1
|
Kamble SA, Barale SS, Mohammed AA, Paymal SB, Naik NM, Sonawane KD. Structural insights into the potential binding sites of Cathepsin D using molecular modelling techniques. Amino Acids 2024; 56:33. [PMID: 38649596 PMCID: PMC11035400 DOI: 10.1007/s00726-023-03367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/11/2023] [Indexed: 04/25/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia caused by the accumulation of amyloid beta (Aβ) peptides. The extracellular deposition of Aβ peptides in human AD brain causes neuronal death. Therefore, it has been found that Aβ peptide degradation is a possible therapeutic target for AD. CathD has been known to breakdown amyloid beta peptides. However, the structural role of CathD is not yet clear. Hence, for the purpose of gaining a deeper comprehension of the structure of CathD, the present computational investigation was performed using virtual screening technique to predict CathD's active site residues and substrate binding mode. Ligand-based virtual screening was implemented on small molecules from ZINC database against crystal structure of CathD. Further, molecular docking was utilised to investigate the binding mechanism of CathD with substrates and virtually screened inhibitors. Localised compounds obtained through screening performed by PyRx and AutoDock 4.2 with CathD receptor and the compounds having highest binding affinities were picked as; ZINC00601317, ZINC04214975 and ZINCC12500925 as our top choices. The hydrophobic residues Viz. Gly35, Val31, Thr34, Gly128, Ile124 and Ala13 help stabilising the CathD-ligand complexes, which in turn emphasises substrate and inhibitor selectivity. Further, MM-GBSA approach has been used to calculate binding free energy between CathD and selected compounds. Therefore, it would be beneficial to understand the active site pocket of CathD with the assistance of these discoveries. Thus, the present study would be helpful to identify active site pocket of CathD, which could be beneficial to develop novel therapeutic strategies for the AD.
Collapse
Affiliation(s)
- Subodh A Kamble
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, M.S., 416004, India
| | - Sagar S Barale
- Department of Microbiology, Shivaji University, 416004, M.S., Kolhapur, India
| | - Ali Abdulmawjood Mohammed
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, M.S., 416004, India
| | - Sneha B Paymal
- Department of Microbiology, Shivaji University, 416004, M.S., Kolhapur, India
| | - Nitin M Naik
- Department of Microbiology, Shivaji University, 416004, M.S., Kolhapur, India
| | - Kailas D Sonawane
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, M.S., 416004, India.
- Department of Chemistry, Shivaji University, Kolhapur, M.S., 416004, India.
| |
Collapse
|
2
|
Mohammadi M, Guan J, Khodagholi F, Yans A, Khalaj S, Gholami M, Taghizadeh GH, Aliaghaei A, Abdollahi M, Ghahremani MH, Sharifzadeh M. Reduction of autophagy markers mediated protective effects of JNK inhibitor and bucladesine on memory deficit induced by Aβ in rats. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:501-10. [PMID: 26899864 DOI: 10.1007/s00210-016-1222-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/10/2016] [Indexed: 12/15/2022]
Abstract
Autophagy, the process of self-degradation of cellular components, has an important role in neurodegenerative diseases, such as Alzheimer's disease. In this study, we investigated the effects of SP600125 as c-Jun N-terminal kinase (JNK) inhibitor and bucladesine as a cyclic adenosine 3',5'-monophosphate (cAMP) analog on spatial memory and expression of autophagic factors in Aβ-injected rats. Male Wistar rats were used. Rats were randomly allocated into five groups as following: amyloid beta (Aβ)-only group, Aβ + SP600125 (30 μg/1 μ/side, n = 7) and/or bucladesine (100 μM/1 μl/side, n = 7), and the normal control (vehicle only) group. The treatments were administered bilaterally to the CA1 sub-region of the hippocampus stereotaxically. Spatial reference memory was performed using Morris Water Maze 21 days later. The expression of authophagy markers (beclin1, Atg7, Atg12, and LC3 II/LC3 I) in the hippocampus was evaluated using western blotting. Compared to the vehicle group, Aβ administration reduced spatial reference learning (P < 0.001) and memory (P < 0.01) and upregulated the expression of beclin1, Atg7, Atg12, and LC3 II/I (P < 0.0001). Compare to Aβ-only group, the administration of SP600125 and/or bucladesine improved spatial reference learning (P < 0.001) and memory (P < 0.01). Compared to the Aβ-only group, the treatment with SP600125 and/or bucladesine also reduced beclin1, Atg7, Atg12, and LC3 II/I (P < 0.0001) which was similar to amount of normal rats. In summary, it seems that the improvement of spatial memory by SP600125 and/or bucladesine in Aβ-injected rats is in relation with normalizing of autophagy to the physiologic level, possibly through neuroprotection and/or neuroplasticity.
Collapse
Affiliation(s)
- M Mohammadi
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, Iran
| | - J Guan
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medicine and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand.,Gravida National Centre for Growth and Development, University of Auckland, Auckland, New Zealand
| | - F Khodagholi
- Neuroscience Research Centre, ShahidBeheshti University of Medical Sciences, Tehran, Iran.,Neurobiology Research Centre, ShahidBeheshti University of Medical Sciences, Tehran, Iran
| | - A Yans
- Neuroscience Research Centre, ShahidBeheshti University of Medical Sciences, Tehran, Iran.,Neurobiology Research Centre, ShahidBeheshti University of Medical Sciences, Tehran, Iran
| | - S Khalaj
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, Iran
| | - M Gholami
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, Iran
| | - G H Taghizadeh
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, Iran.,Department of Neuroscience, Faculty of Advanced Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - A Aliaghaei
- Department of Anatomy and Cell Biology, School of Medicine, ShahidBeheshti University of Medical Sciences, Tehran, Iran
| | - M Abdollahi
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, Iran
| | - M H Ghahremani
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, Iran
| | - M Sharifzadeh
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, Iran. .,Department of Neuroscience, Faculty of Advanced Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Abstract
Autophagy is the sole pathway for organelle turnover in cells and is a vital pathway for degrading normal and aggregated proteins, particularly under stress or injury conditions. Recent evidence has shown that the amyloid β peptide is generated from amyloid β precursor protein (APP) during autophagic turnover of APP-rich organelles supplied by both autophagy and endocytosis. Aβ generated during normal autophagy is subsequently degraded by lysosomes. Within neurons, autophagosomes and endosomes actively form in synapses and along neuritic processes but efficient clearance of these compartments requires their retrograde transport towards the neuronal cell body, where lysosomes are most concentrated. In Alzheimer disease, the maturation of autophagolysosomes and their retrograde transport are impeded, which leads to a massive accumulation of `autophagy intermediates' (autophagic vacuoles) within large swellings along dystrophic and degenerating neurites. The combination of increased autophagy induction and defective clearance of Aβ-generating autophagic vacuoles creates conditions favorable for Aβ accumulation in Alzheimer disease.
Collapse
Affiliation(s)
- Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, Departments of Psychiatry and Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
4
|
Morelli L, Llovera R, Ibendahl S, Castaño EM. The degradation of amyloid beta as a therapeutic strategy in Alzheimer's disease and cerebrovascular amyloidoses. Neurochem Res 2002; 27:1387-99. [PMID: 12512943 DOI: 10.1023/a:1021679817756] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The deposition of 4-kDa amyloid beta peptide in the brain is a prominent feature of several human diseases. Such process is heterogeneous in terms of causative factors, biochemical phenotype, localization and clinical manifestations. Amyloid beta accumulates in the neuropil or within the walls of cerebral vessels, and associates with dementia or stroke, both hereditary and sporadic. Amyloid beta is normally released by cells as soluble monomeric-dimeric species yet, under pathological conditions, it self-aggregates as soluble oligomers or insoluble fibrils that may be toxic to neurons and vascular cells. Lowering amyloid beta levels may be achieved by inhibiting its generation from the amyloid beta-precursor protein or by promoting its clearance by transport or degradation. We will summarize recent findings on brain proteases capable of degrading amyloid beta with a special focus on those enzymes for which there is genetic, transgenic or biochemical evidence suggesting that they may participate in the proteolysis of amyloid beta in vivo. We will also put in perspective their possible utilization as therapeutic agents in amyloid beta diseases.
Collapse
Affiliation(s)
- Laura Morelli
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), CONICET, Cátedra de Química Biológica Patológica, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
5
|
Crawford FC, Freeman MJ, Schinka J, Abdullah LI, Richards D, Sevush S, Duara R, Mullan MJ. The genetic association between Cathepsin D and Alzheimer's disease. Neurosci Lett 2000; 289:61-5. [PMID: 10899409 DOI: 10.1016/s0304-3940(00)01260-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aspartyl protease Cathepsin D has previously been suggested to play a role in the Alzheimer's disease (AD) process because of its ability to cleave the beta-amyloid precursor protein and the possibility that it may be one of the 'secretase' enzymes. A functional C-->T polymorphism in the Cathepsin D gene (CATD) has been reported to be associated with increased risk for AD in Caucasian case-control studies; specifically, the T-carrying genotypes confer increased risk. We have examined this association in our own Caucasian dataset of 210 AD cases and 120 controls, and in an additional Hispanic dataset comprising 79 AD cases and 112 controls. In Hispanics we find a modest interaction between CATD genotype and age of onset on risk for AD, such that the non-T-carrying genotype confers increased risk. In our Caucasian dataset we find no evidence for association between the CATD polymorphism and AD, although we do observe a small tendency towards an increase in the T-carrying genotypes in the case group, consistent with previous studies. We conducted an aggregate analysis of the published Caucasian datasets and found evidence that this CATD polymorphism (or another locus in linkage disequilibrium) does contribute significant, but small (<2%) risk for AD.
Collapse
Affiliation(s)
- F C Crawford
- Roskamp Institute and the University of South Florida Memory Disorder Clinic, 3515 E. Fletcher Avenue, Tampa, FL 33613, USA
| | | | | | | | | | | | | | | |
Collapse
|