1
|
On the mechanism of ubiquinone mediated photocurrent generation by a reaction center based photocathode. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1925-1934. [DOI: 10.1016/j.bbabio.2016.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/31/2016] [Accepted: 09/24/2016] [Indexed: 11/19/2022]
|
2
|
Faries KM, Kressel LL, Dylla NP, Wander MJ, Hanson DK, Holten D, Laible PD, Kirmaier C. Optimizing multi-step B-side charge separation in photosynthetic reaction centers from Rhodobacter capsulatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:150-159. [DOI: 10.1016/j.bbabio.2015.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/20/2015] [Accepted: 11/30/2015] [Indexed: 11/16/2022]
|
3
|
Kressel L, Faries KM, Wander MJ, Zogzas CE, Mejdrich RJ, Hanson DK, Holten D, Laible PD, Kirmaier C. High yield of secondary B-side electron transfer in mutant Rhodobacter capsulatus reaction centers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1892-1903. [DOI: 10.1016/j.bbabio.2014.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/22/2014] [Accepted: 07/26/2014] [Indexed: 10/25/2022]
|
4
|
Faries KM, Kressel LL, Wander MJ, Holten D, Laible PD, Kirmaier C, Hanson DK. High throughput engineering to revitalize a vestigial electron transfer pathway in bacterial photosynthetic reaction centers. J Biol Chem 2012; 287:8507-14. [PMID: 22247556 DOI: 10.1074/jbc.m111.326447] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosynthetic reaction centers convert light energy into chemical energy in a series of transmembrane electron transfer reactions, each with near 100% yield. The structures of reaction centers reveal two symmetry-related branches of cofactors (denoted A and B) that are functionally asymmetric; purple bacterial reaction centers use the A pathway exclusively. Previously, site-specific mutagenesis has yielded reaction centers capable of transmembrane charge separation solely via the B branch cofactors, but the best overall electron transfer yields are still low. In an attempt to better realize the architectural and energetic factors that underlie the directionality and yields of electron transfer, sites within the protein-cofactor complex were targeted in a directed molecular evolution strategy that implements streamlined mutagenesis and high throughput spectroscopic screening. The polycistronic approach enables efficient construction and expression of a large number of variants of a heteroligomeric complex that has two intimately regulated subunits with high sequence similarity, common features of many prokaryotic and eukaryotic transmembrane protein assemblies. The strategy has succeeded in the discovery of several mutant reaction centers with increased efficiency of the B pathway; they carry multiple substitutions that have not been explored or linked using traditional approaches. This work expands our understanding of the structure-function relationships that dictate the efficiency of biological energy-conversion reactions, concepts that will aid the design of bio-inspired assemblies capable of both efficient charge separation and charge stabilization.
Collapse
Affiliation(s)
- Kaitlyn M Faries
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Rutherford AW, Osyczka A, Rappaport F. Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological electron transfer: redox tuning to survive life in O(2). FEBS Lett 2012; 586:603-16. [PMID: 22251618 DOI: 10.1016/j.febslet.2011.12.039] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/15/2011] [Accepted: 12/24/2011] [Indexed: 12/21/2022]
Abstract
The energy-converting redox enzymes perform productive reactions efficiently despite the involvement of high energy intermediates in their catalytic cycles. This is achieved by kinetic control: with forward reactions being faster than competing, energy-wasteful reactions. This requires appropriate cofactor spacing, driving forces and reorganizational energies. These features evolved in ancestral enzymes in a low O(2) environment. When O(2) appeared, energy-converting enzymes had to deal with its troublesome chemistry. Various protective mechanisms duly evolved that are not directly related to the enzymes' principal redox roles. These protective mechanisms involve fine-tuning of reduction potentials, switching of pathways and the use of short circuits, back-reactions and side-paths, all of which compromise efficiency. This energetic loss is worth it since it minimises damage from reactive derivatives of O(2) and thus gives the organism a better chance of survival. We examine photosynthetic reaction centres, bc(1) and b(6)f complexes from this view point. In particular, the evolution of the heterodimeric PSI from its homodimeric ancestors is explained as providing a protective back-reaction pathway. This "sacrifice-of-efficiency-for-protection" concept should be generally applicable to bioenergetic enzymes in aerobic environments.
Collapse
|
6
|
Leonova MM, Fufina TY, Vasilieva LG, Shuvalov VA. Structure-function investigations of bacterial photosynthetic reaction centers. BIOCHEMISTRY (MOSCOW) 2012; 76:1465-83. [DOI: 10.1134/s0006297911130074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Frolov D, Marsh M, Crouch LI, Fyfe PK, Robert B, van Grondelle R, Hadfield A, Jones MR. Structural and Spectroscopic Consequences of Hexacoordination of a Bacteriochlorophyll Cofactor in the Rhodobacter sphaeroides Reaction Center,. Biochemistry 2010; 49:1882-92. [DOI: 10.1021/bi901922t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dmitrij Frolov
- Department of Physics and Astronomy, Free University of Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - May Marsh
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Lucy I. Crouch
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Paul K. Fyfe
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Bruno Robert
- Service de Biophysique des Fonctions Membranaires, DBJC/CEA and URA 2096/CNRS, CEA-Saclay, F-91191 Gif-sur-Yvette, France
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Free University of Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Andrea Hadfield
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Michael R. Jones
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
8
|
Leonova MM, Vasilieva LG, Khatypov RA, Boichenko VA, Shuvalov VA. Properties of mutant reaction centers of Rhodobacter sphaeroides with substitutions of histidine L153, the axial Mg2+ ligand of bacteriochlorophyll BA. BIOCHEMISTRY (MOSCOW) 2009; 74:452-60. [DOI: 10.1134/s0006297909040142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Williams JC, Allen JP. Directed Modification of Reaction Centers from Purple Bacteria. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Jones MR. Structural Plasticity of Reaction Centers from Purple Bacteria. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Nabedryk E, Breton J. Coupling of electron transfer to proton uptake at the QB site of the bacterial reaction center: A perspective from FTIR difference spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1229-48. [DOI: 10.1016/j.bbabio.2008.06.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/26/2008] [Accepted: 06/27/2008] [Indexed: 01/09/2023]
|
12
|
Pawlowicz NP, van Grondelle R, van Stokkum IHM, Breton J, Jones MR, Groot ML. Identification of the first steps in charge separation in bacterial photosynthetic reaction centers of Rhodobacter sphaeroides by ultrafast mid-infrared spectroscopy: electron transfer and protein dynamics. Biophys J 2008; 95:1268-84. [PMID: 18424493 PMCID: PMC2479572 DOI: 10.1529/biophysj.108.130880] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 03/31/2008] [Indexed: 01/08/2023] Open
Abstract
Time-resolved visible pump/mid-infrared (mid-IR) probe spectroscopy in the region between 1600 and 1800 cm(-1) was used to investigate electron transfer, radical pair relaxation, and protein relaxation at room temperature in the Rhodobacter sphaeroides reaction center (RC). Wild-type RCs both with and without the quinone electron acceptor Q(A), were excited at 600 nm (nonselective excitation), 800 nm (direct excitation of the monomeric bacteriochlorophyll (BChl) cofactors), and 860 nm (direct excitation of the dimer of primary donor (P) BChls (P(L)/P(M))). The region between 1600 and 1800 cm(-1) encompasses absorption changes associated with carbonyl (C=O) stretch vibrational modes of the cofactors and protein. After photoexcitation of the RC the primary electron donor P excited singlet state (P*) decayed on a timescale of 3.7 ps to the state P(+)B(L)(-) (where B(L) is the accessory BChl electron acceptor). This is the first report of the mid-IR absorption spectrum of P(+)B(L)(-); the difference spectrum indicates that the 9-keto C=O stretch of B(L) is located around 1670-1680 cm(-1). After subsequent electron transfer to the bacteriopheophytin H(L) in approximately 1 ps, the state P(+)H(L)(-) was formed. A sequential analysis and simultaneous target analysis of the data showed a relaxation of the P(+)H(L)(-) radical pair on the approximately 20 ps timescale, accompanied by a change in the relative ratio of the P(L)(+) and P(M)(+) bands and by a minor change in the band amplitude at 1640 cm(-1) that may be tentatively ascribed to the response of an amide C=O to the radical pair formation. We conclude that the drop in free energy associated with the relaxation of P(+)H(L)(-) is due to an increased localization of the electron hole on the P(L) half of the dimer and a further consequence is a reduction in the electrical field causing the Stark shift of one or more amide C=O oscillators.
Collapse
Affiliation(s)
- Natalia P Pawlowicz
- Faculty of Sciences, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
13
|
Fyfe PK, Potter JA, Cheng J, Williams CM, Watson AJ, Jones MR. Structural responses to cavity-creating mutations in an integral membrane protein. Biochemistry 2007; 46:10461-72. [PMID: 17711306 DOI: 10.1021/bi701085w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
X-ray crystallography has been used to investigate the extent of structural changes in mutants of the purple bacterial reaction center that assemble without a particular ubiquinone or bacteriopheophytin cofactor. In the case of the bacteriopheophytin-exclusion mutant, in which Ala M149 was replaced by Trp (AM149W), the quality of protein crystals was improved over that seen in previous work by minimizing illumination, time, and temperature during the purification protocol and carrying out crystal growth at 4 degrees C after overnight incubation at 18 degrees C. The X-ray crystal structure of the AM149W mutant, determined to a resolution of 2.2 A, showed very little change in protein structure despite the absence of the bacteriopheophytin cofactor. Changes in the electron density map in the region of the cofactor binding site could be accounted for by changes in the conformation of the phytol side chains of adjacent cofactors and the presence of a buried water molecule. Residues lining the vacated binding pocket did not show any significant changes in conformation or increases in disorder as assessed through crystallographic atomic displacement parameters (B-factors). The X-ray crystal structure of a reaction center lacking the primary acceptor ubiquinone through mutation of Ala M248 to Trp (AM248W) was also determined, to a resolution of 2.8 A. Again, despite the absence of an internal cofactor only very minor changes in protein structure were observed. This is in contrast to a previous report on a reaction center lacking this ubiquinone through mutation of Ala M260 to Trp (AM260W) where more extensive changes in structure were apparent. All three mutant reaction centers showed a decrease in thermal stability when housed in the native membrane, but this decrease was smaller for the AM260W mutant than the AM248W complex, possibly due to beneficial effects of the observed changes in protein structure. The lack of major changes in protein structure despite the absence of large internal cofactors is discussed in terms of protein rigidity, the protective influence of the adaptable membrane environment, and the role of small molecules and ions as packing material in the internal cavities created by this type of mutation.
Collapse
Affiliation(s)
- Paul K Fyfe
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | | | | | | | | | | |
Collapse
|
14
|
Breton J, Lavergne J, Wakeham MC, Nabedryk E, Jones MR. The Unusually Strong Hydrogen Bond between the Carbonyl of QAand His M219 in theRhodobacter sphaeroidesReaction Center Is Not Essential for Efficient Electron Transfer from QA-to QB. Biochemistry 2007; 46:6468-76. [PMID: 17497939 DOI: 10.1021/bi700057f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In native reaction centers (RCs) from photosynthetic purple bacteria the primary quinone (QA) and the secondary quinone (QB) are interconnected via a specific His-Fe-His bridge. In Rhodobacter sphaeroides RCs the C4=O carbonyl of QA forms a very strong hydrogen bond with the protonated Npi of His M219, and the Ntau of this residue is in turn coordinated to the non-heme iron atom. The second carbonyl of QA is engaged in a much weaker hydrogen bond with the backbone N-H of Ala M260. In previous work, a Trp side chain was introduced by site-directed mutagenesis at the M260 position in the RC of Rb. sphaeroides, resulting in a complex that is completely devoid of QA and therefore nonfunctional. A photochemically competent derivative of the AM260W mutant was isolated that contains a Cys side chain at the M260 position (denoted AM260(W-->C)). In the present work, the interactions between the carbonyl groups of QA and the protein in the AM260(W-->C) suppressor mutant have been characterized by light-induced FTIR difference spectroscopy of the photoreduction of QA. The QA-/QA difference spectrum demonstrates that the strong interaction between the C4=O carbonyl of QA and His M219 is lost in the mutant, and the coupled CO and CC modes of the QA- semiquinone are also strongly perturbed. In parallel, a band assigned to the perturbation of the C5-Ntau mode of His M219 upon QA- formation in the native RC is lacking in the spectrum of the mutant. Furthermore, a positive band between 2900 and 2400 cm-1 that is related to protons fluctuating within a network of highly polarizable hydrogen bonds in the native RC is reduced in amplitude in the mutant. On the other hand, the QB-/QB FTIR difference spectrum is essentially the same as for the native RC. The kinetics of electron transfer from QA- to QB were measured by the flash-induced absorption changes at 780 nm. Compared to native RCs the absorption transients are slowed by a factor of about 2 for both the slow phase (in the hundreds of microseconds range) and fast phase (microseconds to tens of microseconds range) in AM260(W-->C) RCs. We conclude that the unusually strong hydrogen bond between the carbonyl of QA and His M219 in the Rb. sphaeroides RC is not obligatory for efficient electron transfer from QA- to QB.
Collapse
Affiliation(s)
- Jacques Breton
- Service de Bioénergétique, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France, UMR 6191 CNRS-CEA-Aix-Marseille II, DEVM-CEA-Cadarache, 13108 St Paul lez Durance, France.
| | | | | | | | | |
Collapse
|
15
|
Burda K. Dynamics of electron transfer in photosystem II. Cell Biochem Biophys 2007; 47:271-84. [PMID: 17652775 DOI: 10.1007/s12013-007-0011-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/26/2022]
Abstract
Photosystem II, being a constituent of light driven photosynthetic apparatus, is a highly organized pigment-protein-lipid complex. The arrangement of PSII active redox cofactors insures efficiency of electron transfer within it. Donation of electrons extracted from water by the oxygen evolving complex to plastoquinones requires an additional activation energy. In this paper we present theoretical discussion of the anharmonic fluctuations of the protein-lipid matrix of PSII and an experimental evidence showing that the fluctuations are responsible for coupling of its donor and acceptor side. We argue that the fast collective motions liberated at temperatures higher that 200 K are crucial for the two final steps of the water splitting cycle and that one can distinguish three different dynamic regimes of PSII action which are controlled by the timescales of forward electron transfer, which vary with temperature. The three regimes of the dynamical behavior are related to different spatial domains of PSII.
Collapse
Affiliation(s)
- Kvetoslava Burda
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland.
| |
Collapse
|
16
|
Paddock ML, Isaacson RA, Abresch EC, Okamura MY. Light induced EPR spectra of reaction centers from Rhodobacter sphaeroides at 80K: Evidence for reduction of Q(B) by B-branch electron transfer in native reaction centers. APPLIED MAGNETIC RESONANCE 2007; 31:29-43. [PMID: 18163156 PMCID: PMC2156152 DOI: 10.1007/bf03166246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides capture solar energy by electron transfer from primary donor, D, to quinone acceptor, Q(B,) through the active A-branch of electron acceptors, but not the inactive B-branch. The light induced EPR spectrum from native RCs that had Fe(2+) replaced by Zn(2+) was investigated at cryogenic temperature (80K, 35 GHz). In addition to the light induced signal due to formation of D(+•)Q(A) (-•) observed previously, a small fraction (~5%) of the signal displayed very different characteristics: (1) The signal was absent in RCs in which the Q(B) was displaced by the inhibitor stigmatellin. (2) Its decay time (τ=6 s) was the same as observed for D(+•)Q(B) (-•) in mutant RCs lacking Q(A,) which is significantly slower than for D(+•)Q(A) (-•) (τ=30 ms). (3) Its EPR spectrum was identical to that of D(+•)Q(B) (-•). (4) The quantum efficiency for forming the major component of the signal was the same as that found for mutant RCs lacking Q(A) (Φ =0.2%) and was temperature independent. These results are explained by direct photochemical reduction of Q(B)via B-branch electron transfer in a small fraction of native RCs.
Collapse
Affiliation(s)
| | | | | | - M. Y. Okamura
- Corresponding Author: Melvin Okamura, Institution: Department of Physics, University of California, San Diego, La Jolla, CA 92093-0354 USA, e-mail:
| |
Collapse
|
17
|
Paddock ML, Flores M, Isaacson R, Chang C, Abresch EC, Selvaduray P, Okamura MY. Trapped conformational states of semiquinone (D+*QB-*) formed by B-branch electron transfer at low temperature in Rhodobacter sphaeroides reaction centers. Biochemistry 2006; 45:14032-42. [PMID: 17115698 PMCID: PMC2259235 DOI: 10.1021/bi060854h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reaction center (RC) from Rhodobacter sphaeroides captures light energy by electron transfer between quinones QA and QB, involving a conformational gating step. In this work, conformational states of D+*QB-* were trapped (80 K) and studied using EPR spectroscopy in native and mutant RCs that lack QA in which QB was reduced by the bacteriopheophytin along the B-branch. In mutant RCs frozen in the dark, a light induced EPR signal due to D+*QB-* formed in 30% of the sample with low quantum yield (0.2%-20%) and decayed in 6 s. A small signal with similar characteristics was also observed in native RCs. In contrast, the EPR signal due to D+*QB-* in mutant RCs illuminated while freezing formed in approximately 95% of the sample did not decay (tau >107 s) at 80 K (also observed in the native RC). In all samples, the observed g-values were the same (g = 2.0026), indicating that all active QB-*'s were located in a proximal conformation coupled with the nonheme Fe2+. We propose that before electron transfer at 80 K, the majority (approximately 70%) of QB, structurally located in the distal site, was not stably reducible, whereas the minority (approximately 30%) of active configurations was in the proximal site. The large difference in the lifetimes of the unrelaxed and relaxed D+*QB-* states is attributed to the relaxation of protein residues and internal water molecules that stabilize D+*QB-*. These results demonstrate energetically significant conformational changes involved in stabilizing the D+*QB-* state. The unrelaxed and relaxed states can be considered to be the initial and final states along the reaction coordinate for conformationally gated electron transfer.
Collapse
Affiliation(s)
- M L Paddock
- Department of Physics, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Kee HL, Laible PD, Bautista JA, Hanson DK, Holten D, Kirmaier C. Determination of the Rate and Yield of B-side Quinone Reduction in Rhodobacter capsulatus Reaction Centers. Biochemistry 2006; 45:7314-22. [PMID: 16752920 DOI: 10.1021/bi060277x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the native purple bacterial reaction center (RC), light-driven charge separation utilizes only the A-side cofactors, with the symmetry related B-side inactive. The process is initiated by electron transfer from the excited primary donor (P*) to the A-side bacteriopheophytin (P* --> P+ H(A)-) in approximately 3 ps. This is followed by electron transfer to the A-side quinone (P+ H(A)- --> P+ Q(A)-) in approximately 200 ps, with an overall quantum yield of approximately 100%. Using nanosecond flash photolysis and RCs from the Rhodobacter capsulatus F(L181)Y/Y(M208)F/L(M212)H mutant (designated YFH), we have probed the decay pathways of the analogous B-side state P+ H(B)-. The rate of the P+ H(B)- --> ground-state charge-recombination process is found to be (3.0 +/- 0.8 ns)(-1), which is much faster than the analogous (10-20 ns)(-1) rate of P+ H(A)- --> ground state. The rate of P+ H(B)- --> P+ Q(B)- electron transfer is determined to be (3.9 +/- 0.9 ns)(-1), which is about a factor of 20 slower than the analogous A-side process P+ H(A)- --> P+ Q(A)-. The yield of P+ H(B)- --> P+ Q(B)- electron-transfer calculated from these rate constants is 44%. This value, when combined with the known 30% yield of P+ H(B)- from P in YFH RCs, gives an overall yield of 13% for B-side charge separation P* --> P+ H(B)- --> P+ Q(B)- in this mutant. We determine essentially the same value (15%) by comparing the P-bleaching amplitude at approximately 1 ms in YFH and wild-type RCs.
Collapse
Affiliation(s)
- Hooi Ling Kee
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | | | | | |
Collapse
|
19
|
Rappaport F, Diner BA, Redding K. Optical Measurements of Secondary Electron Transfer in Photosystem I. PHOTOSYSTEM I 2006. [DOI: 10.1007/978-1-4020-4256-0_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Wakeham MC, Jones MR. Rewiring photosynthesis: engineering wrong-way electron transfer in the purple bacterial reaction centre. Biochem Soc Trans 2005; 33:851-7. [PMID: 16042613 DOI: 10.1042/bst0330851] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purple bacterial reaction centre uses light energy to separate charge across the cytoplasmic membrane, reducing ubiquinone and oxidizing a c-type cytochrome. The protein possesses a macroscopic structural two-fold symmetry but displays a strong functional asymmetry, with only one of two available membrane-spanning branches of cofactors (the so-called A-branch) being used to catalyse photochemical charge separation. The factors underlying this functional asymmetry have been the subject of study for many years but are still not fully understood. Site-directed mutagenesis has been partially successful in rerouting electron transfer along the normally inactive B-branch, allowing comparison of the kinetics of equivalent electron transfer reactions on the two branches. Both the primary and secondary electron transfer steps on the B-branch appear to be considerably slower than their A-branch counterparts. The effectiveness of different mutations in rerouting electron transfer along the B-branch of cofactors is discussed.
Collapse
Affiliation(s)
- M C Wakeham
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | | |
Collapse
|
21
|
Paddock ML, Chang C, Xu Q, Abresch EC, Axelrod HL, Feher G, Okamura MY. Quinone (QB) Reduction by B-Branch Electron Transfer in Mutant Bacterial Reaction Centers from Rhodobacter sphaeroides: Quantum Efficiency and X-ray Structure,. Biochemistry 2005; 44:6920-8. [PMID: 15865437 DOI: 10.1021/bi047559m] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photosynthetic reaction center (RC) from purple bacteria converts light into chemical energy. Although the RC shows two nearly structurally symmetric branches, A and B, light-induced electron transfer in the native RC occurs almost exclusively along the A-branch to a primary quinone electron acceptor Q(A). Subsequent electron and proton transfer to a mobile quinone molecule Q(B) converts it to a quinol, Q(B)H(2). We report the construction and characterization of a series of mutants in Rhodobacter sphaeroides designed to reduce Q(B) via the B-branch. The quantum efficiency to Q(B) via the B-branch Phi(B) ranged from 0.4% in an RC containing the single mutation Ala-M260 --> Trp to 5% in a quintuple mutant which includes in addition three mutations to inhibit transfer along the A-branch (Gly-M203 --> Asp, Tyr-M210 --> Phe, Leu-M214 --> His) and one to promote transfer along the B-branch (Phe-L181 --> Tyr). Comparing the value of 0.4% for Phi(B) obtained in the AW(M260) mutant, which lacks Q(A), to the 100% quantum efficiency for Phi(A) along the A-branch in the native RC, we obtain a ratio for A-branch to B-branch electron transfer of 250:1. We determined the structure of the most effective (quintuple) mutant RC at 2.25 A (R-factor = 19.6%). The Q(A) site did not contain a quinone but was occupied by the side chain of Trp-M260 and a Cl(-). In this structure a nonfunctional quinone was found to occupy a new site near M258 and M268. The implications of this work to trap intermediate states are discussed.
Collapse
Affiliation(s)
- M L Paddock
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Frolov D, Wakeham MC, Andrizhiyevskaya EG, Jones MR, van Grondelle R. Investigation of B-branch electron transfer by femtosecond time resolved spectroscopy in a Rhodobacter sphaeroides reaction centre that lacks the QA ubiquinone. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1707:189-98. [PMID: 15863097 DOI: 10.1016/j.bbabio.2004.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 11/30/2004] [Accepted: 12/01/2004] [Indexed: 11/27/2022]
Abstract
The dynamics of electron transfer in a membrane-bound Rhodobacter sphaeroides reaction centre containing a combination of four mutations were investigated by transient absorption spectroscopy. The reaction centre, named WAAH, has a mutation that causes the reaction centre to assemble without a Q(A) ubiquinone (Ala M260 to Trp), a mutation that causes the replacement of the H(A) bacteriopheophytin with a bacteriochlorophyll (Leu M214 to His) and two mutations that remove acidic groups close to the Q(B) ubiquinone (Glu L212 to Ala and Asp L213 to Ala). Previous work has shown that the Q(B) ubiquinone is reduced by electron transfer along the so-called inactive cofactor branch (B-branch) in the WAAH reaction centre (M.C. Wakeham, M.G. Goodwin, C. McKibbin, M.R. Jones, Photo-accumulation of the P(+)Q(B)(-) radical pair state in purple bacterial reaction centres that lack the Q(A) ubiquinone, FEBS Letters 540 (2003) 234-240). In the present study the dynamics of electron transfer in the membrane-bound WAAH reaction centre were studied by femtosecond transient absorption spectroscopy, and the data analysed using a compartmental model. The analysis indicates that the yield of Q(B) reduction via the B-branch is approximately 8% in the WAAH reaction centre, consistent with results from millisecond time-scale kinetic spectroscopy. Possible contributions to this yield of the constituent mutations in the WAAH reaction centre and the membrane environment of the complex are discussed.
Collapse
Affiliation(s)
- Dmitrij Frolov
- Department of Physics and Astronomy, Free University of Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
23
|
Breton J, Wakeham MC, Fyfe PK, Jones MR, Nabedryk E. Characterization of the bonding interactions of QB upon photoreduction via A-branch or B-branch electron transfer in mutant reaction centers from Rhodobacter sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1656:127-38. [PMID: 15178474 DOI: 10.1016/j.bbabio.2004.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Revised: 02/18/2004] [Accepted: 02/18/2004] [Indexed: 11/22/2022]
Abstract
In Rhodobacter sphaeroides reaction centers (RCs) containing the mutation Ala M260 to Trp (AM260W), transmembrane electron transfer along the full-length of the A-branch of cofactors is prevented by the loss of the Q(A) ubiquinone, but it is possible to generate the radical pair P(+)H(A)(-) by A-branch electron transfer or the radical pair P(+)Q(B)(-) by B-branch electron transfer. In the present study, FTIR spectroscopy was used to provide direct evidence for the complete absence of the Q(A) ubiquinone in mutant RCs with the AM260W mutation. Light-induced FTIR difference spectroscopy of isolated RCs was also used to probe the neutral Q(B) and the semiquinone Q(B)(-) states in two B-branch active mutants, a double AM260W-LM214H mutant, denoted WH, and a quadruple mutant, denoted WAAH, in which the AM260W, LM214H, and EL212A-DL213A mutations were combined. The data were compared to those obtained with wild-type (Wt) RCs and the double EL212A-DL213A (denoted AA) mutant which exhibit the usual A-branch electron transfer to Q(B). The Q(B)(-)/Q(B) spectrum of the WH mutant is very close to that of Wt RCs indicating similar bonding interactions of Q(B) and Q(B)(-) with the protein in both RCs. The Q(B)(-)/Q(B) spectra of the AA and WAAH mutants are also closely related to one another, but are very different to that of the Wt complex. Isotope-edited IR fingerprint spectra were obtained for the AA and WAAH mutants reconstituted with site-specific (13)C-labeled ubiquinone. Whilst perturbations of the interactions of the semiquinone Q(B)(-) with the protein are observed in the AA and WAAH mutants, the FTIR data show that the bonding interaction of neutral Q(B) in these two mutants are essentially the same as those for Wt RCs. Therefore, it is concluded that Q(B) occupies the same binding position proximal to the non-heme iron prior to reduction by either A-branch or B-branch electron transfer.
Collapse
Affiliation(s)
- Jacques Breton
- Service de Bioénergétique, Bât. 532, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | | | | | | | | |
Collapse
|
24
|
Wakeham MC, Breton J, Nabedryk E, Jones MR. Formation of a Semiquinone at the QB Site by A- or B-Branch Electron Transfer in the Reaction Center from Rhodobacter sphaeroides. Biochemistry 2004; 43:4755-63. [PMID: 15096044 DOI: 10.1021/bi035726x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Rhodobacter sphaeroides reaction centers containing the mutation Ala M260 to Trp (AM260W), transmembrane electron transfer along the A-branch of cofactors is prevented by the loss of the QA ubiquinone. Reaction centers that contain this AM260W mutation are proposed to photoaccumulate the P(+)QB- radical pair following transmembrane electron transfer along the B-branch of cofactors (Wakeham, M. C., Goodwin, M. G., McKibbin, C., and Jones, M. R. (2003) Photoaccumulation of the P(+)QB- radical pair state in purple bacterial reaction centers that lack the QA ubiquinone. FEBS Lett. 540, 234-240). The yield of the P(+)QB- state appears to depend upon which additional mutations are present. In the present paper, Fourier transform infrared (FTIR) difference spectroscopy was used to demonstrate that photooxidation of the reaction center's primary donor in QA-deficient reaction centers results in formation of a semiquinone at the QB site by B-branch electron transfer. Reduction of QB by the B-branch pathway still occurs at 100 K, with a yield of approximately 10% relative to that at room temperature, in contrast to the QA- to QB reaction in the wild-type reaction center, which is not active at cryogenic temperatures. These FTIR results suggest that the conformational changes that "gate" the QA- to QB reaction do not necessarily have the same influence on QB reduction when the electron donor is the HB anion, at least in a minority of reaction centers.
Collapse
Affiliation(s)
- Marion C Wakeham
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, United Kingdom
| | | | | | | |
Collapse
|
25
|
Paschenko VZ, Gorokhov VV, Knox PP, Krasilnikov PM, Redlin H, Renger G, Rubin AB. Energetics and mechanisms of high efficiency of charge separation and electron transfer processes in Rhodobacter sphaeroides reaction centers. Bioelectrochemistry 2003; 61:73-84. [PMID: 14642912 DOI: 10.1016/s1567-5394(03)00077-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Effects of environmental changes due to D(2)O/H(2)O substitution and cryosolvent addition on the energetics of the special pair and the rate constants of forward and back electron transfer reactions in the picosecond-nanosecond time domain have been studied in isolated reaction centers (RC) of the anaxogenic purple bacterium Rhodobacter sphaeroides. The following results were obtained: (i). replacement of H(2)O by D(2)O or addition of either 70% (v/v) glycerol or 35% (v/v) DMSO do not influence the absorption spectra; (ii). in marked contrast to this invariance of absorption, the maxima of fluorescence spectra are red shifted relative to control by 3.5, 6.8 and 14.5 nm for RCs suspended in glycerol, D(2)O or DMSO, respectively; (iii). D(2)O/H(2)O substitution or DMSO addition give rise to an increase of the time constants of charge separation (tau(e)), and Q(A)(-) formation (tau(Q)) by a factors of 2.5-3.1 and 1.7-2.5, respectively; (iv). addition of 70% glycerol is virtually without effect on the values of tau(e) and tau(Q); (v). the midpoint potential E(m) of P/P(+) is shifted by about 30 and 45 mV towards higher values by addition of 70% glycerol and 35% DMSO, respectively, but remains invariant to D(2)O/H(2)O exchange; and (vi). an additional fast component with tau(1)=0.5-0.8 ns in the kinetics of charge recombination P(+)H(A)(-)-->P*(P)H(A) emerges in RC suspensions modified either by D(2)O/H(2)O substitution or by DMSO treatment. The results have been analysed with special emphasis on the role of deformations of hydrogen bonds for the solvation mechanism of nonequilibrium states of cofactors. Reorientation of hydrogen bonds provides the major contribution of the very fast environmental response to excitation of the special pair P. The Gibbs standard free energy gap between 1P* and P(+)B(A)(-) due to solvation is estimated to be approximately 70, 59 and 48 meV for control, D(2)O- and DMSO-treated RC samples, respectively.
Collapse
Affiliation(s)
- Vladimir Z Paschenko
- Department of Biophysics, Biology Faculty, Lomonosov State University, Moscow 119899, Russia.
| | | | | | | | | | | | | |
Collapse
|
26
|
Wakeham MC, Frolov D, Fyfe PK, van Grondelle R, Jones MR. Acquisition of photosynthetic capacity by a reaction centre that lacks the QA ubiquinone; possible insights into the evolution of reaction centres? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2003; 1607:53-63. [PMID: 14556913 DOI: 10.1016/j.bbabio.2003.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A photosynthetically impaired strain of Rhodobacter sphaeroides containing reaction centres with an alanine to tryptophan mutation at residue 260 of the M-polypeptide (AM260W) was incubated under photosynthetic growth conditions. This incubation produced photosynthetically competent strains containing suppressor mutations that changed residue M260 to glycine or cysteine. Spectroscopic analysis demonstrated that the loss of the Q(A) ubiquinone seen in the original AM260W mutant was reversed in the suppressor mutants. In the mutant where Trp M260 was replaced by Cys, the rate of reduction of the Q(A) ubiquinone by the adjacent (H(A)) bacteriopheophytin was reduced by three-fold. The findings of the experiment are discussed in light of the X-ray crystal structures of the wild-type and AM260W reaction centres, and the possible implications for the evolution of reaction centres as bioenergetic complexes are considered.
Collapse
Affiliation(s)
- Marion C Wakeham
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, BS8 1TD Bristol, UK
| | | | | | | | | |
Collapse
|