1
|
Espinoza-Fonseca LM. Structural Basis for the Function of the C-Terminal Proton Release Pathway in the Calcium Pump. Int J Mol Sci 2021; 22:ijms22073507. [PMID: 33805255 PMCID: PMC8037123 DOI: 10.3390/ijms22073507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
The calcium pump (sarco/endoplasmic reticulum Ca2+-ATPase, SERCA) plays a major role in calcium homeostasis in muscle cells by clearing cytosolic Ca2+ during muscle relaxation. Active Ca2+ transport by SERCA involves the structural transition from a low-Ca2+ affinity E2 state toward a high-Ca2+ affinity E1 state of the pump. This structural transition is accompanied by the countertransport of protons to stabilize the negative charge and maintain the structural integrity of the transport sites and partially compensate for the positive charges of the two Ca2+ ions passing through the membrane. X-ray crystallography studies have suggested that a hydrated pore located at the C-terminal domain of SERCA serves as a conduit for proton countertransport, but the existence and function of this pathway have not yet been fully characterized. We used atomistic simulations to demonstrate that in the protonated E2 state and the absence of initially bound water molecules, the C-terminal pore becomes hydrated in the nanosecond timescale. Hydration of the C-terminal pore is accompanied by the formation of water wires that connect the transport sites with the cytosol. Water wires are known as ubiquitous proton-transport devices in biological systems, thus supporting the notion that the C-terminal domain serves as a conduit for proton release. Additional simulations showed that the release of a single proton from the transport sites induces bending of transmembrane helix M5 and the interaction between residues Arg762 and Ser915. These structural changes create a physical barrier against full hydration of the pore and prevent the formation of hydrogen-bonded water wires once proton transport has occurred through this pore. Together, these findings support the notion that the C-terminal proton release pathway is a functional element of SERCA and also provide a mechanistic model for its operation in the catalytic cycle of the pump.
Collapse
Affiliation(s)
- L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Abstract
The sarcoplasmic (SERCA 1a) Ca2+-ATPase is a membrane protein abundantly present in skeletal muscles where it functions as an indispensable component of the excitation-contraction coupling, being at the expense of ATP hydrolysis involved in Ca2+/H+ exchange with a high thermodynamic efficiency across the sarcoplasmic reticulum membrane. The transporter serves as a prototype of a whole family of cation transporters, the P-type ATPases, which in addition to Ca2+ transporting proteins count Na+, K+-ATPase and H+, K+-, proton- and heavy metal transporting ATPases as prominent members. The ability in recent years to produce and analyze at atomic (2·3-3 Å) resolution 3D-crystals of Ca2+-transport intermediates of SERCA 1a has meant a breakthrough in our understanding of the structural aspects of the transport mechanism. We describe here the detailed construction of the ATPase in terms of one membraneous and three cytosolic domains held together by a central core that mediates coupling between Ca2+-transport and ATP hydrolysis. During turnover, the pump is present in two different conformational states, E1 and E2, with a preference for the binding of Ca2+ and H+, respectively. We discuss how phosphorylated and non-phosphorylated forms of these conformational states with cytosolic, occluded or luminally exposed cation-binding sites are able to convert the chemical energy derived from ATP hydrolysis into an electrochemical gradient of Ca2+ across the sarcoplasmic reticulum membrane. In conjunction with these basic reactions which serve as a structural framework for the transport function of other P-type ATPases as well, we also review the role of the lipid phase and the regulatory and thermodynamic aspects of the transport mechanism.
Collapse
|
3
|
Myint W, Gong Q, Ahn J, Ishima R. Characterization of sarcoplasmic reticulum Ca2+ ATPase nucleotide binding domain mutants using NMR spectroscopy. Biochem Biophys Res Commun 2010; 405:19-23. [PMID: 21187073 DOI: 10.1016/j.bbrc.2010.12.094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 12/20/2010] [Indexed: 11/25/2022]
Abstract
Sarcoplasmic reticulum Ca(2+) ATPase (SERCA) is essential for muscle function by transporting Ca(2+) from the cytosol into the sarcoplasmic reticulum through ATP hydrolysis. In this report, the effects of substitution mutations on the isolated SERCA-nucleotide binding domain (SERCA-N) were studied using NMR. (15)N-(1)H HSQC spectra of substitution mutants at the nucleotide binding site, T441A, R560V, and C561A, showed chemical shift changes, primarily in residues adjacent to the mutation sites, indicating only local effects. Further, the patterns of chemical shift changes upon AMP-PNP binding to these mutants were similar to that of the wild type SERCA-N (WT). In contrast to these nucleotide binding site mutants, a mutant found in patients with Darier's disease, E412G, showed small but significant chemical shift changes throughout the protein and rapid precipitation. However, the AMP-PNP dissociation constant (∼2.5 mM) was similar to that of WT (∼3.8 mM). These results indicate that the E412G mutant retains its catalytic activity but most likely reduces its stability. Our findings provide molecular insight into previous clinical, physiological, and biochemical observations.
Collapse
Affiliation(s)
- Wazo Myint
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
4
|
Duarte AMS, de Jong ER, Koehorst RBM, Hemminga MA. Conformational studies of peptides representing a segment of TM7 from H+-VO-ATPase in SDS micelles. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:639-46. [PMID: 19669749 PMCID: PMC2841257 DOI: 10.1007/s00249-009-0522-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 07/09/2009] [Accepted: 07/09/2009] [Indexed: 11/25/2022]
Abstract
The conformation of a transmembrane peptide, sMTM7, encompassing the cytoplasmic hemi-channel domain of the seventh transmembrane section of subunit a from V-ATPase from Saccharomyces cerevisiae solubilized in SDS solutions was studied by circular dichroism (CD) spectroscopy and fluorescence spectroscopy of the single tryptophan residue of this peptide. The results show that the peptide adopts an alpha-helical conformation or aggregated beta-sheet depending on the peptide-to-SDS ratio used. The results are compared with published data about a longer version of the peptide (i.e., MTM7). It is concluded that the bulky, positively charged arginine residue located in the center of both peptides has a destabilizing effect on the helical conformation of the SDS-solubilized peptides, leading to beta-sheet formation and subsequent aggregation.
Collapse
Affiliation(s)
- Afonso M. S. Duarte
- Laboratory of Biophysics, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
- Present Address: Cellular Protein Chemistry Laboratory, Utrecht University, Utrecht, The Netherlands
| | - Edwin R. de Jong
- Laboratory of Biophysics, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Rob B. M. Koehorst
- Laboratory of Biophysics, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Marcus A. Hemminga
- Laboratory of Biophysics, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| |
Collapse
|
5
|
Becker D, Fendler K, Altendorf K, Greie JC. The Conserved Dipole in Transmembrane Helix 5 of KdpB in the Escherichia coli KdpFABC P-Type ATPase Is Crucial for Coupling and the Electrogenic K+-Translocation Step. Biochemistry 2007; 46:13920-8. [DOI: 10.1021/bi701394h] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Doris Becker
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, 49069 Osnabrück, and Max Planck Institut für Biophysik, Max-von-Laue-Strasse 3, 60438 Frankfurt/Main, Germany
| | - Klaus Fendler
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, 49069 Osnabrück, and Max Planck Institut für Biophysik, Max-von-Laue-Strasse 3, 60438 Frankfurt/Main, Germany
| | - Karlheinz Altendorf
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, 49069 Osnabrück, and Max Planck Institut für Biophysik, Max-von-Laue-Strasse 3, 60438 Frankfurt/Main, Germany
| | - Jörg-Christian Greie
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, 49069 Osnabrück, and Max Planck Institut für Biophysik, Max-von-Laue-Strasse 3, 60438 Frankfurt/Main, Germany
| |
Collapse
|
6
|
Duarte AMS, Wolfs CJAM, van Nuland NAJ, Harrison MA, Findlay JBC, van Mierlo CPM, Hemminga MA. Structure and localization of an essential transmembrane segment of the proton translocation channel of yeast H+-V-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:218-27. [PMID: 16962559 DOI: 10.1016/j.bbamem.2006.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 07/12/2006] [Accepted: 07/28/2006] [Indexed: 11/17/2022]
Abstract
Vacuolar (H+)-ATPase (V-ATPase) is a proton pump present in several compartments of eukaryotic cells to regulate physiological processes. From biochemical studies it is known that the interaction between arginine 735 present in the seventh transmembrane (TM7) segment from subunit a and specific glutamic acid residues in the subunit c assembly plays an essential role in proton translocation. To provide more detailed structural information about this protein domain, a peptide resembling TM7 (denoted peptide MTM7) from Saccharomyces cerevisiae (yeast) V-ATPase was synthesized and dissolved in two membrane-mimicking solvents: DMSO and SDS. For the first time the secondary structure of the putative TM7 segment from subunit a is obtained by the combined use of CD and NMR spectroscopy. SDS micelles reveal an alpha-helical conformation for peptide MTM7 and in DMSO three alpha-helical regions are identified by 2D 1H-NMR. Based on these conformational findings a new structural model is proposed for the putative TM7 in its natural environment. It is composed of 32 amino acid residues that span the membrane in an alpha-helical conformation. It starts at the cytoplasmic side at residue T719 and ends at the luminal side at residue W751. Both the luminal and cytoplasmatic regions of TM7 are stabilized by the neighboring hydrophobic transmembrane segments of subunit a and the subunit c assembly from V-ATPase.
Collapse
Affiliation(s)
- Afonso M S Duarte
- Laboratory of Biophysics, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
7
|
Underhaug J, Jakobsen LO, Esmann M, Malmendal A, Nielsen NC. NMR studies of the fifth transmembrane segment of Na+,K+-ATPase reveals a non-helical ion-binding region. FEBS Lett 2006; 580:4777-83. [PMID: 16904671 DOI: 10.1016/j.febslet.2006.07.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 07/07/2006] [Accepted: 07/13/2006] [Indexed: 10/24/2022]
Abstract
The structure of a synthetic peptide corresponding to the fifth membrane-spanning segment (M5) in Na(+),K(+)-ATPase in sodium dodecyl sulfate (SDS) micelles was determined using liquid-state nuclear magnetic resonance (NMR) spectroscopy. The spectra reveal that this peptide is substantially less alpha-helical than the corresponding M5 peptide of Ca(2+)-ATPase. A well-defined alpha-helix is shown in the C-terminal half of the peptide. Apart from a short helical stretch at the N-terminus, the N-terminal half contains a non-helical region with two proline residues and sequence similarity to a non-structured transmembrane element of the Ca(2+)-ATPase. Furthermore, this region spans the residues implicated in Na(+) and K(+) transport, where they are likely to offer the flexibility needed to coordinate Na(+) as well as K(+) during active transport.
Collapse
Affiliation(s)
- Jarl Underhaug
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
8
|
Gleason MR, Armisen R, Verdecia MA, Sirotkin H, Brehm P, Mandel G. A mutation in serca underlies motility dysfunction in accordion zebrafish. Dev Biol 2005; 276:441-51. [PMID: 15581877 DOI: 10.1016/j.ydbio.2004.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 08/31/2004] [Accepted: 09/07/2004] [Indexed: 11/17/2022]
Abstract
Zebrafish acquire the ability for fast swimming early in development. The motility mutant accordion (acc) undergoes exaggerated and prolonged contractions on both sides of the body, interfering with the acquisition of patterned swimming responses. Our whole cell recordings from muscle indicate that the defect is not manifested in neuromuscular transmission. However, imaging of skeletal muscle of larval acc reveals greatly prolonged calcium transients and associated contractions in response to depolarization. Positional cloning of acc identified a serca mutation as the cause of the acc phenotype. SERCA is a sarcoplasmic reticulum transmembrane protein in skeletal muscle that mediates calcium re-uptake from the myoplasm. The mutation in SERCA, a serine to phenylalanine substitution, is likely to result in compromised protein function that accounts for the observed phenotype. Indeed, direct evidence that mutant SERCA causes the motility dysfunction was provided by the finding that wild type fish injected with an antisense morpholino directed against serca, exhibited accordion-like contractions and impaired swimming. We conclude that the motility dysfunction in embryonic and larval accordion zebrafish stems directly from defective calcium transport in skeletal muscle rather than defective CNS drive.
Collapse
Affiliation(s)
- Michelle R Gleason
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, 550 CMM, Stony Brook, NY 11794, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Hirata H, Saint-Amant L, Waterbury J, Cui W, Zhou W, Li Q, Goldman D, Granato M, Kuwada JY. accordion, a zebrafish behavioral mutant, has a muscle relaxation defect due to a mutation in the ATPase Ca2+ pump SERCA1. Development 2004; 131:5457-68. [PMID: 15469975 DOI: 10.1242/dev.01410] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When wild-type zebrafish embryos are touched at 24 hours post-fertilization (hpf), they typically perform two rapid alternating coils of the tail. By contrast, accordion (acc) mutants fail to coil their tails normally but contract the bilateral trunk muscles simultaneously to shorten the trunk, resulting in a pronounced dorsal bend. Electrophysiological recordings from muscles showed that the output from the central nervous system is normal in mutants, suggesting a defect in muscles is responsible. In fact, relaxation in acc muscle is significantly slower than normal. In vivo imaging of muscle Ca2+ transients revealed that cytosolic Ca2+ decay was significantly slower in acc muscle. Thus, it appears that the mutant behavior is caused by a muscle relaxation defect due to the impairment of Ca2+ re-uptake. Indeed, acc mutants carry a mutation in atp2a1 gene that encodes the sarco(endo)plasmic reticulum Ca2+-ATPase 1 (SERCA1), a Ca2+ pump found in the muscle sarcoplasmic reticulum (SR) that is responsible for pumping Ca2+ from the cytosol back to the SR. As SERCA1 mutations in humans lead to Brody disease, an exercise-induced muscle relaxation disorder, zebrafish accordion mutants could be a useful animal model for this condition.
Collapse
Affiliation(s)
- Hiromi Hirata
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-0720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|