1
|
Heymann JB, Vijayasarathy C, Fariss RN, Sieving PA. Advances in understanding the molecular structure of retinoschisin while questions remain of biological function. Prog Retin Eye Res 2023; 95:101147. [PMID: 36402656 PMCID: PMC10185713 DOI: 10.1016/j.preteyeres.2022.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Retinoschisin (RS1) is a secreted protein that is essential for maintaining integrity of the retina. Numerous mutations in RS1 cause X-linked retinoschisis (XLRS), a progressive degeneration of the retina that leads to vision loss in young males. A key manifestation of XLRS is the formation of cavities (cysts) in the retina and separation of the layers (schisis), disrupting synaptic transmission. There are currently no approved treatments for patients with XLRS. Strategies using adeno-associated viral (AAV) vectors to deliver functional copies of RS1 as a form of gene augmentation therapy, are under clinical evaluation. To improve therapeutic strategies for treating XLRS, it is critical to better understand the secretion of RS1 and its molecular function. Immunofluorescence and immunoelectron microscopy show that RS1 is located on the surfaces of the photoreceptor inner segments and bipolar cells. Sequence homology indicates a discoidin domain fold, similar to many other proteins with demonstrated adhesion functions. Recent structural studies revealed the tertiary structure of RS1 as two back-to-back octameric rings, each cross-linked by disulfides. The observation of higher order structures in vitro suggests the formation of an adhesive matrix spanning the distance between cells (∼100 nm). Several studies indicated that RS1 readily binds to other proteins such as the sodium-potassium ATPase (NaK-ATPase) and extracellular matrix proteins. Alternatively, RS1 may influence fluid regulation via interaction with membrane proteins such as the NaK-ATPase, largely inferred from the use of carbonic anhydrase inhibitors to shrink the typical intra-retinal cysts in XLRS. We discuss these models in light of RS1 structure and address the difficulty in understanding the function of RS1.
Collapse
Affiliation(s)
- J Bernard Heymann
- National Cryo-EM Program, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA.
| | - Camasamudram Vijayasarathy
- Section on Translational Research for Retinal and Macular Degeneration, NIDCD, NIH, Bethesda, MD, 20892, USA
| | - Robert N Fariss
- Biological Imaging Core Facility, NEI, NIH, Bethesda, MD, 20892, USA
| | - Paul A Sieving
- Center for Ocular Regenerative Therapy, Ophthalmology, U C Davis Health, Sacramento, CA, 95817, USA
| |
Collapse
|
2
|
Zhang N, Peng Y, Zhou N, Qi Y. A novel mutation in the RS1 gene in a Chinese family with X-linked congenital retinoschisis. Exp Ther Med 2020; 21:124. [PMID: 33335587 PMCID: PMC7739845 DOI: 10.3892/etm.2020.9556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/30/2020] [Indexed: 11/20/2022] Open
Abstract
The purpose of the present study was to assess the clinical characteristics of X-linked retinoschisis (XLRS) in a Chinese family over a 7-year period with the aim of identifying possible genetic mutations associated with this disease. A total of 2 male siblings from a family with XLRS were followed up for 7 years and the best-corrected visual acuity and data obtained using slit-lamp microscopy, indirect ophthalmoscopy, fundus photography, spectral domain-optical coherence tomography (OCT), fundus autofluorescence and fundus fluorescence (FFA) and multifocal electroretinograms (ERG) were examined. The coding regions of the retinoschisin 1 (RS1) gene were amplified by PCR and sequenced directly. The proband exhibited blurred vision at 12 years old and was indicated to exhibit a typical phenotype of XLRS at 30 years old. The elder brother exhibited blurred vision at 11 years old and was diagnosed with XLRS at 33 years old. There was no change in the best-corrected visual acuities in the two patients over the 7 years. The OCT results suggested that there were intraretinal cysts and macular atrophy in the eyes of the older sibling, whilst a ‘spoke-wheel’ pattern was present in the macula of the younger sibling. In addition, OCT examination revealed foveal schisis. FFA analysis indicated a hyperfluorescent signal in the central macula. Multifocal ERG recordings indicated that responses were markedly reduced in the central and outer rings bilaterally. The central retinal thickness of the younger sibling increased but the central retinal thickness of the older sibling was not changed during the 7 years. Sequencing analysis revealed that the mutation was c.366G>A (p.Trp122*) in exon 5 of Xp22.1. Gene mutation analysis indicated that the affected male siblings harbored a Trp122* (c.366G>A) mutation, while the patients' mother was demonstrated to be a heterozygous carrier of the pathogenic mutation. To conclude, the present study discovered a novel XLRS mutation in a Chinese family, where the Trp122* mutation caused a significant change in the function of the RS1 protein. Over the 7 years of observation, although the vision was not significantly impaired in the two patients examined, the central retinal thickness of the younger sibling increased but the central retinal thickness of the older sibling was not altered.
Collapse
Affiliation(s)
- Na Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yao Peng
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Nan Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yanhua Qi
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
3
|
Heymann JB, Vijayasarathy C, Huang RK, Dearborn AD, Sieving PA, Steven AC. Cryo-EM of retinoschisin branched networks suggests an intercellular adhesive scaffold in the retina. J Cell Biol 2019; 218:1027-1038. [PMID: 30630865 PMCID: PMC6400569 DOI: 10.1083/jcb.201806148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/06/2018] [Accepted: 12/07/2018] [Indexed: 12/26/2022] Open
Abstract
Mutations in the essential retinal protein retinoschisin (RS1) cause a form of macular degeneration. Heymann et al. use cryo-EM to show that RS1 assembles into branched networks that may play a stabilizing role in maintaining the integrity of the retina. Mutations in the retinal protein retinoschisin (RS1) cause progressive loss of vision in young males, a form of macular degeneration called X-linked retinoschisis (XLRS). We previously solved the structure of RS1, a 16-mer composed of paired back-to-back octameric rings. Here, we show by cryo–electron microscopy that RS1 16-mers can assemble into extensive branched networks. We classified the different configurations, finding four types of interaction between the RS1 molecules. The predominant configuration is a linear strand with a wavy appearance. Three less frequent types constitute the branch points of the network. In all cases, the “spikes” around the periphery of the double rings are involved in these interactions. In the linear strand, a loop (usually referred to as spike 1) occurs on both sides of the interface between neighboring molecules. Mutations in this loop suppress secretion, indicating the possibility of intracellular higher-order assembly. These observations suggest that branched networks of RS1 may play a stabilizing role in maintaining the integrity of the retina.
Collapse
Affiliation(s)
- J Bernard Heymann
- Laboratory for Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Camasamudram Vijayasarathy
- Section on Translational Research for Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD
| | - Rick K Huang
- Cryo-Electron Microscopy Facility, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Altaira D Dearborn
- Laboratory for Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Paul A Sieving
- Section on Translational Research for Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD.,National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Alasdair C Steven
- Laboratory for Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
4
|
Paired octamer rings of retinoschisin suggest a junctional model for cell-cell adhesion in the retina. Proc Natl Acad Sci U S A 2016; 113:5287-92. [PMID: 27114531 DOI: 10.1073/pnas.1519048113] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Retinoschisin (RS1) is involved in cell-cell junctions in the retina, but is unique among known cell-adhesion proteins in that it is a soluble secreted protein. Loss-of-function mutations in RS1 lead to early vision impairment in young males, called X-linked retinoschisis. The disease is characterized by separation of inner retinal layers and disruption of synaptic signaling. Using cryo-electron microscopy, we report the structure at 4.1 Å, revealing double octamer rings not observed before. Each subunit is composed of a discoidin domain and a small N-terminal (RS1) domain. The RS1 domains occupy the centers of the rings, but are not required for ring formation and are less clearly defined, suggesting mobility. We determined the structure of the discoidin rings, consistent with known intramolecular and intermolecular disulfides. The interfaces internal to and between rings feature residues implicated in X-linked retinoschisis, indicating the importance of correct assembly. Based on this structure, we propose that RS1 couples neighboring membranes together through octamer-octamer contacts, perhaps modulated by interactions with other membrane components.
Collapse
|
5
|
Bush M, Setiaputra D, Yip CK, Molday RS. Cog-Wheel Octameric Structure of RS1, the Discoidin Domain Containing Retinal Protein Associated with X-Linked Retinoschisis. PLoS One 2016; 11:e0147653. [PMID: 26812435 PMCID: PMC4728063 DOI: 10.1371/journal.pone.0147653] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/06/2016] [Indexed: 11/19/2022] Open
Abstract
RS1, also known as retinoschisin, is a disulphide-linked, discoidin domain containing homo-oligomeric protein that plays a crucial role in maintaining the cellular and synaptic organization of the retina. This is highlighted by the finding that over 130 mutations in RS1 cause X-linked retinoschisis, a retinal degenerative disease characterized by the splitting of the retinal cell layers, disruption of the photoreceptor-bipolar synapses, degeneration of photoreceptors, and severe loss in central vision. In this study, we investigated the arrangement of the RS1 subunits within the oligomer complex using single particle electron microscopy. RS1 was seen as two stacked rings with each ring displaying a symmetrical cog wheel-like structure with eight teeth or projections corresponding to the RS1 subunits. Three dimensional reconstruction and molecular modelling indicated that the discoidin domain, the principal functional unit of RS1, projects outward, and the Rs1 domain and C-terminal segment containing intermolecular disulphide bonds are present in the inner ring to form the core octameric structure. These studies provide a basis for further understanding the role of the novel core RS1 octameric complex in retinal cell biology and X-linked retinoschisis.
Collapse
Affiliation(s)
- Martin Bush
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dheva Setiaputra
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Calvin K. Yip
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert S. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
6
|
Abstract
X-linked juvenile retinoschisis (XLRS) is one of the most common genetic causes of juvenile progressive retinal-vitreal degeneration in males. To date, more than 196 different mutations of the RS1 gene have been associated with XLRS. The mutation spectrum is large and the phenotype variable. This review will focus on the clinical features of XLRS and examine the relationship between phenotype and genotype.
Collapse
Affiliation(s)
- David Y Kim
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston , Massachusetts , USA
| | | |
Collapse
|
7
|
Sergeev YV, Vitale S, Sieving PA, Vincent A, Robson AG, Moore AT, Webster AR, Holder GE. Molecular modeling indicates distinct classes of missense variants with mild and severe XLRS phenotypes. Hum Mol Genet 2013; 22:4756-67. [PMID: 23847049 DOI: 10.1093/hmg/ddt329] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
X-linked retinoschisis (XLRS) is a vitreo-retinal degeneration caused by mutations in the RS1 gene which encodes the protein retinoschisin (RS1), required for the structural and functional integrity of the retina. Data are presented from a group of 38 XLRS patients from Moorfields Eye Hospital (London, UK) who had one of 18 missense mutations in RS1. Patients were grouped based on mutation severity predicted by molecular modeling: mild (class I), moderate (intermediate) and severe (class II). Most patients had an electronegative scotopic bright flash electroretinogram (ERG) (reduced b/a-wave ratio) in keeping with predominant inner retinal dysfunction. An association between the type of structural RS1 alterations and the severity of b/a-wave reduction was found in all but the oldest group of patients, significant in patients aged 15-30 years. Severe RS1 missense changes were associated with a lower ERG b/a ratio than were mild changes, suggesting that the extent of inner retinal dysfunction is influenced by the effect of the mutations on protein structure. The majority of class I mutations showed no changes involving cysteine residues. Class II mutations caused severe perturbations due to the removal or insertion of cysteine residues or due to changes in the hydrophobic core. The ERG b/a ratio in intermediate cases was abnormal but showed significant variability, possibly related to the role of proline or arginine residues. We also conducted a second study, using a completely independent cohort, to indicate a genotype-ERG phenotype correlation.
Collapse
|
8
|
|
9
|
Wu JW, Liu HL. In silico investigation of the disease-associated retinoschisin C110Y and C219G mutants. J Biomol Struct Dyn 2012; 29:937-59. [PMID: 22292953 DOI: 10.1080/07391102.2012.10507420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The juvenile X-linked retinoschisis (XLRS) is a retinal disease caused by mutations in the secretory protein, retinoschisin (RS1). Majority of the disease is resulted from single point mutations on the RS1 discoidin domain with cysteine mutations being related to some of the more severe cases of XLRS. Previous studies have indicated that two mutations (C110Y and C219G), which involve cysteines that form intramolecular disulfide bonds in the native discoidin domain, resulted in different oligomerization states of the proteins and did not correlate with the degree of protein stability as calculated by the change in folding free energy. Through homology modeling, bioinformatics predictions, molecular dynamics (MD) and docking simulations, we attempt to investigate the effects of these two mutations on the structure of the RS1 discoidin domain in relevance to the discrepancy found between structural stability and aggregation propensity. Based on our findings, this discrepancy can be explained by the ability of C110Y mutant to establish suitable modules for initiating amorphous aggregation and to expand the aggregating mass through predominantly hydrophobic interactions. The low capability of C219G mutant to oligomerize, on the other hand, may be due to its greater structural instability and lesser hydrophobic tendency, two properties that may be unsupportive of aggregation. The results, altogether, indicate that aggregation propensity in the RS1 C110Y mutant is dependent upon the formation of suitable aggregating substrates for propagation of aggregation and not directly related to or determined by overall structural instability. As for the wildtype protein, the binding specificity of the spikes for biological function and the formation of octameric structure are contributed by important loop interactions, as well as evolved structural and sequence-based properties that prevent aggregation.
Collapse
Affiliation(s)
- Josephine W Wu
- Institute of Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | | |
Collapse
|
10
|
Molday RS, Kellner U, Weber BHF. X-linked juvenile retinoschisis: clinical diagnosis, genetic analysis, and molecular mechanisms. Prog Retin Eye Res 2012; 31:195-212. [PMID: 22245536 PMCID: PMC3334421 DOI: 10.1016/j.preteyeres.2011.12.002] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 01/07/2023]
Abstract
X-linked juvenile retinoschisis (XLRS, MIM 312700) is a common early onset macular degeneration in males characterized by mild to severe loss in visual acuity, splitting of retinal layers, and a reduction in the b-wave of the electroretinogram (ERG). The RS1 gene (MIM 300839) associated with the disease encodes retinoschisin, a 224 amino acid protein containing a discoidin domain as the major structural unit, an N-terminal cleavable signal sequence, and regions responsible for subunit oligomerization. Retinoschisin is secreted from retinal cells as a disulphide-linked homo-octameric complex which binds to the surface of photoreceptors and bipolar cells to help maintain the integrity of the retina. Over 190 disease-causing mutations in the RS1 gene are known with most mutations occurring as non-synonymous changes in the discoidin domain. Cell expression studies have shown that disease-associated missense mutations in the discoidin domain cause severe protein misfolding and retention in the endoplasmic reticulum, mutations in the signal sequence result in aberrant protein synthesis, and mutations in regions flanking the discoidin domain cause defective disulphide-linked subunit assembly, all of which produce a non-functional protein. Knockout mice deficient in retinoschisin have been generated and shown to display most of the characteristic features found in XLRS patients. Recombinant adeno-associated virus (rAAV) mediated delivery of the normal RS1 gene to the retina of young knockout mice result in long-term retinoschisin expression and rescue of retinal structure and function providing a 'proof of concept' that gene therapy may be an effective treatment for XLRS.
Collapse
Affiliation(s)
- Robert S Molday
- Department of Biochemistry and Molecular Biology, Centre of Macular Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, B.C. V6T 1Z3, Canada.
| | | | | |
Collapse
|
11
|
Kotova S, Vijayasarathy C, Dimitriadis EK, Ikonomou L, Jaffe H, Sieving PA. Retinoschisin (RS1) interacts with negatively charged lipid bilayers in the presence of Ca2+: an atomic force microscopy study. Biochemistry 2010; 49:7023-32. [PMID: 20677810 DOI: 10.1021/bi1007029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Retinoschisin (RS1) is a retina-specific secreted protein encoding a conserved discoidin domain sequence. As an adhesion molecule, RS1 preserves the retinal cell architecture and promotes visual signal transduction. In young males, loss-of-function mutations in the X-linked retinoschisis gene (RS1) cause X-linked retinoschisis, a form of progressive blindness. Neither the structure of RS1 nor the nature of its anchoring and organization on the plasma membranes is fully understood. The discoidin C2 domains of coagulation factors V and VIII are known to interact with extracellular phosphatidylserine (PS). In this study we have used atomic force microscopy (AFM) to study the interactions of murine retinoschisin (Rs1) with supported anionic lipid bilayers in the presence of Ca(2+). The bilayers consisting of a single lipid, PS, and mixtures of lipids with or without PS were used. Consistent with previous X-ray diffraction studies, AFM imaging showed two distinct domains in pure PS bilayers when Ca(2+) was present. Upon Rs1 adsorption, these PS and PS-containing mixed bilayers underwent fast and extensive reorganization. Protein localization was ascertained by immunolabeling. AFM imaging showed the Rs1 antibody bound exclusively to the calcium-rich ordered phase of the bilayers pointing to the sequestration of Rs1 within those domains. This was further supported by the increased mechanical strength of these domains after Rs1 binding. Besides, changes in bilayer thickness suggested that Rs1 was partially embedded into the bilayer. These findings support a model whereby the Rs1 protein binds to PS in the retinal cell plasma membranes in a calcium-dependent manner.
Collapse
Affiliation(s)
- Svetlana Kotova
- LBPS, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
12
|
Sergeev YV, Caruso RC, Meltzer MR, Smaoui N, MacDonald IM, Sieving PA. Molecular modeling of retinoschisin with functional analysis of pathogenic mutations from human X-linked retinoschisis. Hum Mol Genet 2010; 19:1302-13. [PMID: 20061330 DOI: 10.1093/hmg/ddq006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gene mutations that encode retinoschisin (RS1) cause X-linked retinoschisis (XLRS), a form of juvenile macular and retinal degeneration that affects males. RS1 is an adhesive protein which is proposed to preserve the structural and functional integrity of the retina, but there is very little evidence of the mechanism by which protein changes are related to XLRS disease. Here, we report molecular modeling of the RS1 protein and consider perturbations caused by mutations found in human XLRS subjects. In 60 XLRS patients who share 27 missense mutations, we then evaluated possible correlations of the molecular modeling with retinal function as determined by the electroretinogram (ERG) a- and b-waves. The b/a-wave ratio reflects visual-signal transfer in retina. We sorted the ERG b/a-ratios by patient age and by the mutation impact on protein structure. The majority of RS1 mutations caused minimal structure perturbation and targeted the protein surface. These patients' b/a-ratios were similar across younger and older subjects. Maximum structural perturbations from either the removal or insertion of cysteine residues or changes in the hydrophobic core were associated with greater difference in the b/a-ratio with age, with a significantly smaller ratio at younger ages, analogous to the ERG changes with age observed in mice with no RS1-protein expression due to a recombinant RS1-knockout gene. The molecular modeling suggests an association between the predicted structural alteration and/or damage to retinoschisin and the severity of XLRS as measured by the ERG analogous to the RS1-knockout mouse.
Collapse
Affiliation(s)
- Y V Sergeev
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Cheng YM, Hsieh FC, Meng M. Functional analysis of conserved aromatic amino acids in the discoidin domain of Paenibacillus beta-1,3-glucanase. Microb Cell Fact 2009; 8:62. [PMID: 19930717 PMCID: PMC2789033 DOI: 10.1186/1475-2859-8-62] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Accepted: 11/25/2009] [Indexed: 02/01/2023] Open
Abstract
The 190-kDa Paenibacillus beta-1,3-glucanase (LamA) contains a catalytic module of the glycoside hydrolase family 16 (GH16) and several auxiliary domains. Of these, a discoidin domain (DS domain), present in both eukaryotic and prokaryotic proteins with a wide variety of functions, exists at the carboxyl-terminus. To better understand the bacterial DS domain in terms of its structure and function, this domain alone was expressed in Escherichia coli and characterized. The results indicate that the DS domain binds various polysaccharides and enhances the biological activity of the GH16 module on composite substrates. We also investigated the importance of several conserved aromatic residues in the domain's stability and substrate-binding affinity. Both were affected by mutations of these residues; however, the effect on protein stability was more notable. In particular, the forces contributed by a sandwiched triad (W1688, R1756, and W1729) were critical for the presumable beta-sandwich fold.
Collapse
Affiliation(s)
- Yueh-Mei Cheng
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Rd, Taichung, 40227, Taiwan.
| | | | | |
Collapse
|
15
|
Dyka FM, Wu WWH, Pfeifer TA, Molday LL, Grigliatti TA, Molday RS. Characterization and purification of the discoidin domain-containing protein retinoschisin and its interaction with galactose. Biochemistry 2008; 47:9098-106. [PMID: 18690710 DOI: 10.1021/bi800938g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
RS1, also known as retinoschisin, is an extracellular discoidin domain-containing protein that has been implicated in maintaining the cellular organization and synaptic structure of the vertebrate retina. Mutations in the gene encoding RS1 are responsible for X-linked retinoschisis, a retinal degenerative disease characterized by the splitting of the retinal cell layers and visual impairment. To better understand the role of RS1 in retinal cell biology and X-linked retinoschisis, we have studied the interaction of wild-type and mutant RS1 with various carbohydrates coupled to agarose supports. RS1 bound efficiently to galactose-agarose and to a lesser extent lactose-agarose, but not agarose, N-acetylgalactosamine-agarose, N-acetylglucosamine-agarose, mannose-agarose, or heparin-agarose. RS1 cysteine mutants (C59S/C223S and C59S/C223S/C40S) which prevent disulfide-linked octamer formation exhibited little if any binding to galactose-agarose. The disease-causing R141H mutant bound galactose-agarose at levels similar to that of wild-type RS1, whereas the R141S mutant resulted in a marked reduction in the level of galactose-agarose binding. RS1 bound to galactose-agarose could be effectively displaced by incubation with isopropyl beta- d-1-thiogalactopyranoside (IPTG). This property was used as a basis to develop an efficient purification procedure. Anion exchange and galactose affinity chromatography was used to purify RS1 from the culture media of stably transformed Sf21 insect cells that express and secrete RS1. This cell expression and protein purification method should prove useful in the isolation of RS1 for detailed structure-function studies.
Collapse
Affiliation(s)
- Frank M Dyka
- Department of Biochemistry and Molecular Biology, Centre for Macular Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Housaindokht MR, Bozorgmehr MR, Bahrololoom M. Analysis of ligand binding to proteins using molecular dynamics simulations. J Theor Biol 2008; 254:294-300. [PMID: 18599089 DOI: 10.1016/j.jtbi.2008.04.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 04/28/2008] [Accepted: 04/30/2008] [Indexed: 11/19/2022]
Abstract
This work aims to explore theoretically the molecular mechanisms of ligand binding to proteins through the use of molecular dynamics simulations. The binding of sodium dodecyl sulfate (SDS) to cobra cardio toxin A3 (CTX A3) and thiourea (TOU) to lysozyme have been chosen as the two model systems. Data acquisitions were made by Gromacs software. To begin with, the collisions of ligand molecules with every residue of CTX A3 and lysozyme were evaluated. With this information in hand, the average numbers of collisions with each residue was defined and then assessed. Next, a measure of the affinity of a residue, P(i), referred to as conformational factor, toward a ligand molecule was established. Based on the results provided, all site-making residues for CTX A3 and lysozyme were identified. The results are in good agreement with the experimental data. Finally, based on this method, all site-making residues of bovine carbonic anhydrase (BCA) toward the SDS ligand were predicted.
Collapse
Affiliation(s)
- M R Housaindokht
- Biophysical Chemistry Laboratory, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 91775-1436, Mashhad, Iran.
| | | | | |
Collapse
|
17
|
Vijayasarathy C, Takada Y, Zeng Y, Bush RA, Sieving PA. Organization and molecular interactions of retinoschisin in photoreceptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 613:291-7. [PMID: 18188957 DOI: 10.1007/978-0-387-74904-4_34] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Camasamudram Vijayasarathy
- Section for Translational Research in Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
18
|
Molday LL, Wu WWH, Molday RS. Retinoschisin (RS1), the Protein Encoded by the X-linked Retinoschisis Gene, Is Anchored to the Surface of Retinal Photoreceptor and Bipolar Cells through Its Interactions with a Na/K ATPase-SARM1 Complex. J Biol Chem 2007; 282:32792-801. [PMID: 17804407 DOI: 10.1074/jbc.m706321200] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinoschisin or RS1 is a discoidin domain-containing protein encoded by the gene responsible for X-linked retinoschisis (XLRS), an early onset macular degeneration characterized by a splitting of the retina. Retinoschisin, expressed and secreted from photoreceptors and bipolar cells as a homo-octameric complex, associates with the surface of these cells where it serves to maintain the cellular organization of the retina and the photoreceptor-bipolar synaptic structure. To gain insight into the role of retinoschisin in retinal cell adhesion and the pathogenesis of XLRS, we have investigated membrane components in retinal extracts that interact with retinoschisin. Unlike the discoidin domain-containing blood coagulation proteins Factor V and Factor VIII, retinoschisin did not bind to phospholipids or retinal lipids reconstituted into unilamellar vesicles or immobilized on microtiter plates. Instead, co-immunoprecipitation studies together with mass spectrometric-based proteomics and Western blotting showed that retinoschisin is associated with a complex consisting of Na/K ATPase (alpha3, beta2 isoforms) and the sterile alpha and TIR motif-containing protein SARM1. Double labeling studies for immunofluorescence microscopy confirmed the co-localization of retinoschisin with Na/K ATPase and SARM1 in photoreceptors and bipolar cells of retina tissue. We conclude that retinoschisin binds to Na/K ATPase on photoreceptor and bipolar cells. This interaction may be part of a novel SARM1-mediated cell signaling pathway required for the maintenance of retinal cell organization and photoreceptor-bipolar synaptic structure.
Collapse
Affiliation(s)
- Laurie L Molday
- Department of Biochemistry & Molecular Biology, Centre for Macular Research, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
19
|
Zeng M, Yi C, Guo X, Jia X, Deng Y, Wang J, Shen H. Identification of novel mutations in the XLRS1 gene in Chinese patients with X-linked juvenile retinoschisis. Curr Eye Res 2007; 32:685-91. [PMID: 17852193 DOI: 10.1080/02713680701486410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
X-linked juvenile retinoschisis (XLRS) is a major cause of macular degeneration in young men. In this study we analyzed all six exons of the XLRS1 gene in four sporadic XLRS patients and in an affected family in China who were recently diagnosed. We found there are five different mutations with four containing missense point mutations and one having a frame-shift deletion. Among these mutations both c.644A>T and c.520delC are novel and have not been previously reported. Moreover all the second-generation offsprings and most of the third-generation ones in the affected family were found to carry the mutations bearing X chromosome. The discovery of novel mutations in the XLRS1 gene would increase the available information about the spectrum of genetic abnormalities causing XLRS. Although the limited data failed to reveal a correlation between mutations and disease phenotypes our identification of novel mutations in the XLRS1 gene will facilitate early and correct diagnosis and genetic counseling regarding the prognosis of XLRS disease.
Collapse
Affiliation(s)
- Meizhen Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Kiedzierska A, Smietana K, Czepczynska H, Otlewski J. Structural similarities and functional diversity of eukaryotic discoidin-like domains. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1069-78. [PMID: 17702679 DOI: 10.1016/j.bbapap.2007.07.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 07/02/2007] [Accepted: 07/17/2007] [Indexed: 12/15/2022]
Abstract
The discoidin domain is a approximately 150 amino acid motif common in both eukaryotic and prokaryotic proteins. It is found in a variety of extracellular, intracellular and transmembrane multidomain proteins characterized by a considerable functional diversity, mostly involved in developmental processes. The biological role of the domain depends on its interactions with different molecules, including growth factors, phospholipids and lipids, galactose or its derivatives, and collagen. The conservation of the motif, as well as the serious physiological consequences of discoidin domain disorders underscore the importance of the fold, while the ability to accommodate such an extraordinarily broad range of ligand molecules makes it a fascinating research target. In present review we characterize the distinctive features of discoidin domains and briefly outline the biological role of this module in various eukaryotic proteins.
Collapse
Affiliation(s)
- A Kiedzierska
- Faculty of Biotechnology, University of Wroclaw, Str. Tamka2, 50-137 Wroclaw, Poland
| | | | | | | |
Collapse
|
21
|
Abstract
X-linked retinoschisis is the leading cause of macular degeneration in males and leads to splitting within the inner retinal layers leading to visual deterioration. Many missense and protein truncating mutations have now been identified in the causative retinoschisis gene (RS1) which encodes a 224 amino acid secretory retinal protein, retinoschisin. Retinoschisin octamerisation is implicated in cell-cell interactions and cell adhesion perhaps by interacting with beta2 laminin. Mutations cause loss of retinoschisin function by one of the three mechanisms: by interfering with protein secretion, by preventing its octamerisation or by reducing function in the secreted octamerised protein. The development of retinoschisis mouse models have provided a model system that closely resembles the human disease. Recent reports of RS1 gene transfer to these models and the sustained restoration of some retinal function and morphology suggest gene replacement may be a possible future therapy for patients.
Collapse
Affiliation(s)
- Stephen K Sikkink
- Academic Unit of Medical Genetics, University of Manchester, St Mary's Hospital, Manchester, UK
| | | | | | | | | |
Collapse
|
22
|
Kim DY, Neely KA, Sassani JW, Vrabec TR, Tantri A, Frost A, Donoso LA. X-linked retinoschisis: novel mutation in the initiation codon of the XLRS1 gene in a large family. Retina 2006; 26:940-6. [PMID: 17031297 DOI: 10.1097/01.iae.0000224321.93502.a3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To describe a novel point mutation in the initiation codon of the XLRS1 gene in a large family and the clinical features of males affected with X-linked juvenile retino-schisis. METHODS Genealogic investigation and mutation screening of the XLRS1 gene were performed for a 4-generation family consisting of 72 members. Affected males were evaluated clinically between 1986 and 2004 with up to 18 years of follow-up. RESULTS We identified a novel point mutation (1A>T transversion) in the initiation codon of the XLRS1 gene in affected males resulting in an amino acid substitution of methionine to leucine (Met1Leu), therefore abolishing the translation initiation Met codon. CONCLUSION Identification of the disease-causing mutation in this family with long-term follow-up allows for earlier and more accurate identification of individuals at risk for this inherited progressive macular degeneration, provides for more accurate genetic counseling, and contributes to our understanding of the pathophysiology of this disorder.
Collapse
Affiliation(s)
- David Y Kim
- Henry and Corinne Bower Laboratory, Wills Eye Hospital and the Eye Research Institute, 211 South 9th Street, Room 402, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Iannaccone A, Mura M, Dyka FM, Ciccarelli ML, Yashar BM, Ayyagari R, Jablonski MM, Molday RS. An unusual X-linked retinoschisis phenotype and biochemical characterization of the W112C RS1 mutation. Vision Res 2006; 46:3845-52. [PMID: 16884758 DOI: 10.1016/j.visres.2006.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 06/02/2006] [Accepted: 06/09/2006] [Indexed: 10/24/2022]
Abstract
A 52-year-old subject harboring an RS1 gene W112C mutation presented with a prominent and asymmetric tapetal-like retinal sheen. Transient ERG responses were smaller and slower in the eye with the more extensive sheen, an association that, to our knowledge, had not been previously reported. An ON-pathway dysfunction explained the abnormalities of the transient but not those of the flicker ERGs. Although in vitro studies showed that the W112C mutant retinoschisin is present only in the cellular fraction and is not secreted, disease expression was remarkably mild, consistent with the notion of the existence of genetic and/or epigenetic disease modifiers.
Collapse
Affiliation(s)
- Alessandro Iannaccone
- Hamilton Eye Institute, Department of Ophthalmology, University of Tennessee Health Science Center, 930 Madison Avenue, Suite 731, Memphis, TN 38163, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang T, Zhou A, Waters CT, O'Connor E, Read RJ, Trump D. Molecular pathology of X linked retinoschisis: mutations interfere with retinoschisin secretion and oligomerisation. Br J Ophthalmol 2006; 90:81-6. [PMID: 16361673 PMCID: PMC1856892 DOI: 10.1136/bjo.2005.078048] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND/AIM X linked retinoschisis (XLRS) is caused by mutations in RS1 which encodes the discoidin domain protein retinoschisin, secreted by photoreceptors and bipolar cells. Missense mutations occur throughout the gene and some of these are known to interfere with protein secretion. This study was designed to investigate the functional consequences of missense mutations at different locations in retinoschisin. METHODS AND RESULTS The authors developed a structural model of the retinoschisin discoidin domain and used this to predict the effects of missense mutations. They expressed disease associated mutations and found that those affecting conserved residues prevented retinoschisin secretion. Most of the remaining mutations cluster within a series of loops on the surface of the beta barrel structure and do not interfere with secretion, suggesting this region may be a ligand binding site. They also demonstrated that wild type retinoschisin octamerises and associates with the cell surface. A subgroup of secreted mutations reduce oligomerisation (C59S, C219G, C223R). CONCLUSIONS It is suggested that there are three different molecular mechanisms which lead to XLRS: mutations interfering with secretion, mutations interfering with oligomerisation, and mutations that allow secretion and oligomerisation but interfere with retinoschisin function. The authors conclude that binding of oligomerised retinoschisin at the cell surface is important in its presumed role in cell adhesion.
Collapse
Affiliation(s)
- T Wang
- Academic Unit of Medical Genetics, University of Manchester, Manchester M13 0JH, UK
| | | | | | | | | | | |
Collapse
|
25
|
Molday LL, Min SH, Seeliger MW, Wu WWH, Dinculescu A, Timmers AM, Janssen A, Tonagel F, Hudl K, Weber BHF, Hauswirth WW, Molday RS. Disease mechanisms and gene therapy in a mouse model for X-linked retinoschisis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 572:283-9. [PMID: 17249585 DOI: 10.1007/0-387-32442-9_39] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
|
26
|
Chapter 13 Principal Components Analysis: A Review of its Application on Molecular Dynamics Data. ANNUAL REPORTS IN COMPUTATIONAL CHEMISTRY 2006. [DOI: 10.1016/s1574-1400(06)02013-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
27
|
Wu WWH, Wong JP, Kast J, Molday RS. RS1, a discoidin domain-containing retinal cell adhesion protein associated with X-linked retinoschisis, exists as a novel disulfide-linked octamer. J Biol Chem 2005; 280:10721-30. [PMID: 15644328 DOI: 10.1074/jbc.m413117200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RS1, also known as retinoschisin, is an extracellular protein that plays a crucial role in the cellular organization of the retina. Mutations in RS1 are responsible for X-linked retinoschisis, a common, early-onset macular degeneration in males that results in a splitting of the inner layers of the retina and severe loss in vision. RS1 is assembled and secreted from photoreceptors and bipolar cells as a homo-oligomeric protein complex. Each subunit consists of a 157-amino acid discoidin domain flanked by two small segments of 39 and 5 amino acids. To begin to understand how the structure of RS1 relates to its role in retinal cell adhesion and X-linked retinoschisis, we have determined the subunit organization and disulfide bonding pattern of RS1 by SDS gel electrophoresis, velocity sedimentation, and mass spectrometry. Our results indicate that RS1 exists as a novel octamer in which the eight subunits are joined together by Cys(59)-Cys(223) intermolecular disulfide bonds. Subunits within the octamer are further organized into dimers mediated by Cys(40)-Cys(40) bonds. These cysteines lie just outside the discoidin domain indicating that these flanking segments primarily function in the octamerization of RS1. Within the discoidin domain, two cysteine pairs (Cys(63)-Cys(219) and Cys(110)-Cys(142)) form intramolecular disulfide bonds that are important in protein folding, and one cysteine (Cys(83)) exists in its reduced state. Because mutations that disrupt subunit assembly cause X-linked retinoschisis, the assembly of RS1 into a disulfide-linked homo-octamer appears to be critical for its function as a retinal cell adhesion protein.
Collapse
Affiliation(s)
- Winco W H Wu
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | | | | | | |
Collapse
|
28
|
Abdulhussein R, McFadden C, Fuentes-Prior P, Vogel WF. Exploring the Collagen-binding Site of the DDR1 Tyrosine Kinase Receptor. J Biol Chem 2004; 279:31462-70. [PMID: 15136580 DOI: 10.1074/jbc.m400651200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Discoidin domain receptors 1 and 2 (DDR1 and DDR2) are tyrosine kinase receptors activated by triple-helical collagens. Aberrant expression and signaling of these receptors have been implicated in several human diseases linked to accelerated matrix degradation and remodeling including tumor invasion, atherosclerosis and liver fibrosis. The objective of this study is to characterize the collagen-binding sites in the discoidin domains of DDR1 and DDR2 at a molecular level. We expressed glutathione S-transferase fusion proteins containing the discoidin and extracellular domains of DDR1 and DDR2 in insect cells and subjected them to a solid-phase collagen-binding assay. We found high affinity binding of the DDR extracellular domains to immobilized type I collagen and confirmed the discoidin-collagen interaction with an enzyme-linked immunosorbent assay-based read-out. Furthermore, we created a three-dimensional model of the DDR1 discoidin domain based on the related domains of blood coagulation factors V and VIII. This model predicts the presence of four neighboring, surface-exposed loops that are topologically equivalent to a major phospholipid-binding site in factors V and VIII. To test the involvement of these loops in collagen binding, we mutated individual amino acid residues to alanine or deleted short sequence stretches within these loops. We found that several residues within loop 1 (Ser-52-Thr-57) and loop 3 (Arg-105-Lys-112) as well as Ser-175 in loop 4 are critically involved in collagen binding. Our structure-function analysis of the DDR discoidin domains provides new insights into this non-integrin-mediated collagen-signaling mechanism and may ultimately lead to the design of small molecule inhibitors that interfere with aberrant DDR function.
Collapse
Affiliation(s)
- Rahim Abdulhussein
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|