1
|
Permana D, Minamihata K, Goto M, Kamiya N. Strategies for Making Multimeric and Polymeric Bifunctional Protein Conjugates and Their Applications as Bioanalytical Tools. ANAL SCI 2021; 37:425-437. [PMID: 33455962 DOI: 10.2116/analsci.20scr07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Enzymes play a central role in the detection of target molecules in biotechnological fields. Most probes used in detection are bifunctional proteins comprising enzymes and binding proteins conjugated by chemical reactions. To create a highly sensitive detection probe, it is essential to increase the enzyme-to-binding protein ratio in the probe. However, if the chemical reactions required to prepare the probe are insufficiently site-specific, the detection probe may lose functionality. Genetic modifications and enzyme-mediated post-translational modifications (PTMs) can ensure the site-specific conjugation of proteins. They are therefore promising strategies for the production of detection probes with high enzyme contents, i.e., polymeric bifunctional proteins. Herein, we review recent advances in the preparation of bifunctional protein conjugates and polymeric bifunctional protein conjugates for detection. We have summarized research on genetically fused proteins and enzymatically prepared polymeric bifunctional proteins, and will discuss the potential use of protein polymers in various detection applications.
Collapse
Affiliation(s)
- Dani Permana
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University.,Research Unit for Clean Technology, Indonesian Institute of Sciences (LIPI), Kampus LIPI Bandung
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University.,Division of Biotechnology, Center for Future Chemistry, Kyushu University
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University.,Division of Biotechnology, Center for Future Chemistry, Kyushu University
| |
Collapse
|
2
|
A Fast and Sensitive Luciferase-based Assay for Antibody Engineering and Design of Chimeric Antigen Receptors. Sci Rep 2020; 10:2318. [PMID: 32047180 PMCID: PMC7012821 DOI: 10.1038/s41598-020-59099-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/15/2020] [Indexed: 12/27/2022] Open
Abstract
Success of immunotherapeutic approaches using genetically engineered antibodies and T cells modified with chimeric antigen receptors (CARs) depends, among other things, on the selection of antigen binding domains with desirable expression and binding characteristics. We developed a luciferase-based assay, termed Malibu-Glo Assay, which streamlines the process of optimization of an antigen binding domain with desirable properties and allows the sensitive detection of tumor antigens. The assay involves a recombinant immunoconjugate, termed Malibu-Glo reagent, comprising an immunoglobulin or a non-immunoglobulin based antigen binding domain genetically linked to a marine luciferase. Malibu-Glo reagent can be conveniently produced in mammalian cells as a secreted protein that retains the functional activity of both the antigen binding domain and the luciferase. Moreover, crude supernatant containing the secreted Malibu-Glo reagent can directly be used for detection of cell surface antigens obviating the laborious steps of protein purification and labeling. We further demonstrate the utility of Malibu-Glo assay for the selection of optimal single chain fragment variables (scFvs) with desired affinity characteristics for incorporation into CARs. In summary, Malibu-Glo assay is a fast, simple, sensitive, specific and economical assay for antigen detection with multiple applications in the fields of antibody engineering, antibody humanization and CAR-T cell therapy.
Collapse
|
3
|
Anderson GP, Shriver-Lake LC, Walper SA, Ashford L, Zabetakis D, Liu JL, Breger JC, Brozozog Lee PA, Goldman ER. Genetic Fusion of an Anti-BclA Single-Domain Antibody with Beta Galactosidase. Antibodies (Basel) 2018; 7:antib7040036. [PMID: 31544886 PMCID: PMC6698959 DOI: 10.3390/antib7040036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023] Open
Abstract
The Bacillus collagen-like protein of anthracis (BclA), found in Bacillus anthracis spores, is an attractive target for immunoassays. Previously, using phage display we had selected llama-derived single-domain antibodies that bound to B. anthracis spore proteins including BclA. Single-domain antibodies (sdAbs), the recombinantly expressed heavy domains from the unique heavy-chain-only antibodies found in camelids, provide stable and well-expressed binding elements with excellent affinity. In addition, sdAbs offer the important advantage that they can be tailored for specific applications through protein engineering. A fusion of a BclA targeting sdAb with the enzyme Beta galactosidase (β-gal) would enable highly sensitive immunoassays with no need for a secondary reagent. First, we evaluated five anti-BclA sdAbs, including four that had been previously identified but not characterized. Each was tested to determine its binding affinity, melting temperature, producibility, and ability to function as both capture and reporter in sandwich assays for BclA. The sdAb with the best combination of properties was constructed as a fusion with β-gal and shown to enable sensitive detection. This fusion has the potential to be incorporated into highly sensitive assays for the detection of anthrax spores.
Collapse
Affiliation(s)
- George P Anderson
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Lisa C Shriver-Lake
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Scott A Walper
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Lauryn Ashford
- The Washington Center for Internships and Academic Seminars, 1333 16th Street N.W., Washington, DC 20036, USA.
| | - Dan Zabetakis
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Jinny L Liu
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Joyce C Breger
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | | | - Ellen R Goldman
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| |
Collapse
|
4
|
Iwai H, Kojima-Misaizu M, Dong J, Ueda H. Creation of a Ligand-Dependent Enzyme by Fusing Circularly Permuted Antibody Variable Region Domains. Bioconjug Chem 2016; 27:868-73. [DOI: 10.1021/acs.bioconjchem.6b00040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hiroto Iwai
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Miki Kojima-Misaizu
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jinhua Dong
- Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroshi Ueda
- Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
5
|
Arévalo-Herrera M, Vallejo AF, Rubiano K, Solarte Y, Marin C, Castellanos A, Céspedes N, Herrera S. Recombinant Pvs48/45 antigen expressed in E. coli generates antibodies that block malaria transmission in Anopheles albimanus mosquitoes. PLoS One 2015; 10:e0119335. [PMID: 25775466 PMCID: PMC4361554 DOI: 10.1371/journal.pone.0119335] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 01/23/2015] [Indexed: 11/23/2022] Open
Abstract
Transmission of malaria parasites from humans to Anopheles mosquitoes can be inhibited by specific antibodies elicited during malaria infection, which target surface Plasmodium gametocyte/gamete proteins. Some of these proteins may have potential for vaccine development. Pvs48/45 is a P. vivax gametocyte surface antigen orthologous to Pfs48/45, which may play a role during parasite fertilization and thus has potential for transmission blocking (TB) activity. Here we describe the expression of a recombinant Pvs48/45 protein expressed in Escherichia coli as a ∼60kDa construct which we tested for antigenicity using human sera and for its immunogenicity and transmission blocking activity of specific anti-mouse and anti-monkey Pvs48/45 antibodies. The protein reacted with sera of individuals from malaria-endemic areas and in addition induced specific IgG antibody responses in BALB/c mice and Aotus l. griseimembra monkeys. Sera from both immunized animal species recognized native P. vivax protein in Western blot (WB) and immunofluorescence assays. Moreover, sera from immunized mice and monkeys produced significant inhibition of parasite transmission to An. Albimanus mosquitoes as shown by membrane feeding assays. Results indicate the presence of reactive epitopes in the Pvs48/45 recombinant product that induce antibodies with TB activity. Further testing of this protein is ongoing to determine its vaccine potential.
Collapse
Affiliation(s)
- Myriam Arévalo-Herrera
- Malaria Vaccine and Drug Development Center, Cali, Colombia
- School of Health, Universidad del Valle, Cali, Colombia
- * E-mail:
| | | | - Kelly Rubiano
- Malaria Vaccine and Drug Development Center, Cali, Colombia
- Caucaseco Scientific Research Center, Cali, Colombia
| | - Yezid Solarte
- School of Health, Universidad del Valle, Cali, Colombia
| | | | | | - Nora Céspedes
- Malaria Vaccine and Drug Development Center, Cali, Colombia
| | - Sócrates Herrera
- Malaria Vaccine and Drug Development Center, Cali, Colombia
- Caucaseco Scientific Research Center, Cali, Colombia
- Primates Center Foundation, Cali, Colombia
| |
Collapse
|