1
|
Immanuel T, Li J, Green TN, Bogdanova A, Kalev-Zylinska ML. Deregulated calcium signaling in blood cancer: Underlying mechanisms and therapeutic potential. Front Oncol 2022; 12:1010506. [PMID: 36330491 PMCID: PMC9623116 DOI: 10.3389/fonc.2022.1010506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Intracellular calcium signaling regulates diverse physiological and pathological processes. In solid tumors, changes to calcium channels and effectors via mutations or changes in expression affect all cancer hallmarks. Such changes often disrupt transport of calcium ions (Ca2+) in the endoplasmic reticulum (ER) or mitochondria, impacting apoptosis. Evidence rapidly accumulates that this is similar in blood cancer. Principles of intracellular Ca2+ signaling are outlined in the introduction. We describe different Ca2+-toolkit components and summarize the unique relationship between extracellular Ca2+ in the endosteal niche and hematopoietic stem cells. The foundational data on Ca2+ homeostasis in red blood cells is discussed, with the demonstration of changes in red blood cell disorders. This leads to the role of Ca2+ in neoplastic erythropoiesis. Then we expand onto the neoplastic impact of deregulated plasma membrane Ca2+ channels, ER Ca2+ channels, Ca2+ pumps and exchangers, as well as Ca2+ sensor and effector proteins across all types of hematologic neoplasms. This includes an overview of genetic variants in the Ca2+-toolkit encoding genes in lymphoid and myeloid cancers as recorded in publically available cancer databases. The data we compiled demonstrate that multiple Ca2+ homeostatic mechanisms and Ca2+ responsive pathways are altered in hematologic cancers. Some of these alterations may have genetic basis but this requires further investigation. Most changes in the Ca2+-toolkit do not appear to define/associate with specific disease entities but may influence disease grade, prognosis, treatment response, and certain complications. Further elucidation of the underlying mechanisms may lead to novel treatments, with the aim to tailor drugs to different patterns of deregulation. To our knowledge this is the first review of its type in the published literature. We hope that the evidence we compiled increases awareness of the calcium signaling deregulation in hematologic neoplasms and triggers more clinical studies to help advance this field.
Collapse
Affiliation(s)
- Tracey Immanuel
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan City, China
| | - Taryn N. Green
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Maggie L. Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
2
|
Paracrine ADP Ribosyl Cyclase-Mediated Regulation of Biological Processes. Cells 2022; 11:cells11172637. [PMID: 36078044 PMCID: PMC9454491 DOI: 10.3390/cells11172637] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
ADP-ribosyl cyclases (ADPRCs) catalyze the synthesis of the Ca2+-active second messengers Cyclic ADP-ribose (cADPR) and ADP-ribose (ADPR) from NAD+ as well as nicotinic acid adenine dinucleotide phosphate (NAADP+) from NADP+. The best characterized ADPRC in mammals is CD38, a single-pass transmembrane protein with two opposite membrane orientations. The first identified form, type II CD38, is a glycosylated ectoenzyme, while type III CD38 has its active site in the cytosol. The ectoenzymatic nature of type II CD38 raised long ago the question of a topological paradox concerning the access of the intracellular NAD+ substrate to the extracellular active site and of extracellular cADPR product to its intracellular receptors, ryanodine (RyR) channels. Two different transporters, equilibrative connexin 43 (Cx43) hemichannels for NAD+ and concentrative nucleoside transporters (CNTs) for cADPR, proved to mediate cell-autonomous trafficking of both nucleotides. Here, we discussed how type II CD38, Cx43 and CNTs also play a role in mediating several paracrine processes where an ADPRC+ cell supplies a neighboring CNT-and RyR-expressing cell with cADPR. Recently, type II CD38 was shown to start an ectoenzymatic sequence of reactions from NAD+/ADPR to the strong immunosuppressant adenosine; this paracrine effect represents a major mechanism of acquired resistance of several tumors to immune checkpoint therapy.
Collapse
|
3
|
Yu P, Cai X, Liang Y, Wang M, Yang W. Roles of NAD + and Its Metabolites Regulated Calcium Channels in Cancer. Molecules 2020; 25:molecules25204826. [PMID: 33092205 PMCID: PMC7587972 DOI: 10.3390/molecules25204826] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor for redox enzymes, but also moonlights as a regulator for ion channels, the same as its metabolites. Ca2+ homeostasis is dysregulated in cancer cells and affects processes such as tumorigenesis, angiogenesis, autophagy, progression, and metastasis. Herein, we summarize the regulation of the most common calcium channels (TRPM2, TPCs, RyRs, and TRPML1) by NAD+ and its metabolites, with a particular focus on their roles in cancers. Although the mechanisms of NAD+ metabolites in these pathological processes are yet to be clearly elucidated, these ion channels are emerging as potential candidates of alternative targets for anticancer therapy.
Collapse
Affiliation(s)
- Peilin Yu
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; (P.Y.); (Y.L.)
| | - Xiaobo Cai
- Department of Biophysics, and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China;
| | - Yan Liang
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; (P.Y.); (Y.L.)
| | - Mingxiang Wang
- BrioPryme Biologics, Inc., Hangzhou 310058, Zhejiang, China;
| | - Wei Yang
- Department of Biophysics, and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China;
- Correspondence: ; Tel.: +86-571-8820-8713
| |
Collapse
|
4
|
Danese A, Marchi S, Vitto VAM, Modesti L, Leo S, Wieckowski MR, Giorgi C, Pinton P. Cancer-Related Increases and Decreases in Calcium Signaling at the Endoplasmic Reticulum-Mitochondria Interface (MAMs). Rev Physiol Biochem Pharmacol 2020; 185:153-193. [PMID: 32789789 DOI: 10.1007/112_2020_43] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum (ER)-mitochondria regions are specialized subdomains called also mitochondria-associated membranes (MAMs). MAMs allow regulation of lipid synthesis and represent hubs for ion and metabolite signaling. As these two organelles can module both the amplitude and the spatiotemporal patterns of calcium (Ca2+) signals, this particular interaction controls several Ca2+-dependent pathways well known for their contribution to tumorigenesis, such as metabolism, survival, sensitivity to cell death, and metastasis. Mitochondria-mediated apoptosis arises from mitochondrial Ca2+ overload, permeabilization of the mitochondrial outer membrane, and the release of mitochondrial apoptotic factors into the cytosol. Decreases in Ca2+ signaling at the ER-mitochondria interface are being studied in depth as failure of apoptotic-dependent cell death is one of the predominant characteristics of cancer cells. However, some recent papers that linked MAMs Ca2+ crosstalk-related upregulation to tumor onset and progression have aroused the interest of the scientific community.In this review, we will describe how different MAMs-localized proteins modulate the effectiveness of Ca2+-dependent apoptotic stimuli by causing both increases and decreases in the ER-mitochondria interplay and, specifically, by modulating Ca2+ signaling.
Collapse
Affiliation(s)
- Alberto Danese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Veronica Angela Maria Vitto
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Lorenzo Modesti
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Sara Leo
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
5
|
Xu N, Zhang D, Chen J, He G, Gao L. Low expression of ryanodine receptor 2 is associated with poor prognosis in thyroid carcinoma. Oncol Lett 2019; 18:3605-3612. [PMID: 31516575 PMCID: PMC6732998 DOI: 10.3892/ol.2019.10732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022] Open
Abstract
Genetic alterations are vital in the progression of thyroid carcinoma. Ryanodine receptor 2 (RyR2) is reported to serve an important role in several types of human carcinoma. However, the expression and effect of RyR2 in thyroid carcinoma remain unknown. Therefore, the present study analyzed the status of RyR2 in thyroid carcinoma using bioinformatics tools. The mRNA profiles of thyroid carcinoma were downloaded from The Cancer Genome Atlas. RyR2 was distinguished as a differentially expressed gene that has not been reported in thyroid carcinoma. Further analysis indicated that there was selective downregulation of RyR2 expression in thyroid carcinoma tissues compared with that in normal thyroid tissues. Survival analysis showed that RyR2 expression was associated with poorer disease-free survival (DFS) for all patients with thyroid carcinoma. Univariate analysis revealed that a low expression of RyR2 was significantly associated with lymphatic metastasis, extracapsular extension, and the Tumor-Node-Metastasis stage. Cox analysis demonstrated that RyR2 was an independent prognostic factor in thyroid carcinoma for DFS. The biological processes and signaling pathways of RyR2 were reviewed with Gene Set Enrichment Analysis. In conclusion, the present study has revealed that RyR2 is downregulated in thyroid carcinoma, and that low expression of RyR2 is associated with poor prognosis in patients with thyroid carcinoma. RyR2 may therefore serve as a promising tumor suppressor gene in thyroid carcinoma.
Collapse
Affiliation(s)
- Nizhen Xu
- Department of Head and Neck Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Deguang Zhang
- Department of Head and Neck Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Jian Chen
- Department of Head and Neck Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Gaofei He
- Department of Head and Neck Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Li Gao
- Department of Head and Neck Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
6
|
Liao X, Du K, Zhang J, Meng W, Zuo S, Huang Q, Wang H, Gou D. Red blood cells are damaged by intraoperative blood salvage via Ca2+-dependent and -independent mechanisms. Life Sci 2019; 227:114-121. [DOI: 10.1016/j.lfs.2019.03.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 11/27/2022]
|
7
|
Sepehri B, Ghavami R. Molecular docking and CoMFA studies of thiazoloquin(az)olin(on)es as CD38 inhibitors: determination of inhibitory mechanism, pharmacophore interactions, and design of new inhibitors. J Biomol Struct Dyn 2016; 35:1890-1898. [PMID: 27577102 DOI: 10.1080/07391102.2016.1197152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In this research, molecular docking and 3D-QSAR studies were carried out on a series of 79 thiazoloquin(az)olin(on)es as CD38 inhibitors. Based on docking results, four interactions including hydrogen bonding with main chain of GLU-226 (H-M-GLU-226), Van der Waals interactions with side chain of TRP-125 (V-S-TRP-125), TRP-189 (V-S-TRP-189), and THR-221 (V-S-THR-221) were considered as pharmacological interactions. Active conformation of each ligand was extracted from docking studies and was used for carrying out 3D-QSAR modeling. Comparative molecular field analysis (CoMFA) was performed on CD38 inhibitory activities of these compounds on human and mouse. We developed CoMFA models with five components as optimum models for both data-sets. For human data-set, a model with high predictive power was developed. R2, RMSE, and F-test values for training set of this model were .94, .24, and 179.58, respectively, and R2 and RMSE for its test set were .92 and .32, respectively. The q2 and RMSE values for leave-one-out cross validation test on training set were .78 and .46, respectively, that demonstrate created model is robust. Based on extracted steric and electrostatic contour maps for this model, three inhibitors with pIC50 larger than 8.85 were designed.
Collapse
Affiliation(s)
- Bakhtyar Sepehri
- a Faculty of Science, Department of Chemistry , University of Kurdistan , P.O. Box 416 , Sanandaj , Iran
| | - Raouf Ghavami
- a Faculty of Science, Department of Chemistry , University of Kurdistan , P.O. Box 416 , Sanandaj , Iran
| |
Collapse
|
8
|
Tucholska M, Florentinus A, Williams D, Marshall JG. The endogenous peptides of normal human serum extracted from the acetonitrile-insoluble precipitate using modified aqueous buffer with analysis by LC-ESI-Paul ion trap and Qq-TOF. J Proteomics 2010; 73:1254-69. [PMID: 20211283 DOI: 10.1016/j.jprot.2010.02.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 02/22/2010] [Accepted: 02/23/2010] [Indexed: 01/10/2023]
Abstract
Many peptides of biological or medicinal importance may be derived from proteolytic actions and are found at low concentrations in human blood fluids. Endogenous polypeptides from human serum were precipitated in acetonitrile and the precipitate was then selectively extracted with water modified by organic solvents and collected over C18 resin. Extraction of serum with C18 alone, and the acetonitrile supernatant or ultrafiltration collected over C18, served as controls. The samples were analyzed by SDS-PAGE, or C18 high pressure liquid chromatography with electrospray ionization using a Paul ion trap and Qq-TOF. Spectra were correlated without specifying an enzyme using the X!TANDEM or the Paragon algorithms. Multiple endogenous peptides from plasminogen, coagulation factors, collagens, serum amyloid, receptors, zinc finger/bromo peptide proteins, ryanodine receptor, calmodulin binding activator, erythroid differentiation factor, testes cancer antigen, extracellular matrix protein, myeloid/lymphoid leukemia 2 and many low abundance proteins were correlated by X!TANDEM with protein expect values of approximately E-16 or less. Proteins with binding sites for nucleic acids, phosphoinositides, and other cellular locations were also observed using the Qq-TOF and Paragon algorithm. Proteins with low expectation scores and overlapping peptides sequences were observed. The existence of these proteins in serum has been confirmed by tryptic digestion and LC-ESI-MS/MS. The presence of plasminogen, serum amyloid and zinc finger RNA binding proteins were confirmed by Western blot. There was agreement on the detection of endogenous peptides from low abundance proteins associated with the biology of cancer from the examination of the blood peptides by ion trap and Qq-TOF, tryptic digests of blood proteins, and Western blot.
Collapse
Affiliation(s)
- Monika Tucholska
- Department of Chemistry and Biology, Faculty of Engineering and Applied Science, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
| | | | | | | |
Collapse
|
9
|
Nobbio L, Sturla L, Fiorese F, Usai C, Basile G, Moreschi I, Benvenuto F, Zocchi E, De Flora A, Schenone A, Bruzzone S. P2X7-mediated increased intracellular calcium causes functional derangement in Schwann cells from rats with CMT1A neuropathy. J Biol Chem 2009; 284:23146-58. [PMID: 19546221 DOI: 10.1074/jbc.m109.027128] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) is the most frequent inherited neuromuscular disorder, affecting 1 person in 2500. CMT1A, the most common form of CMT, is usually caused by a duplication of chromosome 17p11.2, containing the PMP22 (peripheral myelin protein-22) gene; overexpression of PMP22 in Schwann cells (SC) is believed to cause demyelination, although the underlying pathogenetic mechanisms remain unclear. Here we report an abnormally high basal concentration of intracellular calcium ([Ca(2+)](i)) in SC from CMT1A rats. By the use of specific pharmacological inhibitors and through down-regulation of expression by small interfering RNA, we demonstrate that the high [Ca(2+)](i) is caused by a PMP22-related overexpression of the P2X7 purinoceptor/channel leading to influx of extracellular Ca(2+) into CMT1A SC. Correction of the altered [Ca(2+)](i) in CMT1A SC by small interfering RNA or with pharmacological inhibitors of P2X7 restores functional parameters of SC (migration and release of ciliary neurotrophic factor), which are typically defective in CMT1A SC. More significantly, stable down-regulation of the expression of P2X7 restores myelination in co-cultures of CMT1A SC with dorsal root ganglion sensory neurons. These results establish a pathogenetic link between high [Ca(2+)](i) and impaired SC function in CMT1A and identify overexpression of P2X7 as the molecular mechanism underlying both abnormalities. The development of P2X7 inhibitors is expected to provide a new therapeutic strategy for treatment of CMT1A neuropathy.
Collapse
Affiliation(s)
- Lucilla Nobbio
- Department of Neurosciences, Ophthalmology, and Genetics and Center of Excellence for Biomedical Research, University of Genova, Via De Toni 5, 16132 Genova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Plattner H, Sehring IM, Schilde C, Ladenburger E. Chapter 5 Pharmacology of Ciliated Protozoa—Drug (In)Sensitivity and Experimental Drug (Ab)Use. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:163-218. [DOI: 10.1016/s1937-6448(08)01805-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
11
|
Regulation of the renal microcirculation by ryanodine receptors and calcium-induced calcium release. Curr Opin Nephrol Hypertens 2009; 18:40-9. [DOI: 10.1097/mnh.0b013e32831cf5bd] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Reiterer G, Yen A. Platelet-Derived Growth Factor Receptor Regulates Myeloid and Monocytic Differentiation of HL-60 Cells. Cancer Res 2007; 67:7765-72. [PMID: 17699781 DOI: 10.1158/0008-5472.can-07-0014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Here, we show that the platelet-derived growth factor receptor (PDGFR) regulates myeloid and monocytic differentiation of HL-60 myeloblastic leukemia cells in response to retinoic acid (RA) and vitamin D3 (D3), respectively. Both RA and D3 decreased the expression of PDGFR-alpha and PDGFR-beta throughout differentiation. When cells were treated with the PDGFR inhibitor AG1296 in addition to RA or D3, signs of terminal differentiation such as inducible oxidative metabolism and cell substrate adhesion were enhanced. These changes were accompanied by an increased extracellular signal-regulated kinase 1/2 activation. AG1296 also resulted in elevated expression of differentiation markers CD11b and CD66c when administered with RA or D3. Interestingly, other markers did not follow the same pattern. Cells receiving AG1296 in addition to RA or D3 showed decreased G1-G0 arrest and CD14, CD38, and CD89 expression. We thus provide evidence that certain sets of differentiation markers can be enhanced, whereas others can be inhibited by the PDGFR pathway. In addition, we found calcium levels to be decreased by RA and D3 but increased when AG1296 was given in addition to RA or D3, suggesting that calcium levels decrease during myeloid or monocytic differentiation, and elevated calcium levels can disturb the expression of certain differentiation markers.
Collapse
Affiliation(s)
- Gudrun Reiterer
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|