10.3892/or.2014.3023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/25/2013] [Indexed: 11/05/2022] Open
Abstract
Frog ribonucleases have been demonstrated to have anticancer activities. However, whether RC-6 ribonuclease exerts anticancer activity on human embryonal carcinoma cells remains unclear. In the present study, RC-6 induced cytotoxicity in NT2 cells (a human embryonal carcinoma cell line) and our studies showed that RC-6 can exert anticancer effects and induce caspase-9 and -3 activities. Moreover, to date, there is no evidence that frog ribonuclease-induced cytotoxicity effects are related to cellular senescence. Therefore, our studies showed that RC-6 can increase p16 and p21 protein levels and induce cellular senescence in NT2 cells. Notably, similar to retinoic acid-differentiated NT2 cells, neuron-like morphology was found on some remaining live cells after RC-6 treatment. In conclusion, our study is the first to demonstrate that RC-6 can induce cytotoxic effects, caspase-9/-3 activities, cellular senescence and neuron-like morphology in NT2 cells.
Collapse
Affiliation(s)
- Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan, R.O.C
| | - Hsiu-Feng Tsai
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan, R.O.C
| | - Jer-Rong Chen
- Department of Surgery, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Pei-Lun Chou
- Division of Allergy-Immunology-Rheumatology, Department of Internal Medicine, Saint Mary's Hospital Luodong, Yilan 265, Taiwan, R.O.C
| | - Tsai-Kun Wu
- Division of Renal Medicine, Tungs' Taichung Metroharbor Hospital, Taichung 435, Taiwan, R.O.C
| | - Hsiao-Chun Liu
- Department of Nursing, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan, R.O.C
| | - Wei-Jung Chang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Liang-Chih Liu
- Department of Surgery, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Hsu-Hung Tseng
- Division of General Surgery, Taichung Hospital, Ministry of Health and Welfare, Taichung 403, Taiwan, R.O.C
| | - Yung-Luen Yu
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
| |
Collapse
|
13
|
Yiang GT, Chen YH, Chou PL, Chang WJ, Wei CW, Yu YL. The NS3 protease and helicase domains of Japanese encephalitis virus trigger cell death via caspase‑dependent and ‑independent pathways. Mol Med Rep 2013; 7:826-30. [PMID: 23291778 DOI: 10.3892/mmr.2013.1261] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/04/2012] [Indexed: 11/06/2022] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito‑borne flavivirus, causes acute encephalitis and nervous damage. Previous studies have demonstrated that JEV induces apoptosis in infected cells. However, to date the mechanisms of JEV‑induced apoptosis are unclear. In order to identify the viral proteins associated with JEV‑induced apoptosis, pEGFP‑non‑structural protein 3 (NS3) 1‑619 (expressing the JEV NS3 intact protein, including the protease and helicase domains), pEGFP‑NS3 1‑180 (expressing the protease domain) and pEGFP‑NS3 163‑619 (expressing the helicase domain) were transfected into target cells to study cell death. Results demonstrate that the JEV NS3 intact protein and protease and helicase domains induce cell death. In addition, cell death was identified to be significantly higher in cells transfected with the NS3 protease domain compared with the intact protein and helicase domain. Caspase activation was also analyzed in the current study. NS3 intact protein and NS3 protease and helicase domains activated caspase‑9/‑3‑dependent and ‑independent pathways. However, caspase‑8 activity was not found to be significantly different in NS3‑transfected cells compared with control. In summary, the present study demonstrates that the NS3 helicase and protease domains of JEV activate caspase‑9/‑3‑dependent and ‑independent cascades and trigger cell death.
Collapse
Affiliation(s)
- Giou-Teng Yiang
- Department of Emergency Medicine, Tzu Chi University, Hualien 970, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
14
|
Lee YH, Wei CW, Wang JJ, Chiou CT. Rana catesbeiana ribonuclease inhibits Japanese encephalitis virus (JEV) replication and enhances apoptosis of JEV-infected BHK-21 cells. Antiviral Res 2011; 89:193-8. [DOI: 10.1016/j.antiviral.2011.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/20/2010] [Accepted: 01/10/2011] [Indexed: 02/03/2023]
|
15
|
D'Ambrosio MV, Vale RD. A whole genome RNAi screen of Drosophila S2 cell spreading performed using automated computational image analysis. ACTA ACUST UNITED AC 2010; 191:471-8. [PMID: 21041442 PMCID: PMC3003316 DOI: 10.1083/jcb.201003135] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An automated, image-based RNAi screen for cell shape reveals roles for membrane secretion factors in cell spreading. Recent technological advances in microscopy have enabled cell-based whole genome screens, but the analysis of the vast amount of image data generated by such screens usually proves to be rate limiting. In this study, we performed a whole genome RNA interference (RNAi) screen to uncover genes that affect spreading of Drosophila melanogaster S2 cells using several computational methods for analyzing the image data in an automated manner. Expected genes in the Scar-Arp2/3 actin nucleation pathway were identified as well as casein kinase I, which had a similar morphological RNAi signature. A distinct nonspreading morphological phenotype was identified for genes involved in membrane secretion or synthesis. In this group, we identified a new secretory peptide and investigated the functions of two poorly characterized endoplasmic reticulum proteins that have roles in secretion. Thus, this genome-wide screen succeeded in identifying known and unexpected proteins that are important for cell spreading, and the computational tools developed in this study should prove useful for other types of automated whole genome screens.
Collapse
Affiliation(s)
- Michael V D'Ambrosio
- The Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
16
|
Yiang GT. RC6 Exerts an Anticancer Effect Through the Caspase-dependent Apoptosis Pathway. Tzu Chi Med J 2010. [DOI: 10.1016/s1016-3190(10)60070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
17
|
Yiang GT, Yu YL, Hu SC, Chen MHC, Wang JJ, Wei CW. PKC and MEK pathways inhibit caspase-9/-3-mediated cytotoxicity in differentiated cells. FEBS Lett 2008; 582:881-5. [PMID: 18282472 DOI: 10.1016/j.febslet.2008.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 01/31/2008] [Accepted: 02/06/2008] [Indexed: 10/22/2022]
Abstract
Many studies have indicated that differentiated cells inhibit drug-induced cytotoxicity but undifferentiated cells do not, though the mechanisms are unclear. Currently, HL-60 cells are induced to differentiate into macrophage-like cells with Phorbol-12-myristate-13-acetate (TPA) treatment (TPA-differentiated cells). Our study shows that caspase-9/-3-mediated cytotoxicity can be induced in undifferentiated HL-60 cells but not in TPA-differentiated HL-60 cells. However, caspase-9/-3-mediated cytotoxicity can be induced in TPA-differentiated cells if they are pretreated with a protein kinase C (PKC) or a mitogen activated protein kinase (MEK) inhibitor. Taken together, this study demonstrates that TPA-differentiated HL-60 cells inhibit caspases-9/-3-mediated cytotoxicity through the PKC and MEK signaling pathways.
Collapse
Affiliation(s)
- Giou-Teng Yiang
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| | | | | | | | | | | |
Collapse
|
18
|
Tang CHA, Hu CCA, Wei CW, Wang JJ. Synergism of Rana catesbeiana ribonuclease and IFN-gamma triggers distinct death machineries in different human cancer cells. FEBS Lett 2005; 579:265-70. [PMID: 15620724 DOI: 10.1016/j.febslet.2004.11.086] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2004] [Revised: 11/22/2004] [Accepted: 11/24/2004] [Indexed: 10/26/2022]
Abstract
Rana catesbeiana ribonuclease (RC-RNase) possesses tumor-specific cytotoxicity, which can be synergized by IFN-gamma. However, it is unclear how RC-RNase and RC-RNase/IFN-gamma induce cell death. In this study, we use substrate cleavage assays to systematically investigate RC-RNase- and RC-RNase/IFN-gamma-induced caspase activation in HL-60, MCF-7, and SK-Hep-1 cells. We find that RC-RNase and RC-RNase/IFN-gamma induce mitochondria-mediated caspase activation in HL-60 and MCF-7 cells but not in SK-Hep-1 cells, although death of SK-Hep-1 cells is closely related to mitochondrial disruptions. Our findings provide evidence that RC-RNase and RC-RNase/IFN-gamma can kill different cancer cells by distinct mechanisms. Compared with onconase, RC-RNase seems to harbor a more specific anti-cancer activity.
Collapse
|
19
|
Sica F, Di Fiore A, Merlino A, Mazzarella L. Structure and Stability of the Non-covalent Swapped Dimer of Bovine Seminal Ribonuclease. J Biol Chem 2004; 279:36753-60. [PMID: 15192098 DOI: 10.1074/jbc.m405655200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A growing number of pancreatic-type ribonucleases (RNases) present cytotoxic activity against malignant cells. The cytoxicity of these enzymes is related to their resistance to the ribonuclease protein inhibitor (RI). In particular, bovine seminal ribonuclease (BS-RNase) is toxic to tumor cells both in vitro and in vivo. BS-RNase is a covalent dimer with two intersubunit disulfide bridges between Cys(31) of one chain and Cys(32) of the second and vice versa. The native enzyme is an equilibrium mixture of two isomers, MxM and M=M. In the former the two subunits swap their N-terminal helices. The cytotoxic action is a peculiar property of MxM. In the reducing environment of cytosol, M=M dissociates into monomers, which are strongly inhibited by RI, whereas MxM remains as a non-covalent dimer (NCD), which evades RI. We have solved the crystal structure of NCD, carboxyamidomethylated at residues Cys(31) and Cys(32) (NCD-CAM), in a complex with 2'-deoxycitidylyl(3'-5')-2'-deoxyadenosine. The molecule reveals a quaternary structural organization much closer to MxM than to other N-terminal-swapped non-covalent dimeric forms of RNases. Model building of the complexes between these non-covalent dimers and RI reveals that NCD-CAM is the only dimer equipped with a quaternary organization capable of interfering seriously with the binding of the inhibitor. Moreover, a detailed comparative structural analysis of the dimers has highlighted the residues, which are mostly important in driving the quaternary structure toward that found in NCD-CAM.
Collapse
Affiliation(s)
- Filomena Sica
- Dipartimento di Chimica, Università degli Studi di Napoli Federico II, Via Cynthia, 80126 Naples, Italy
| | | | | | | |
Collapse
|